A Novel Single Base Mutation in OsSPL42 Leads to the Formation of Leaf Lesions in Rice
Abstract
:1. Introduction
2. Results
2.1. OsSPL42 Controls the Spotted-Leaf Phenotype of spl42
2.2. Leucine in OsSPL42 Is Highly Conserved
2.3. Altered Physiological/Biochemical Reactions Related to ROS Scavenging System in Spotted-Leaf Mutant spl42
2.4. Enhanced Disease Resistance in Mutation spl42
2.5. OsSPL42 Regulates PCD in Rice
2.6. OsSPL42 Is Widely Expressed and OsSPL42 Localizes to Cytoplasm
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Growth Conditions and Agronomic Trait Evaluation
4.3. Determination of Photosynthetic Pigments
4.4. Histochemical Analysis and PCD Detection
4.5. Determination of ROS-Related Parameters and Lignin Content
4.6. Disease Evaluation
4.7. Genetic Analysis and Mapping of OsSPL42
4.8. RNA Extraction and qRT-PCR
4.9. Vector Construction
4.10. Sequence Analysis and Off-Target Verification of CRISPR/Cas9 Knockout Targets
4.11. Phylogenetic Analysis of OsSPL42
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yamanouchi, U.; Yano, M.; Lin, H.X.; Ashikari, M.; Yamada, K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci USA 2002, 99, 7530–7535. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhu, J.D.; Hu, F.Y.; Ge, S.; Ye, M.Z.; Xiang, H.; Zhang, G.J.; Zheng, X.M.; Zhang, H.Y.; Zhang, S.L.; et al. Single–base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression. BMC Genom. 2012, 13, 300. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.H.; Cao, P.; Seo, Y.S.; Dardick, C.; Ronald, P.C. The rice kinase phylogenomics database: A guide for systematic analysis of the rice kinase super–family. Trends Plant Sci. 2010, 15, 595–599. [Google Scholar] [CrossRef]
- Wang, C.; Liu, W.J.; Liao, X.W.; Xu, X.; Yang, S.H.; Zhang, X.B.; Zhou, H.; Zhuang, C.X.; Gong, J.Y.; Wu, J.L. The identification and gene mapping of spotted leaf mutant spl43 in rice. Int. J. Mol. Sci. 2024, 25, 6637. [Google Scholar] [CrossRef]
- Guo, C.H.; Jung, K.H.; Roberts, S.K.; Mcainsh, M.R.; Hetherington, A.M.; Park, Y.I.; Suh, K.H.; An, G.; Nam, H.G. Mitochondria provide the main source of cytosolic ATP for activation of outward–rectifying k+ channels in mesophyll protoplast of chlorophyll–deficient mutant rice (OsCHLH) seedlings. J. Bio Chem. 2004, 279, 6874–6882. [Google Scholar]
- Yang, Y.L.; Xu, J.; Huang, L.C.; Leng, Y.J.; Dai, L.P.; Rao, Y.C.; Chen, L.; Wang, Y.Q.; Tu, Z.J.; Hu, J.; et al. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. J. Exp. Bot. 2016, 67, 1297–1310. [Google Scholar] [CrossRef]
- Guo, C.H.; Satoh, K.; Kikuchi, S.; Kim, S.C.; Ko, S.M.; Kang, H.G.; Jeon, J.S.; Kim, C.S.; Park, Y.I. Mitochondrial activity in illuminated leaves of chlorophyll–deficient mutant rice (OsCHLH) seedlings. Plant Biotechnol. Rep. 2010, 4, 281–291. [Google Scholar]
- Li, Z.Y.; Mo, W.P.; Jia, L.Q.; Xu, Y.C.; Tang, W.J.; Yang, W.Q.; Guo, Y.L.; Lin, R.C. Rice fluorescent1 is involved in the regulation of chlorophyll. Plant Cell Physiol. 2019, 60, 2307–2318. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, J.B.; Duan, S.; Ao, Y.; Dai, J.R.; Liu, J.; Wang, P.; Li, Y.G.; Liu, B.; Feng, D.R.; et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast–related processes. Plant Methods 2011, 13, 30. [Google Scholar] [CrossRef]
