Linking Antibodies Against Apolipoprotein A-1 to Metabolic Dysfunction-Associated Steatohepatitis in Mice
Abstract
:1. Introduction
2. Results
2.1. Treatment with AAA-1s Promote Steatohepatitis
2.2. Elevated Plasma Cytokeratin 18 Levels in AAA-1-Immunized CDAHFD Mice
2.3. Impact of AAA-1 Exposure on Liver Fibrosis
3. Discussion
4. Materials and Methods
4.1. Animal Experiments
4.2. Cytokines Assessment
4.3. Plasma Cytokeratin 18 Assessment
4.4. Tissue Staining
4.4.1. Steatosis
4.4.2. Fibrosis
4.5. Liver Cytokeratin 18 Assessment
4.6. Nanostring Analysis
4.7. Western Blot Analysis
4.8. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eslam, M.; Sanyal, A.J.; George, J.; on behalf of theInternational Consensus Panel. Mafld: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020, 158, 1999–2014.e1. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.J.; Adams, L.A.; Canbay, A.; Syn, W.K. Extrahepatic Complications of Nonalcoholic Fatty Liver Disease. Hepatology 2014, 59, 1174–1197. [Google Scholar] [CrossRef] [PubMed]
- Targher, G.; Tilg, H.; Byrne, C.D. Non-Alcoholic Fatty Liver Disease: A Multisystem Disease Requiring a Multidisciplinary and Holistic Approach. Lancet Gastroenterol. Hepatol. 2021, 6, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global Burden of Nafld and Nash: Trends, Predictions, Risk Factors and Prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Ranson, M.; Butt, F.; Moore, D.; Dive, C. Qualification of M30 and M65 Elisas as Surrogate Biomarkers of Cell Death: Long Term Antigen Stability in Cancer Patient Plasma. Cancer Chemother. Pharmacol. 2007, 60, 921–924. [Google Scholar] [CrossRef]
- Joka, D.; Wahl, K.; Moeller, S.; Schlue, J.; Vaske, B.; Bahr, M.J.; Manns, M.P.; Schulze-Osthoff, K.; Bantel, H. Prospective Biopsy-Controlled Evaluation of Cell Death Biomarkers for Prediction of Liver Fibrosis and Nonalcoholic Steatohepatitis. Hepatology 2012, 55, 455–464. [Google Scholar] [CrossRef]
- Kosasih, S.; Zhi Qin, W.; Abdul Rani, R.; Abd Hamid, N.; Chai Soon, N.; Azhar Shah, S.; Yaakob, Y.; Raja Ali, R.A. Relationship between Serum Cytokeratin-18, Control Attenuation Parameter, Nafld Fibrosis Score, and Liver Steatosis in Nonalcoholic Fatty Liver Disease. Int. J. Hepatol. 2018, 2018, 9252536. [Google Scholar] [CrossRef]
- Roth, G.A.; Lebherz-Eichinger, D.; Ankersmit, H.J.; Hacker, S.; Hetz, H.; Vukovich, T.; Perne, A.; Reiter, T.; Farr, A.; Horl, W.H.; et al. Increased Total Cytokeratin-18 Serum and Urine Levels in Chronic Kidney Disease. Clin. Chim. Acta 2011, 412, 713–717. [Google Scholar] [CrossRef]
- Chang, Y.H.; Lin, H.C.; Hwu, D.W.; Chang, D.M.; Lin, K.C.; Lee, Y.J. Elevated Serum Cytokeratin-18 Concentration in Patients with Type 2 Diabetes Mellitus and Non-Alcoholic Fatty Liver Disease. Ann. Clin. Biochem. 2019, 56, 141–147. [Google Scholar] [CrossRef]
- Dalleau, S.; Baradat, M.; Gueraud, F.; Huc, L. Cell Death and Diseases Related to Oxidative Stress: 4-Hydroxynonenal (Hne) in the Balance. Cell Death Differ. 2013, 20, 1615–1630. [Google Scholar] [CrossRef]
