Evaluation of β-Actin and Mitochondrial DNA Levels in Determining the Age of Suidae Remains
Abstract
:1. Introduction
2. Results
2.1. Stability of Outdoor Samples
2.2. Detection and Quantification of β-Actin
2.3. mtDNA
2.4. Correlation Between β-Actin and mtDNA
3. Discussion
4. Materials and Methods
4.1. Samples
4.2. Sample Collection
4.3. DNA Extraction
4.4. PCR Analysis
4.5. Temperatures and Humidity Data
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walczak, M.; Żmudzki, J.; Mazur-Panasiuk, N.; Juszkiewicz, M.; Woźniakowski, G. Analysis of the Clinical Course of Experimental Infection with Highly Pathogenic African Swine Fever Strain, Isolated from an Outbreak in Poland. Aspects Related to the Disease Suspicion at the Farm Level. Pathogens 2020, 9, 237. [Google Scholar] [CrossRef] [PubMed]
- Pejsak, Z.; Niemczuk, K.; Frant, M.; Pomorska-Mól, M.; Ziętek-Barszcz, A.; Bocian, Ł.; Łyjak, M.; Borowska, D.; Woźniakowski, G. Four Years of African Swine Fever in Poland. New Insights into Epidemiology and Prognosis of Future Disease Spread. Pol. J. Vet. Sci. 2018, 21, 835. [Google Scholar] [CrossRef] [PubMed]
- Walczak, M.; Frant, M.; Juszkiewicz, M.; Mazur-Panasiuk, N.; Szymankiewicz, K.; Bruczyńska, M.; Woźniakowski, G. Vertical Transmission of Anti-ASFV Antibodies as One of Potential Causes of Seropositive Results among Young Wild Boar Population in Poland. Pol. J. Vet. Sci. 2019, 23, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Depner, K.; Gortazar, C.; Guberti, V.; Masiulis, M.; More, S.; Oļševskis, E.; Thulke, H.; Viltrop, A.; Woźniakowski, G.; Cortiñas Abrahantes, J.; et al. Epidemiological Analyses of African Swine Fever in the Baltic States and Poland. EFSA J. 2017, 15, e05068. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Panasiuk, N.; Walczak, M.; Juszkiewicz, M.; Woźniakowski, G. The Spillover of African Swine Fever in Western Poland Revealed Its Estimated Origin on the Basis of O174L, K145R, MGF 505-5R and IGR I73R/I329L Genomic Sequences. Viruses 2020, 12, 1094. [Google Scholar] [CrossRef]
- Kobayashi, M.; Takatori, T.; Nakajima, M.; Sakurada, K.; Hatanaka, K.; Ikegaya, H.; Matsuda, Y.; Iwase, H. Onset of Rigor Mortis Is Earlier in Red Muscle than in White Muscle. Int. J. Leg. Med. 2000, 113, 240–243. [Google Scholar] [CrossRef]
- Marshall, T.K. The Use of Body Temperature in Estimating the Time of Death and Its Limitations. Med. Sci. Law. 1969, 9, 178–182. [Google Scholar] [CrossRef]
- Vanezis, P.; Trujillo, O. Evaluation of Hypostasis Using a Colorimeter Measuring System and Its Application to Assessment of the Post-Mortem Interval (Time of Death). Forensic Sci. Int. 1996, 78, 19–28. [Google Scholar] [CrossRef]
- Muñoz, J.I.; Suárez-Peñaranda, J.M.; Otero, X.L.; Rodríguez-Calvo, M.S.; Costas, E.; Miguéns, X.; Concheiro, L. A New Perspective in the Estimation of Postmortem Interval (PMI) Based on Vitreous. J. Forensic Sci. 2001, 46, 209–214. [Google Scholar] [CrossRef]
- Matoba, K.; Terazawa, K. Estimation of the Time of Death of Decomposed or Skeletonized Bodies Found Outdoors in Cold Season in Sapporo City, Located in the Northern District of Japan. Leg. Med. 2008, 10, 78–82. [Google Scholar] [CrossRef]