- Nori, K.; Kazumaru, M.; Nonomura, K.I.; Yukiko, Y.; Yukihiro, I. Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plan Cell Physiol. 2005, 46, 48–62. [Google Scholar]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Jiang, F.; Sodmergen; Cui, K. Time–course of programmed cell death during leaf senescence in Eucommia ulmoides. J. Plant Res. 2003, 116, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Bouchez, O.; Huard, C.; Lorrain, S.; Roby, D.; Balagué, C. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. Plant Physiol. 2007, 145, 465–477. [Google Scholar] [CrossRef]
- Zhu, X.B.; Ze, M.; Chern, M.; Chen, X.W.; Wang, J. Deciphering rice lesion mimic mutants to understand molecular network governing plant immunity and growth. Rice Sci. 2020, 27, 278–288. [Google Scholar]
- Keisa, A.; Kanberga–Silina, K.; Nakurte, I.; Kunga, L.; Rostoks, N. Differential disease resistance response in the barley necrotic mutant nec1. BMC Plant Biol. 2011, 11, 66. [Google Scholar] [CrossRef]
- Amin, G.M.A.; Kong, K.K.; Sharmin, R.A.; Kong, J.J.; Bhat, J.A.; Zhao, T.J. Characterization and rapid gene–mapping of leaf lesion mimic phenotype of spl–1 mutant in soybean (Glycine max (L.) Merr.). Int. J. Mol. Sci. 2019, 20, 2193. [Google Scholar] [CrossRef]
- Abad, M.S.; Hakimi, S.M.; Kaniewski, W.K.; Rommens, C.M.T.; Shulaev, V.; Lam, E.; Shah, D.M. Characterization of acquired resistance in lesion–mimic transgenic potato expressing bacterio–opsin. Mol. Plant Microbe Interact. 1997, 10, 635–645. [Google Scholar] [CrossRef]
- Kumar, V.; Parkhi, V.; Joshi, S.G.; Christensen, S.; Jayaprakasha, G.K.; Patil, B.S.; Kolomiets, M.V.; Rathore, K.S. A Novel, conditional, lesion mimic phenotype in cotton cotyledons due to the expression of an endochitinase gene from Trichoderma virens. Plant Sci. 2012, 183, 86–95. [Google Scholar] [CrossRef]
- Greenberg, J.T.; Guo, A.; Klessig, D.F.; Ausubel, F.M. Programmed cell death in plants: A pathogen–triggered response activated coordinately with multiple defense functions. Cells 1994, 77, 551–563. [Google Scholar] [CrossRef]
- Heath, M.C. Nonhost resistance and nonspecific plant defenses. Curr. Opin. Plant Biol. 2000, 3, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.N.; Yang, Y.; Shi, Y.F.; Chen, J.; Wu, J.L. Spotted–leaf mutants of rice (Oryza sativa). Rice Sci. 2010, 17, 247–256. [Google Scholar] [CrossRef]
- Huang, Q.N.; Shi, Y.F.; Yang, Y.; Feng, B.H.; Wei, Y.L.; Chen, J.; Baraoidan, M.; Leung, H.; Wu, J.L. Characterization and genetic analysis of a light– and temperature–sensitive spotted–leaf mutant in rice. J. Integr. Plant Biol. 2011, 53, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chen, T.; Sathe, A.P.; He, Y.; Zhang, X.B.; Wu, J.L. Identification of a novel semi–dominant spotted–leaf mutant with enhanced resistance to Xanthomonas oryzae pv. oryzae in rice. Int. J. Mol. Sci. 2018, 19, 3766. [Google Scholar] [CrossRef]
- Sathe, A.P.; Su, X.; Chen, Z.; Chen, T.; Wu, J.L. Identification and characterization of a spotted–leaf mutant spl40 with enhanced bacterial blight resistance in rice. Rice 2019, 12, 68. [Google Scholar] [CrossRef]
- Shang, H.H.; Li, P.P.; Zhang, X.B.; Xu, X.; Gong, J.Y.; Yang, S.H.; He, Y.; Wu, J.L. The gain–of–function mutation, OsSpl26, positively regulates plant immunity in rice. Int. J. Mol. Sci. 2022, 23, 14168. [Google Scholar] [CrossRef]
