Post Mortem Molecular Biomarkers of Asphyxia: A Literature Review
Abstract
:1. Introduction
Definition and Mechanisms of Asphyxia
2. Materials and Methods
3. Results and Discussion
3.1. Key Biochemical Biomarkers in Asphyxia
3.2. Analysis of Ligature Mark Vitality
3.3. Biomarkers of Drowning
3.4. Practical Applications and Implications in Forensic Medicine
- -
- In the case of mechanical asphyxia, we highlight the usefulness of immunostaining, Western blotting, ELISA, or mRNA analysis investigations on one or more tissue samples described in Table 1, depending on the specific case;
- -
- In the case of analyses of the vitality of the ligature mark, we suggest immunostaining on neck skin samples according to the markers described in Table 2;
- -
- In the case of drowning, we emphasize the usefulness of aquaporins and the investigations described in Table 3 for the differential diagnosis between saltwater and freshwater drowning.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boskabadi, H.; Zakerihamidi, M.; Moradi, A. Predictive value of biochemical and hematological markers in prognosis of asphyxic infants. Caspian J. Intern. Med. 2020, 11, 377–383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mileva, B.; Goshev, M.; Valcheva, M.; Alexandrov, A.; Braynova, I. Forensic Interpretation and Importance of Simon’s Bleeding, Amussat’s Sign and Other Typical Findings of Hanging as Diagnostic Signs. Cureus 2024, 16, e57809. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Parekh, V.; Brkic, A.; McMinn, J.; Williams, D.; Van Diemen, J. Non-fatal strangulation versus general assault in a clinical forensic medicine cohort: Characteristics of patient, perpetrator and presentation. J. Forensic Leg. Med. 2024, 102, 102651. [Google Scholar] [CrossRef] [PubMed]
- Debuf, M.J.; Carkeek, K.; Piersigilli, F. A Metabolomic Approach in Search of Neurobiomarkers of Perinatal Asphyxia: A Review of the Current Literature. Front. Pediatr. 2021, 9, 674585. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sánchez-Illana, Á.; Núñez-Ramiro, A.; Cernada, M.; Parra-Llorca, A.; Valverde, E.; Blanco, D.; Moral-Pumarega, M.T.; Cabañas, F.; Boix, H.; Pavon, A.; et al. HYPOTOP Study Group. Evolution of Energy Related Metabolites in Plasma from Newborns with Hypoxic-Ischemic Encephalopathy during Hypothermia Treatment. Sci. Rep. 2017, 7, 17039. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tu, Y.F.; Wu, P.M.; Yu, W.H.; Li, C.I.; Wu, C.L.; Kang, L.; Lin, Y.C.; Shih, H.I.; Huang, C.C. Lactate Predicts Neurological Outcomes after Perinatal Asphyxia in Post-Hypothermia Era: A Prospective Cohort Study. Life 2021, 11, 1193. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wu, Z.; Wei, Y.; Wang, X.; Zou, J.; Xiao, L.; Fan, W.; Yang, H.; Liao, L. Untargeted and targeted metabolomics analysis of CO poisoning and mechanical asphyxia postmortem interval biomarkers in rat and human plasma by GCMS. J. Pharm. Biomed. Anal. 2024, 251, 116443. [Google Scholar] [CrossRef] [PubMed]
- Locci, E.; Chighine, A.; Noto, A.; Ferino, G.; Baldi, A.; Varvarousis, D.; Xanthos, T.; De-Giorgio, F.; Stocchero, M.; d’Aloja, E. Metabolomics improves the histopathological diagnosis of asphyxial deaths: An animal proof-of-concept model. Sci. Rep. 2021, 11, 10102. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gutjahr, E.; Madea, B. Inflammatory reaction patterns of the lung as a response to alveolar hypoxia and their significance for the diagnosis of asphyxiation. Forensic Sci. Int. 2019, 297, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Barranco, R.; Bonsignore, A.; Ventura, F. Immunohistochemistry in postmortem diagnosis of acute cerebral hypoxia and ischemia: A systematic review. Medicine 2021, 100, e26486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ok, M.; Naseri, A.; Ates, M.B.; Ider, M.; Uney, K.; Sevinc, M.; Hatipoglu, F.; Yildiz, R.; Erturk, A.; Baspinar, N.; et al. The Usefulness of Serum Brain Damage Biomarkers in Detection and Evaluation of Hypoxic Ischemic Encephalopathy in Calves with Perinatal Asphyxia. Animals 2022, 12, 3223. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nagdyman, N.; Kömen, W.; Ko, H.K.; Müller, C.; Obladen, M. Early biochemical indicators of hypoxic-ischemic encephalopathy after birth asphyxia. Pediatr. Res. 2001, 49, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Han, L.; Zhang, H.; Li, W.; Wu, T.; Ma, J.; Zhang, D.; Ma, K.; Xiao, B.; Yu, Y.; et al. The down-regulation of STC2 mRNA may serve as a biomarker for death from mechanical asphyxia. Leg. Med. 2024, 67, 102382. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, R.; Sestili, C.; Prosperini, G.; Cecchetto, G.; Vicini, E.; Viel, G.; Muciaccia, B. Markers of mechanical asphyxia: Immunohistochemical study on autoptic lung tissues. Int. J. Leg. Med. 2014, 128, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Porzionato, A.; Boscolo-Berto, R. Assessing violent mechanical asphyxia in forensic pathology: State-of-the-art and unanswered questions. Adv. Clin. Exp. Med. 2024, 33, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, C.; Ishikawa, T.; Michiue, T.; Zhao, D.; Komatsu, A.; Quan, L.; Maeda, H. Immunohistochemical distribution of chromogranin A in medicolegal autopsy materials. Leg. Med. 2009, 11 (Suppl. S1), S231–S233. [Google Scholar] [CrossRef] [PubMed]
- Strunk, T.; Hamacher, D.; Schulz, R.; Brinkmann, B. Reaction patterns of pulmonary macrophages in protracted asphyxiation. Int. J. Leg. Med. 2010, 124, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Liu, R.; Tuo, Y.; Ma, K.; Zhang, D.; Wang, Z.; Huang, P. Distinguishing Asphyxia from Sudden Cardiac Death as the Cause of Death from the Lung Tissues of Rats and Humans Using Fourier Transform Infrared Spectroscopy. ACS Omega 2022, 7, 46859–46869. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, H.; Hu, Y.; Wang, H.; Tian, L.; Li, W.; Han, L.; Xu, H.; Ma, J.; Ma, K.; Xiao, B.; et al. Cytoplasmic upregulation of Cyto c and AIF serve as biomarkers of mechanical asphyxia death. Am. J. Transl. Res. 2019, 11, 4568–4583. [Google Scholar] [PubMed] [PubMed Central]
- Han, L.; Li, W.; Hu, Y.; Zhang, H.; Ma, J.; Ma, K.; Xiao, B.; Fei, G.; Zeng, Y.; Tian, L.; et al. Model for the prediction of mechanical asphyxia as the cause of death based on four biological indexes in human cardiac tissue. Sci. Justice 2021, 61, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, T.; Michiue, T.; Maeda, H. Evaluation of postmortem serum and cerebrospinal fluid growth hormone levels in relation to the cause of death in forensic autopsy. Hum. Cell. 2011, 24, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Boskabadi, H.; Zakerihamidi, M.; Ghayour Mobarhan, M.; Bagheri, F.; Moradi, A.; Beiraghi Toosi, M. Comparison of new biomarkers in the diagnosis of perinatal asphyxia. Iran. J. Child. Neurol. 2023, 17, 99–110. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mansueto, G.; Feola, A.; Zangani, P.; Porzio, A.; Carfora, A.; Campobasso, C.P. A Clue on the Skin: A Systematic Review on Immunohistochemical Analyses of the Ligature Mark. Int. J. Environ. Res. Public Health 2022, 19, 2035. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Kuninaka, Y.; Nosaka, M.; Shimada, E.; Hata, S.; Yamamoto, H.; Hashizume, Y.; Kimura, A.; Furukawa, F.; Kondo, T. Forensic application of epidermal AQP3 expression to determination of wound vitality in human compressed neck skin. Int. J. Leg. Med. 2018, 132, 1375–1380. [Google Scholar] [CrossRef] [PubMed]