- Megyesi, M.; Nawrocki, S.; Haskell, N. Using Accumulated Degree-Days to Estimate the Postmortem Interval from Decomposed Human Remains. J. Forensic Sci. 2005, 50, JFS2004017. [Google Scholar] [CrossRef]
- Rietz, J.; van Beeck Calkoen, S.T.S.; Ferry, N.; Schlüter, J.; Wehner, H.; Schindlatz, K.-H.; Lackner, T.; von Hoermann, C.; Conraths, F.J.; Müller, J.; et al. Drone-Based Thermal Imaging in the Detection of Wildlife Carcasses and Disease Management. Transbound. Emerg. Dis. 2023, 2023, 5517000. [Google Scholar] [CrossRef]
- Samsuwan, J.; Somboonchokepisal, T.; Akaraputtiporn, T.; Srimuang, T.; Phuengsukdaeng, P.; Suwannarat, A.; Mutirangura, A.; Kitkumthorn, N. A Method for Extracting DNA from Hard Tissues for Use in Forensic Identification. Biomed. Rep. 2018, 9, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Vigelsø, A.; Dybboe, R.; Hansen, C.N.; Dela, F.; Helge, J.W.; Guadalupe Grau, A. GAPDH and β-Actin Protein Decreases with Aging, Making Stain-Free Technology a Superior Loading Control in Western Blotting of Human Skeletal Muscle. J. Appl. Physiol. 2015, 118, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cordón, P.J.; Montoya, M.; Reis, A.L.; Dixon, L.K. African Swine Fever: A Re-Emerging Viral Disease Threatening the Global Pig Industry. Vet. J. 2018, 233, 41–48. [Google Scholar] [CrossRef]
- Dixon, L.K.; Sun, H.; Roberts, H. African Swine Fever. Antivir. Res. 2019, 165, 34–41. [Google Scholar] [CrossRef]
- Palencia, P.; Blome, S.; Brook, R.K.; Ferroglio, E.; Jo, Y.-S.; Linden, A.; Montoro, V.; Penrith, M.-L.; Plhal, R.; Vicente, J.; et al. Tools and Opportunities for African Swine Fever Control in Wild Boar and Feral Pigs: A Review. Eur. J. Wildl. Res. 2023, 69, 69. [Google Scholar] [CrossRef]
- Sauter-Louis, C.; Conraths, F.J.; Probst, C.; Blohm, U.; Schulz, K.; Sehl, J.; Fischer, M.; Forth, J.H.; Zani, L.; Depner, K.; et al. African Swine Fever in Wild Boar in Europe—A Review. Viruses 2021, 13, 1717. [Google Scholar] [CrossRef]
- Zani, L.; Masiulis, M.; Bušauskas, P.; Dietze, K.; Pridotkas, G.; Globig, A.; Blome, S.; Mettenleiter, T.; Depner, K.; Karvelienė, B. African Swine Fever Virus Survival in Buried Wild Boar Carcasses. Transbound. Emerg. Dis. 2020, 67, tbed.13554. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, K.; Sun, J.; Huang, Z.; Shi, P. The Relationship between Postmortem Interval and Protein Changes in Mice. J. Forensic Leg. Med. 2024, 101, 102618. [Google Scholar] [CrossRef]
- Kansagara, A.G.; McMahon, H.E.; Hogan, M.E. Dry-State, Room-Temperature Storage of DNA and RNA. Nat. Methods 2008, 5, iv. [Google Scholar] [CrossRef]
- Connell, J.R.; Lea, R.A.; Haupt, L.M.; Griffiths, L.R. Mitochondrial DNA Analysis in Population Isolates: Challenges and Implications for Human Identification. Curr. Mol. Biol. Rep. 2023, 10, 1–8. [Google Scholar] [CrossRef]
- Chenais, E.; Ahlberg, V.; Andersson, K.; Banihashem, F.; Björk, L.; Cedersmyg, M.; Ernholm, L.; Frössling, J.; Gustafsson, W.; Hellqvist Björnerot, L.; et al. First Outbreak of African Swine Fever in Sweden: Local Epidemiology, Surveillance, and Eradication Strategies. Transbound. Emerg. Dis. 2024, 2024, 6071781. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Luo, C.; Li, L.; Xu, W.; Hu, G.; Wang, Y.; Amendt, J.; Wang, J. Dynamics of Insects, Microorganisms and Muscle MRNA on Pig Carcasses and Their Significances in Estimating PMI. Forensic Sci. Int. 2021, 329, 111090. [Google Scholar] [CrossRef] [PubMed]