- Tan, J.Y.; Zhang, X.B.; Shang, H.H.; Li, P.P.; Wang, Z.H.; Liao, X.W.; Xu, X.; Yang, S.H.; Gong, J.Y.; Wu, J.L. ORYZA SATIVA SPOTTED–LEAF 41(OsSPL41) negatively regulates plant immunity in rice. Rice Sci. 2023, 30, 426–440. [Google Scholar]
- Hirano, K.; Aya, K.; Kondo, M.; Okuno, A.; Morinaka, Y.; Matsuoka, M. OsCAD2 is the major cad gene responsible for monolignol biosynthesis in rice culm. Plant Cell Rep. 2012, 31, 91–101. [Google Scholar] [CrossRef]
- Bansal, R.; Rana, N.; Singh, A.; Dhiman, P.; Mandlik, R.; Sonah, H.; Deshmukh, R.; Sharma, T.R. Evolutionary Understanding of Metacaspase Genes in Cultivated and Wild Oryza Species and Its Role in Disease Resistance Mechanism in Rice. Genes 2020, 11, 1412. [Google Scholar] [CrossRef]
- Walbot, V.; Hoisington, D.A.; Neuffer, M.G. Disease Lesion Mimic Mutations; Springer: Boston, MA, USA, 1983. [Google Scholar]
- Wu, C.; Bordeos, A.; Madamba, M.R.S.; Baraoidan, M.; Ramos, M.; Wang, G.L.; Leach, J.E.; Leung, H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol. Genet. Genom. 2008, 279, 605–619. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.F.; Ma, X.D.; Meng, L.Z.; Jing, R.N.; Wang, F.; Wang, S.; Cheng, Z.J.; Zhang, X.; Jiang, L.; et al. Disruption of gene SPL35, encoding a novel CUE domain–containing protein, leads to cell death and enhanced disease response in rice. Plant Biotechnol. J. 2019, 17, 1679–1693. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.N.; Zhang, Y.X.; Chen, Y.Y.; Yu, N.; Cao, Y.R.; Zhan, X.D.; Cheng, S.H.; Cao, L.Y. LMM24 encodes receptor–like cytoplasmic kinase 109, which regulates cell death and defense responses in rice. Int. J. Mol. Sci. 2019, 20, 3243. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Chen, Z.; Sathe, A.P.; Zhang, Z.H.; Li, L.; Shang, H.H.; Tang, S.; Zhang, X.; Wu, J.L. Characterization of a novel gain-of-function spotted-leaf mutant with enhanced disease resistance in rice. Rice Sci. 2019, 26, 372–383. [Google Scholar]
- Kampire, M.G.; Sanglou, R.K.; Wang, H.; Kazeem, B.B.; Wu, J.L.; Zhang, X.B. A novel allele encoding 7–hydroxymethyl chlorophyll a reductase confers bacterial blight resistance in rice. Multidiscip. Digit. Publ. Inst. 2021, 22, 7585. [Google Scholar] [CrossRef]
- Wang, J.; Ye, B.Q.; Yin, J.J.; Yuan, C.; Zhou, X.G.; Li, W.T.; He, M.; Wang, J.C.; Chen, W.L.; Qin, P.; et al. Characterization and fine mapping of a light dependent leaf lesion mimic mutant 1 in rice. Plant Physiol. Biochem. 2015, 97, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.Q.; Zhang, H.W.; Lu, X.Y.; Huang, R.F. Characterization and mapping of a novel light–dependent lesion mimic mutant lmm6 in rice (Oryza sativa L.). J. Integr. Agric. 2015, 14, 1687–1696. [Google Scholar] [CrossRef]
- Feng, B.H.; Yang, Y.; Shi, Y.F.; Shen, H.C.; Wang, H.M.; Huang, Q.N.; Xu, X.; Lü, X.G.; Wu, J.L. Characterization and genetic analysis of a novel rice spotted–leaf mutant HM47 with broad–spectrum resistance to Xanthomonas oryzae pv. oryzae. J. Integr. Plant Biol. 2013, 55, 473–483. [Google Scholar] [CrossRef]
- Zurbriggen, M.D.; Carrillo, N.; Hajirezaei, M.R. ROS signaling in the hypersensitive response. Plant Signal. Behav. 2010, 5, 393–396. [Google Scholar] [CrossRef]