- Ozcan, L.; Tabas, I. Role of Endoplasmic Reticulum Stress in Metabolic Disease and Other Disorders. Annu. Rev. Med. 2012, 63, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Pagano, S.; Bakker, S.J.L.; Juillard, C.; Dullaart, R.P.F.; Vuilleumier, N. Serum Level of Cytokeratin 18 (M65) as a Prognostic Marker of High Cardiovascular Disease Risk in Individuals with Non-Alcoholic Fatty Liver Disease. Biomolecules 2023, 13, 1128. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Qadir, A.; Sahar, T.; Khan, M.A. Correlation of Cytokeratin-18 as a Marker of Cardiovascular Risk Assessment in Nonalcoholic Fatty Liver Disease in Nonobese and Nondiabetic Patients: Two Years Prospective Study. Asian J. Pharm. Res. Health Care 2022, 14, 177–180. [Google Scholar] [CrossRef]
- Qian, L.; Zhang, L.; Wu, L.; Zhang, J.; Fang, Q.; Hou, X.; Gao, Q.; Li, H.; Jia, W. Elevated Serum Level of Cytokeratin 18 M65ed Is an Independent Indicator of Cardiometabolic Disorders. J. Diabetes Res. 2020, 2020, 5198359. [Google Scholar] [CrossRef] [PubMed]
- Senturk, T.; Aydinlar, A.; Yilmaz, Y.; Oral, A.Y.; Ozdabakoglu, O.; Ulukaya, E. Serial Changes in Circulating M30 Antigen, a Biomarker of Apoptosis, in Patients with Acute Coronary Syndromes: Relationship with the Severity of Coronary Artery Disease. Coron. Artery Dis. 2009, 20, 494–498. [Google Scholar] [CrossRef]
- Turkoglu, C.; Gur, M.; Seker, T.; Selek, S.; Kocyigit, A. The Predictive Value of M30 and Oxidative Stress for Left Ventricular Remodeling in Patients with Anterior St-Segment Elevation Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention. Coron. Artery Dis. 2016, 27, 690–695. [Google Scholar] [CrossRef]
- Antiochos, P.; Marques-Vidal, P.; Virzi, J.; Pagano, S.; Satta, N.; Bastardot, F.; Hartley, O.; Montecucco, F.; Mach, F.; Waeber, G.; et al. Association between Anti-Apolipoprotein a-1 Antibodies and Cardiovascular Disease in the General Population Results from the Colaus Study. Thromb. Haemost. 2016, 116, 764–771. [Google Scholar] [CrossRef]
- El-Lebedy, D.; Rasheed, E.; Kafoury, M.; Abd-El Haleem, D.; Awadallah, E.; Ashmawy, I. Anti-Apolipoprotein a-1 Autoantibodies as Risk Biomarker for Cardiovascular Diseases in Type 2 Diabetes Mellitus. J. Diabetes Complicat. 2016, 30, 580–585. [Google Scholar] [CrossRef]
- Mongin, D.; Pagano, S.; Lamacchia, C.; Juillard, C.; Antinori-Malaspina, P.; Dan, D.; Ciurea, A.; Moller, B.; Gabay, C.; Finckh, A.; et al. Anti-Apolipoprotein a-1 Igg, Incident Cardiovascular Events, and Lipid Paradox in Rheumatoid Arthritis. Front. Cardiovasc. Med. 2024, 11, 1386192. [Google Scholar] [CrossRef]
- Batuca, J.R.; Amaral, M.C.; Favas, C.; Justino, G.C.; Papoila, A.L.; Ames, P.R.J.; Alves, J.D. Antibodies against Hdl Components in Ischaemic Stroke and Coronary Artery Disease. Thromb. Haemost. 2018, 118, 1088–1100. [Google Scholar] [CrossRef]
- Rodriguez-Carrio, J.; Alperi-Lopez, M.; Lopez, P.; Perez-Alvarez, A.I.; Robinson, G.A.; Alonso-Castro, S.; Amigo-Grau, N.; Atzeni, F.; Suarez, A. Humoral Responses against Hdl Are Linked to Lipoprotein Traits, Atherosclerosis, Inflammation and Pathogenic Pathways during Early Arthritis Stages. Rheumatology 2023, 62, 2898–2907. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, S.; Cecchi, I.; Radin, M.; Rubini, E.; Suarez, A.; Roccatello, D.; Rodriguez-Carrio, J. Igg Anti-High-Density Lipoproteins Antibodies Discriminate between Arterial and Venous Events in Thrombotic Antiphospholipid Syndrome Patients. Front. Med. 2019, 6, 211. [Google Scholar] [CrossRef] [PubMed]