- Legaz Pérez, I.; Falcón, M.; Gimenez, M.; Diaz, F.M.; Pérez-Cárceles, M.D.; Osuna, E.; Nuno-Vieira, D.; Luna, A. Diagnosis of Vitality in Skin Wounds in the Ligature Marks Resulting from Suicide Hanging. Am. J. Forensic Med. Pathol. 2017, 38, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Turillazzi, E.; Vacchiano, G.; Luna-Maldonado, A.; Neri, M.; Pomara, C.; Rabozzi, R.; Riezzo, I.; Fineschi, V. Tryptase, CD15 and IL-15 as reliable markers for the determination of soft and hard ligature marks vitality. Histol. Histopathol. 2010, 25, 1539–1546. [Google Scholar] [CrossRef] [PubMed]
- Kironenko, T.A.; Milovanova, K.G.; Zakharova, A.N.; Sidorenko, S.V.; Klimanova, E.A.; Dyakova, E.Y.; Orlova, A.A.; Negodenko, E.S.; Kalinnikova, Y.G.; Orlov, S.N.; et al. Effect of Dynamic and Static Load on the Concentration of Myokines in the Blood Plasma and Content of Sodium and Potassium in Mouse Skeletal Muscles. Biochemistry 2021, 86, 370–381. [Google Scholar] [CrossRef] [PubMed]
- Miyazato, T.; Ishikawa, T.; Michiue, T.; Maeda, H. Molecular pathology of pulmonary surfactants and cytokines in drowning compared with other asphyxiation and fatal hypothermia. Int. J. Leg. Med. 2012, 126, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Zhu, B.L.; Ishikawa, T.; Quan, L.; Michiue, T.; Bessho, Y.; Okazaki, S.; Kamikodai, Y.; Tsuda, K.; Komatsu, A.; et al. Analysis of postmortem biochemical findings with regard to the lung weight in drowning. Leg. Med. 2009, 11 (Suppl. S1), S269–S272. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, E.J.; Erskine, K.L. Investigation of Drowning Deaths: A Practical Review. Acad. Forensic Pathol. 2018, 8, 8–43. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quan, L.; Zhu, B.L.; Ishikawa, T.; Michiue, T.; Zhao, D.; Yoshida, C.; Chen, J.H.; Wang, Q.; Komatsu, A.; Azuma, Y.; et al. Postmortem serum levels of pulmonary surfactant-associated proteins A and D with regard to the cause of death in medicolegal autopsy. Leg. Med. 2009, 11 (Suppl. S1), S301–S303. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Romero, D.; Sánchez-Rodríguez, E.; Osuna, E.; Sibón, A.; Martínez-Villanueva, M.; Noguera-Velasco, J.A.; Pérez-Cárceles, M.D. Proteomics in Deaths by Drowning: Diagnostic Efficacy of Apolipoprotein A1 and α-1Antitrypsin, Pilot Study. Diagnostics 2020, 10, 747. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez-Cárceles, M.D.; del Pozo, S.; Sibón, A.; Noguera, J.A.; Osuna, E.; Vizcaya, M.A.; Luna, A. Serum biochemical markers in drowning: Diagnostic efficacy of Strontium and other trace elements. Forensic Sci. Int. 2012, 214, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Knepper, M.A.; Verbalis, J.G.; Nielsen, S. Role of aquaporins in water balance disorders. Curr. Opin. Nephrol. Hypertens. 1997, 6, 367–371. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Nosaka, M.; Ishigami, A.; Kondo, T. Forensic application of aquaporins. Leg. Med. 2023, 63, 102249. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Ha, E.J.; Cho, H.W.; Kim, H.R.; Lee, D.; Eom, Y.B. Potential forensic application of receptor for advanced glycation end products (RAGE) and aquaporin 5 (AQP5) as novel biomarkers for diagnosis of drowning. J. Forensic Leg. Med. 2019, 62, 56–62. [Google Scholar] [CrossRef] [PubMed]
- An, J.L.; Ishida, Y.; Kimura, A.; Kondo, T. Forensic application of intrarenal aquaporin-2 expression for differential diagnosis between freshwater and saltwater drowning. Int. J. Leg. Med. 2010, 124, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Rosato, E.; Bonelli, M.; Locatelli, M.; de Grazia, U.; Tartaglia, A.; Savini, F.; D’Ovidio, C. Forensic Biochemical Markers to Evaluate the Agonal Period: A Literature Review. Molecules 2021, 26, 3259. [Google Scholar] [CrossRef]
- Aquila, I.; Falcone, C.; Di Nunzio, C.; Tamburrini, O.; Boca, S.; Ricci, P. Virtopsy versus autopsy in unusual case of asphyxia: Case report. Forensic Sci. Int. 2013, 229, e1–e5. [Google Scholar] [CrossRef] [PubMed]