- Jacks, T.J.; Davidonis, G.H. Superoxide, hydrogen peroxide, and the respiratory burst of fungally infected plant cells. Mol. Cell. Biochem. 1979, 158, 77–79. [Google Scholar] [CrossRef]
- Dauwe, R.; Morreel, K.; Goeminne, G.; Gielen, B.; Rohde, A.; Van, B.J.; Ralph, J.; Boudet, A.M.; Kopka, J.; Rochange, S.; et al. Molecular phenotyping of lignin–modified tobacco reveals associated changes in cell–wall metabolism, primary metabolism, stress metabolism and photorespiration. Plant J. 2007, 52, 263–285. [Google Scholar] [CrossRef]
- Chun, H.J.; Baek, D.; Cho, H.M.; Lee, S.H.; Jin, B.J.; Yun, D.J.; Hong, Y.S.; Kim, M.C. Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high–salt stress. Plant Signal. Behav. 2019, 14, 1625697. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.Q.; Luan, Y.T.; Shi, W.B.; Zhang, X.Y.; Meng, J.S.; Tao, J. A Paeonia ostii caffeoyl–CoA O–methyltransferase confers drought stress tolerance by promoting lignin synthesis and ROS scavenging. Plant Sci. 2021, 303, 110765. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, B.W.; Wang, L.S.; Ali, S.H.; Guo, Y.L.; Liu, J.X.; Wang, J.; Xie, L.N.; Zhang, Q.Z. Genome–wide identification and characterization of caffeic acid O–methyltransferase gene family in soybean. Plants 2021, 10, 2816. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.Y.; Tobimastsu, Y.; Matsumoto, N.; Suzuki, S.; Lan, W.; Takeda, Y.; Yamamura, M.; Sakamoto, M.; Ralph, J.; Clive, L.; et al. OsCAldOMT1 is a bifunctional O–methyltransferase involved in the biosynthesis of tricin–lignins in rice cell walls. Sci. Rep. 2019, 9, 11597. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.M.; Xu, S.B.; Qu, D.; Yang, L.M.; Wang, J.G.; Liu, H.L.; Xin, W.; Zou, D.T.; Zheng, H.L. Identification and functional analysis of the caffeic acid O–methyltransferase (COMT) gene family in rice (Oryza sativa L.). Int. J. Mol. Sci. 2022, 23, 8491. [Google Scholar] [CrossRef]
- Lin, F.Q.; Yamano, G.; Hasegawa, M.F.; Anzai, H.; Kawasaki, S.; Kodama, O. Cloning and functional analysis of caffeic acid 3-O-methyltransferase from rice (Oryza sativa). J. Pestic. Sci. 2006, 31, 47–53. [Google Scholar] [CrossRef]
- Taichi, K.; Norie, H.; Mai, M.; Masaomi, Y.; Takefumi, H.; Shiro, S.; Masahiro, S.; Toshiaki, U. Characterization of 5–hydroxyconiferaldehyde O–methyltransferase in Oryza sativa. Plant Tissue Cult. Lett. 2013, 30, 157–167. [Google Scholar]
- Huangfu, L.X.; Chen, R.J.; Lu, Y.; Zhang, E.Y.; Miao, J.; Zuo, Z.H.; Zhao, Y.; Zhu, M.Y.; Zhang, Z.H.; Li, P.C.; et al. OsCOMT, encoding a caffeic acid O–methyltransferase in melatonin biosynthesis, increases rice grain yield through dual regulation of leaf senescence and vascular development. Plant Biotechnol. J. 2022, 20, 1122–1139. [Google Scholar] [CrossRef]
- Kaurilind, E.; Xu, E.; Brosché, M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genom. 2015, 16, 837. [Google Scholar] [CrossRef]
- Qiao, Y.L.; Jiang, W.Z.; Lee, J.; Park, B.; Choi, M.S.; Piao, R.H.; Woo, M.O.; Roh, J.H.; Han, L.Z.; Paek, N.C.; et al. SPL28 encodes a clathrin–associated adaptor protein complex 1, medium subunit micro 1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol. 2010, 185, 258–274. [Google Scholar] [CrossRef]