- Quercioli, A.; Montecucco, F.; Galan, K.; Ratib, O.; Roux-Lombard, P.; Pagano, S.; Mach, F.; Schindler, T.H.; Vuilleumier, N. Anti-Apolipoprotein a-1 Igg Levels Predict Coronary Artery Calcification in Obese but Otherwise Healthy Individuals. Mediat. Inflamm. 2012, 2012, 243158. [Google Scholar] [CrossRef] [PubMed]
- Carbone, F.; Ciaula, A.D.; Pagano, S.; Minetti, S.; Ansaldo, A.M.; Ferrara, D.; Belfiore, A.; Elia, E.; Pugliese, S.; Ostilio Palmieri, V.; et al. Anti-Apoa-1 Iggs Predict Resistance to Waist Circumference Reduction after Mediterranean Diet. Eur. J. Clin. Investig. 2021, 51, e13410. [Google Scholar] [CrossRef] [PubMed]
- Adam, S.; Ho, J.H.; Liu, Y.; Siahmansur, T.; Iqbal, Z.; Pagano, S.; Azmi, S.; Dhage, S.S.; Donn, R.; Ammori, B.J.; et al. Bariatric Surgery Leads to a Reduction in Antibodies to Apolipoprotein a-1: A Prospective Cohort Study. Obes. Surg. 2022, 32, 355–364. [Google Scholar] [CrossRef]
- Pagano, S.; Magenta, A.; D’Agostino, M.; Martino, F.; Barillà, F.; Satta, N.; Frias, M.A.; Ronca, A.; Mach, F.; Gencer, B.; et al. Anti-Apoa-1 Iggs in Familial Hypercholesterolemia Display Paradoxical Associations with Lipid Profile and Promote Foam Cell Formation. J. Clin. Med. 2019, 8, 2035. [Google Scholar] [CrossRef]
- Pagano, S.; Bakker, S.J.L.; Juillard, C.; Vossio, S.; Moreau, D.; Brandt, K.J.; Mach, F.; Dullaart, R.P.F.; Vuilleumier, N. Antibody against Apolipoprotein-A1, Non-Alcoholic Fatty Liver Disease and Cardiovascular Risk: A Translational Study. J. Transl. Med. 2023, 21, 694. [Google Scholar] [CrossRef]
- Camargo, F.N.; Matos, S.L.; Araujo, L.C.C.; Carvalho, C.R.O.; Amaral, A.G.; Camporez, J.P. Western Diet-Fed Apoe Knockout Male Mice as an Experimental Model of Non-Alcoholic Steatohepatitis. Curr. Issues Mol. Biol. 2022, 44, 4692–4703. [Google Scholar] [CrossRef]
- Schierwagen, R.; Maybuchen, L.; Zimmer, S.; Hittatiya, K.; Back, C.; Klein, S.; Uschner, F.E.; Reul, W.; Boor, P.; Nickenig, G.; et al. Seven Weeks of Western Diet in Apolipoprotein-E-Deficient Mice Induce Metabolic Syndrome and Non-Alcoholic Steatohepatitis with Liver Fibrosis. Sci. Rep. 2015, 5, 12931. [Google Scholar] [CrossRef]
- Sugasawa, T.; Ono, S.; Yonamine, M.; Fujita, S.I.; Matsumoto, Y.; Aoki, K.; Nakano, T.; Tamai, S.; Yoshida, Y.; Kawakami, Y.; et al. One Week of Cdahfd Induces Steatohepatitis and Mitochondrial Dysfunction with Oxidative Stress in Liver. Int. J. Mol. Sci. 2021, 22, 5851. [Google Scholar] [CrossRef]
- Montecucco, F.; Braunersreuther, V.; Burger, F.; Lenglet, S.; Pelli, G.; Carbone, F.; Fraga-Silva, R.; Stergiopulos, N.; Monaco, C.; Mueller, C.; et al. Anti-Apoa-1 Auto-Antibodies Increase Mouse Atherosclerotic Plaque Vulnerability, Myocardial Necrosis and Mortality Triggering Tlr2 and Tlr4. Thromb. Haemost. 2015, 114, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Montecucco, F.; Vuilleumier, N.; Pagano, S.; Lenglet, S.; Bertolotto, M.; Braunersreuther, V.; Pelli, G.; Kovari, E.; Pane, B.; Spinella, G.; et al. Anti-Apolipoprotein a-1 Auto-Antibodies Are Active Mediators of Atherosclerotic Plaque Vulnerability. Eur. Heart J. 2011, 32, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, J.; Francis, S.; Brookes, Z.; Shaw, G.; Graham, D.; Alp, N.J.; Dower, S.; Crossman, D.C. Interleukin-1 Regulates Multiple Atherogenic Mechanisms in Response to Fat Feeding. PLoS ONE 2009, 4, e5073. [Google Scholar] [CrossRef] [PubMed]