- Al-Sabaileh, S.; Abusamak, M.; Al-Buqour, A.K.; Mehaisen, L.; Sabayleh, R.S.; Abusamak, T.M. Autopsy-Based Study of Non-accidental Violent Neck Asphyxia in Jordan: A Retrospective Study. Cureus 2024, 16, e62883. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Biological Sample | Asphyxia Markers | Function | Type of Asphyxia | Method for Investigation |
---|---|---|---|---|
Blood | Lactate | Metabolite | Perinatal asphyxia | Biochemical assay |
Pyruvate, glycerol, and isoleucine | Metabolites | Mechanical asphyxia and CO poisoning | GC-MS | |
Hypoxantine and 2,3-butanediol | Metabolites | CO poisoning | GC-MS | |
Tryptase | Product of degranulation of mast cells | Suffocation | Immunoassay | |
UCHL, S100B, NSE | Astrocyte proteins | Hypoxic–ischemic conditions | ELISA | |
Brain | STC2 | Glycoprotein with autocrine or paracrine functions | Mechanical asphyxia | Western blotting and immunofluorescence |
Cyto c and AIF | Apoptosis markers, released from mitochondria | Mechanical asphyxia | Western blotting | |
Lungs | HIF1-α | Hypoxia-induced transcription factor | Mechanical asphyxia | Immunostaining |
CD 68, MRP 8, MRP 14 and NP 57 | Macrophages and giant cells markers | Prolonged asphyxias | Immunostaining | |
Heart | Cyto c and AIF | Apoptosis markers, released from mitochondria | Mechanical asphyxia | Western blotting |
DUSP1, KCNJ2, miR-122, miR-3185 | ER stress-related protein CHOP | Mechanical asphyxia | RNA analysis | |
Cerebrospinal fluid | GH | Hormone | Markers for CO poisoning | Immunoassay |
Umbelical serum | NRBC count, IL6, IL1β, PAB, and HSP 70 | Neonatal asphyxia markers | Perinatal asphyxia | ELISA |
Biological Sample | Asphyxia Markers | Function | Type of Asphyxia | Method for Investigation |
---|---|---|---|---|
Skin | Aquaporin 3 | Water channel protein | Hanging and strangulation | Immunostaining |
P-selectin and cathepsin D | Proteins related to endothelial damage and lysosomal action, respectively | Hanging | Immunostaining | |
Tryptase, CD15, and IL-15 | Inflammatory markers | Hanging | Immunostaining |
Biological Sample | Asphyxia Markers | Function | Type of Asphyxia | Method for Investigation |
---|---|---|---|---|
Lung | TNF-α, IL-1β, and IL-10 mRNA levels | Early-phase mediators of inflammation | Drowning | mRNA analysis |
RAGE and AQP5 | Inflammatory marker and water channel protein | Drowning | mRNA analysis, Western blotting, immunostaining | |
Pericardial fluid | Na and Cl | Electrolytes | Seawater and freshwater drowning | Ion-selective electrodes method |
Blood | SP-A and -D | Pulmonary surfactant-associated proteins | Drowning and secondary pulmonary damage involving | Immunoassay |
ApoA1 α-1 antitrypsin | Proteins involved in various lung diseases | ARDS after traumas Drowning | LC/MS | |
Strontium | Metal | Seawater and freshwater drowning | Biochemical analysis | |
Kidney | AQP2 | Water channel protein | Seawater and freshwater drowning | Immunostaining |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacco, M.A.; Aquila, I. Post Mortem Molecular Biomarkers of Asphyxia: A Literature Review. Int. J. Mol. Sci. 2024, 25, 11607. https://doi.org/10.3390/ijms252111607
Sacco MA, Aquila I. Post Mortem Molecular Biomarkers of Asphyxia: A Literature Review. International Journal of Molecular Sciences. 2024; 25(21):11607. https://doi.org/10.3390/ijms252111607
Chicago/Turabian StyleSacco, Matteo Antonio, and Isabella Aquila. 2024. "Post Mortem Molecular Biomarkers of Asphyxia: A Literature Review" International Journal of Molecular Sciences 25, no. 21: 11607. https://doi.org/10.3390/ijms252111607
APA StyleSacco, M. A., & Aquila, I. (2024). Post Mortem Molecular Biomarkers of Asphyxia: A Literature Review. International Journal of Molecular Sciences, 25(21), 11607. https://doi.org/10.3390/ijms252111607