- Wang, L.L.; Chen, Y.Y.; Guo, L.; Zhang, H.W.; Zhuang, J.Y. Dissection of qTGW1.2 to three QTLs for grain weight and grain size in rice (Oryza sativa L.). Euphytica 2015, 202, 119–127. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth–defense tradeoffs in plants: A balancing act to optimize fitness. Mol. Plant 2014, 7, 1267. [Google Scholar] [CrossRef]
- Walters, D.R.; Heil, M. Costs and trade–offs associated with induced resistance. Physiol. Mol. Plant Pathol. 2007, 71, 3–17. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wellburn, A.R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Yin, Z.C.; Chen, J.; Zeng, L.R.; Goh, M.; Leung, H.; Khush, G.S.; Wang, G.L. Characterizing rice lesion mimic mutants and identifying a mutant with broad–spectrum resistance to rice blast and bacterial blight. Mol. Plant Microbe Interact. 2000, 13, 869–876. [Google Scholar] [CrossRef]
- Thordal–Christensen, H.; Zhang, Z.G.; Wei, Y.D.; Collinge, D.B. Subcellular localization of H2O2 in plants.H2O2 accumulation in papillae and hypersensitive response during the barley–powdery mildew interaction. Plant J. 1997, 11, 1187–1194. [Google Scholar] [CrossRef]
- Rogers, S.O.; Bendich, A.J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 1985, 5, 69–76. [Google Scholar] [CrossRef]
- Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T–DNA. Plant J. 1994, 6, 271–282. [Google Scholar] [CrossRef]
- Ma, X.L.; Zhang, Q.Y.; Zhu, Q.L.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.F.; Li, H.Y.; Lin, Y.R.; et al. A robust CRISPR/Cas9 system for convenient, high–efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
Material | Plant Height (cm) | No. Tiller/Plant | Panicle Length (cm) | No. Filled Grain/Panicle | Seed Setting (%) | 1000-Grain Weight (g) |
---|---|---|---|---|---|---|
ZI100 | 98.0 ± 0.9 b | 12.3 ± 1.5 b | 23.2 ± 0.6 b | 135.8 ± 7.7 a | 79.8 ± 0.2 a | 19.8 ± 0.3 a |
spl42 | 100.9 ± 1.9 b | 11.0 ± 1.0 b | 24.4 ± 0.6 ab | 104.9 ± 9.0 b | 60.2 ± 1.5 b | 18.2 ± 0.4 b |
CP1 | 98.2 ± 1.1 b | 15.3 ± 0.6 a | 23.7 ± 0.7 b | 130.1 ± 8.6 a | 77.7 ± 1.7 a | 17.5 ± 0.4 bc |
CP2 | 98.3 ± 2.5 b | 16.3 ± 0.6 a | 26.1 ± 1.7 a | 131.3 ± 27.0 a | 78.5 ± 4.3 a | 17.9 ± 0.5 bc |
CP3 | 106.6 ± 2.1 a | 15.3 ± 1.1 a | 25.0 ± 0.9 ab | 132.8 ± 14.9 a | 78.8 ± 1.7 a | 17.4 ± 0.5 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Shang, H.; Xu, X.; Gong, J.; Wu, J.-L.; Zhang, X. A Novel Single Base Mutation in OsSPL42 Leads to the Formation of Leaf Lesions in Rice. Int. J. Mol. Sci. 2024, 25, 11871. https://doi.org/10.3390/ijms252211871
Li P, Shang H, Xu X, Gong J, Wu J-L, Zhang X. A Novel Single Base Mutation in OsSPL42 Leads to the Formation of Leaf Lesions in Rice. International Journal of Molecular Sciences. 2024; 25(22):11871. https://doi.org/10.3390/ijms252211871
Chicago/Turabian StyleLi, Panpan, Huihui Shang, Xia Xu, Junyi Gong, Jian-Li Wu, and Xiaobo Zhang. 2024. "A Novel Single Base Mutation in OsSPL42 Leads to the Formation of Leaf Lesions in Rice" International Journal of Molecular Sciences 25, no. 22: 11871. https://doi.org/10.3390/ijms252211871
APA StyleLi, P., Shang, H., Xu, X., Gong, J., Wu, J. -L., & Zhang, X. (2024). A Novel Single Base Mutation in OsSPL42 Leads to the Formation of Leaf Lesions in Rice. International Journal of Molecular Sciences, 25(22), 11871. https://doi.org/10.3390/ijms252211871