- Gieling, R.G.; Wallace, K.; Han, Y.P. Interleukin-1 Participates in the Progression from Liver Injury to Fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G1324–G1331. [Google Scholar] [CrossRef] [PubMed]
- Ridker, P.M. From C-Reactive Protein to Interleukin-6 to Interleukin-1: Moving Upstream to Identify Novel Targets for Atheroprotection. Circ. Res. 2016, 118, 145–156. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A.R.; Szabo, G. Interleukin-1 and Inflammasomes in Alcoholic Liver Disease/Acute Alcoholic Hepatitis and Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Hepatology 2016, 64, 955–965. [Google Scholar] [CrossRef]
- Eguchi, A.; Iwasa, M.; Yamada, M.; Tamai, Y.; Shigefuku, R.; Hasegawa, H.; Hirokawa, Y.; Hayashi, A.; Okuno, K.; Matsushita, Y.; et al. A New Detection System for Serum Fragmented Cytokeratin 18 as a Biomarker Reflecting Histologic Activities of Human Nonalcoholic Steatohepatitis. Hepatol. Commun. 2022, 6, 1987–1999. [Google Scholar] [CrossRef]
- Strnad, P.; Paschke, S.; Jang, K.H.; Ku, N.O. Keratins: Markers and Modulators of Liver Disease. Curr. Opin. Gastroenterol. 2012, 28, 209–216. [Google Scholar] [CrossRef]
- Darweesh, S.K.; AbdElAziz, R.A.; Abd-ElFatah, D.S.; AbdElazim, N.A.; Fathi, S.A.; Attia, D.; AbdAllah, M. Serum Cytokeratin-18 and Its Relation to Liver Fibrosis and Steatosis Diagnosed by Fibroscan and Controlled Attenuation Parameter in Nonalcoholic Fatty Liver Disease and Hepatitis C Virus Patients. Eur. J. Gastroenterol. Hepatol. 2019, 31, 633–641. [Google Scholar] [CrossRef]
- Jiao, Y.; Chen, H.; Gu, T.; Wang, L.; Postlethwaite, A.; Gu, W. Molecular Network of Important Genes for Systemic Sclerosis-Related Progressive Lung Fibrosis. BMC Res. Notes 2015, 8, 544. [Google Scholar] [CrossRef]
- Mattiola, I.; Tomay, F.; De Pizzol, M.; Silva-Gomes, R.; Savino, B.; Gulic, T.; Doni, A.; Lonardi, S.; Astrid Boutet, M.; Nerviani, A.; et al. The Macrophage Tetraspan Ms4a4a Enhances Dectin-1-Dependent Nk Cell-Mediated Resistance to Metastasis. Nat. Immunol. 2019, 20, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Liu, W.; Xiao, H.; Maitikabili, A.; Lin, Q.; Wu, T.; Huang, Z.; Liu, F.; Luo, Q.; Ouyang, G. Matricellular Protein Periostin Contributes to Hepatic Inflammation and Fibrosis. Am. J. Pathol. 2015, 185, 786–797. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Smith, T.; Raeman, R.; Chopyk, D.M.; Brink, H.; Liu, Y.; Sulchek, T.; Anania, F.A. Periostin Promotes Liver Fibrogenesis by Activating Lysyl Oxidase in Hepatic Stellate Cells. J. Biol. Chem. 2018, 293, 12781–12792. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, B.; del Monte, F.; Hajjar, R.J.; Chang, Y.S.; Lebeche, D.; Arab, S.; Keating, M.T. Periostin Induces Proliferation of Differentiated Cardiomyocytes and Promotes Cardiac Repair. Nat. Med. 2007, 13, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Izuhara, K.; Arima, K.; Ohta, S.; Suzuki, S.; Inamitsu, M.; Yamamoto, K.I. Periostin in Allergic Inflammation. Allergol. Int. 2014, 63, 143–151. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, M.X.; Meng, X.X.; Zhu, J.; Wang, J.J.; He, Y.F.; Li, Y.H.; Zhao, S.C.; Shi, Z.M.; Zheng, L.N.; et al. Targeting Gpr65 Alleviates Hepatic Inflammation and Fibrosis by Suppressing the Jnk and Nf-Kappab Pathways. Mil. Med. Res. 2023, 10, 56. [Google Scholar] [CrossRef]