- Arbeitman, M.N.; Furlong, E.E.M.; Imam, F.; Johnson, E.; Null, B.H.; Baker, B.S.; Krasnow, M.A.; Scott, M.P.; Davis, R.W.; White, K.P. Gene Expression During the Life Cycle of Drosophila Melanogaster. Science 2002, 297, 2270–2275. [Google Scholar] [CrossRef]
- Toro, M.A.; Rodrigañez, J.; Silio, L.; Rodriguez, C. Genealogical Analysis of a Closed Herd of Black Hairless Iberian Pigs. Conserv. Biol. 2000, 14, 1843–1851. [Google Scholar] [CrossRef]
- Butler, J.M. Advanced Topics in Forensic DNA Typing: Methodology; Academic Press: Beijing, China, 2011; ISBN 0123878233. [Google Scholar]
- Olesen, A.S.; Lohse, L.; Johnston, C.M.; Rasmussen, T.B.; Bøtner, A.; Belsham, G.J. Increased Presence of Circulating Cell-Free, Fragmented, Host DNA in Pigs Infected with Virulent African Swine Fever Virus. Viruses 2023, 15, 2133. [Google Scholar] [CrossRef]
- Schelp, C.; Greiser-Wilke, I.; Moennig, V. An Actin-Binding Protein Is Involved in Pestivirus Entry into Bovine Cells. Virus Res. 2000, 68, 1–5. [Google Scholar] [CrossRef]
- He, F.; Ling, L.; Liao, Y.; Li, S.; Han, W.; Zhao, B.; Sun, Y.; Qiu, H.-J. Beta-Actin Interacts with the E2 Protein and Is Involved in the Early Replication of Classical Swine Fever Virus. Virus Res. 2014, 179, 161–168. [Google Scholar] [CrossRef]
- Brooks, J.W. Postmortem Changes in Animal Carcasses and Estimation of the Postmortem Interval. Vet. Pathol. 2016, 53, 929–940. [Google Scholar] [CrossRef]
- Jarmusz, M.; Bajerlein, D. Decomposition of Hanging Pig Carcasses in a Forest Habitat of Poland. Forensic Sci. Int. 2019, 300, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Crouse, C.A.; Kline, M.C. Optimizing Storage and Handling of DNA Extracts. Forensic Sci. Rev. 2010, 22, 131–144. [Google Scholar] [PubMed]
- Probst, C.; Gethmann, J.; Amendt, J.; Lutz, L.; Teifke, J.P.; Conraths, F.J. Estimating the Postmortem Interval of Wild Boar Carcasses. Vet. Sci. 2020, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Mohnke, M.; Probst, C.; Pikalo, J.; Conraths, F.J.; Beer, M.; Blome, S. Stability of African Swine Fever Virus on Heat-treated Field Crops. Transbound. Emerg. Dis. 2020, 67, 2318–2323. [Google Scholar] [CrossRef]
- Carlson, J.; Fischer, M.; Zani, L.; Eschbaumer, M.; Fuchs, W.; Mettenleiter, T.; Beer, M.; Blome, S. Stability of African Swine Fever Virus in Soil and Options to Mitigate the Potential Transmission Risk. Pathogens 2020, 9, 977. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, A.; Myburgh, J.; Steyn, M.; Becker, P.J. The Effect of Body Size on the Rate of Decomposition in a Temperate Region of South Africa. Forensic Sci. Int. 2013, 231, 257–262. [Google Scholar] [CrossRef]
- Hewadikaram, K.A.; Goff, M.L. Effect of Carcass Size on Rate of Decomposition and Arthropod Succession Patterns. Am. J. Forensic Med. Pathol. 1991, 1, 235–240. [Google Scholar] [CrossRef]
- Mann, R.W.; Bass, W.M. Time since Death and Decomposition of the Human Body: Variables and Observations in Case and Experimental Field Studies. J. Forensic Sci. 1990, 35, 103–111. [Google Scholar] [CrossRef]
- Simmons, T.; Adlam, R.E.; Moffatt, C. Debugging Decomposition Data—Comparative Taphonomic Studies and the Influence of Insects and Carcass Size on Decomposition Rate. J. Forensic Sci. 2010, 55, 8–13. [Google Scholar] [CrossRef]
- Denno, R.F.; Cothran, W.R. Niche Relationships of a Guild of Necrophagous Flies. Ann. Entomol. Soc. Am. 1975, 68, 741–754. [Google Scholar] [CrossRef]
- Matuszewski, S.; Frątczak, K.; Konwerski, S.; Bajerlein, D.; Szpila, K.; Jarmusz, M.; Szafałowicz, M.; Grzywacz, A.; Mądra, A. Effect of Body Mass and Clothing on Carrion Entomofauna. Int. J. Leg. Med. 2016, 130, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Amendt:, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J.R. Forensic Entomology: Applications and Limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. [Google Scholar] [CrossRef] [PubMed]
Tissue/Organ | Last Month of Detection | Cq Value in the Last Month of Detection | Min Cq (Mean) | Max Cq (Mean) | Difference Between the First and the Last Measurment ΔCq | |||||
---|---|---|---|---|---|---|---|---|---|---|
β-Actin | mtDNA | β-Actin | mtDNA | β-Actin | mtDNA | β-Actin | mtDNA | β-Actin | mtDNA | |
Bone marrow Sd | 13 | 11 | 39.22 a | 27.96 a | 28.31 (±0.84) | 18.28 (±1.09) | 39.22 a | 29.16 (±1.27) | 10.91 | 9.68 |
Kidney Sd | 11 | 12 | 35.45 a | 29.92 a | 22.63 (±0.77) | 13.09 (±2.25) | 35.45 a | 29.92 a | 7.57 | 15.86 |
Skin Sd | 13 | 9 | 37.34 (±0.84) | 26.65 a | 26.52 (±0.77) | 18.84 (±0.21) | 39.48 (±0.16) | 29.17 (±1.94) | 10.82 | 7.81 |
Muscle Sd | 6 | 7 | 32.82 (±1.21) | 17.64 a | 25.29 (±0.15) | 16.13 (±0.52) | 33.60 (±3.6) | 21.95 (±1.33) | 3.57 | 1.16 |
PMI (Months) | Mean Cq Value (95% CI) | Range (Cq) | ||
---|---|---|---|---|
β-Actin | mtDNA | β-Actin | mtDNA | |
0−3 | 29.58 (±1.46) | 21.42 (±2.09) | 25.99−33.95 | 17.16−25.24 |
4−6 | 36.13 (±0.81) | 25.26 (±1.73) | 33.64−37.35 | 22.18−28.77 |
7−11 */7−13 ** | 38.26 (±0.54) | 27.88 (±0.74) | 36.99−39.65 | 26.79−30.95 |
>11 */>13 ** | undetectable | undetectable | undetectable | undetectable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymankiewicz, K.; Walczak, M.; Podgórska, K. Evaluation of β-Actin and Mitochondrial DNA Levels in Determining the Age of Suidae Remains. Int. J. Mol. Sci. 2024, 25, 11674. https://doi.org/10.3390/ijms252111674
Szymankiewicz K, Walczak M, Podgórska K. Evaluation of β-Actin and Mitochondrial DNA Levels in Determining the Age of Suidae Remains. International Journal of Molecular Sciences. 2024; 25(21):11674. https://doi.org/10.3390/ijms252111674
Chicago/Turabian StyleSzymankiewicz, Krzesimir, Marek Walczak, and Katarzyna Podgórska. 2024. "Evaluation of β-Actin and Mitochondrial DNA Levels in Determining the Age of Suidae Remains" International Journal of Molecular Sciences 25, no. 21: 11674. https://doi.org/10.3390/ijms252111674
APA StyleSzymankiewicz, K., Walczak, M., & Podgórska, K. (2024). Evaluation of β-Actin and Mitochondrial DNA Levels in Determining the Age of Suidae Remains. International Journal of Molecular Sciences, 25(21), 11674. https://doi.org/10.3390/ijms252111674