- Rajak, S.; Gupta, P.; Anjum, B.; Raza, S.; Tewari, A.; Ghosh, S.; Tripathi, M.; Singh, B.K.; Sinha, R.A. Role of Akr1b10 and Akr1b8 in the Pathogenesis of Non-Alcoholic Steatohepatitis (Nash) in Mouse. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166319. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, D.; Hu, Y.; Li, W.; Liu, F.; Zhu, X.; Li, X.; Zhang, H.; Bai, H.; Yang, Q.; et al. Serum Amyloid A1 Exacerbates Hepatic Steatosis Via Tlr4-Mediated Nf-Kappab Signaling Pathway. Mol. Metab. 2022, 59, 101462. [Google Scholar] [CrossRef]
- Furuta, K.; Guo, Q.; Pavelko, K.D.; Lee, J.H.; Robertson, K.D.; Nakao, Y.; Melek, J.; Shah, V.H.; Hirsova, P.; Ibrahim, S.H. Lipid-Induced Endothelial Vascular Cell Adhesion Molecule 1 Promotes Nonalcoholic Steatohepatitis Pathogenesis. J. Clin. Investig. 2021, 131, e143690. [Google Scholar] [CrossRef]
- Lefere, S.; Van de Velde, F.; Devisscher, L.; Bekaert, M.; Raevens, S.; Verhelst, X.; Van Nieuwenhove, Y.; Praet, M.; Hoorens, A.; Van Steenkiste, C.; et al. Serum Vascular Cell Adhesion Molecule-1 Predicts Significant Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. Int. J. Obes. 2017, 41, 1207–1213. [Google Scholar] [CrossRef]
- Pagano, S.; Satta, N.; Werling, D.; Offord, V.; de Moerloose, P.; Charbonney, E.; Hochstrasser, D.; Roux-Lombard, P.; Vuilleumier, N. Anti-Apolipoprotein a-1 Igg in Patients with Myocardial Infarction Promotes Inflammation through Tlr2/Cd14 Complex. J. Intern. Med. 2012, 272, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Vuilleumier, N.; Montecucco, F.; Spinella, G.; Pagano, S.; Bertolotto, M.; Pane, B.; Pende, A.; Galan, K.; Roux-Lombard, P.; Combescure, C.; et al. Serum Levels of Anti-Apolipoprotein a-1 Auto-Antibodies and Myeloperoxidase as Predictors of Major Adverse Cardiovascular Events after Carotid Endarterectomy. Thromb. Haemost. 2013, 109, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Farrell, G.C.; Chitturi, S.; Lau, G.K.; Sollano, J.D.; for the Asia-Pacific Working Party on Nafld. Guidelines for the Assessment and Management of Non-Alcoholic Fatty Liver Disease in the Asia-Pacific Region: Executive Summary. J. Gastroenterol. Hepatol. 2007, 22, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Ratziu, V.; Charlotte, F.; Heurtier, A.; Gombert, S.; Giral, P.; Bruckert, E.; Grimaldi, A.; Capron, F.; Poynard, T.; Lido Study Group. Sampling Variability of Liver Biopsy in Nonalcoholic Fatty Liver Disease. Gastroenterology 2005, 128, 1898–1906. [Google Scholar] [CrossRef]
- Jia, R.; Chen, Y.X.; Du, Y.R.; Hu, B.R. Meso-Scale Discovery Assay Detects the Changes of Plasma Cytokine Levels in Mice after Low or High Let Ionizing Irradiation. Biomed. Environ. Sci. 2021, 34, 540–551. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernandez, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. Qupath: Open Source Software for Digital Pathology Image Analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef]
- Chilimoniuk, J.; Erol, A.; Rodiger, S.; Burdukiewicz, M. Challenges and Opportunities in Processing Nanostring Ncounter Data. Comput. Struct. Biotechnol. J. 2024, 23, 1951–1958. [Google Scholar] [CrossRef]
- Eastel, J.M.; Lam, K.W.; Lee, N.L.; Lok, W.Y.; Tsang, A.H.F.; Pei, X.M.; Chan, A.K.C.; Cho, W.C.S.; Wong, S.C.C. Application of Nanostring Technologies in Companion Diagnostic Development. Expert Rev. Mol. Diagn. 2019, 19, 591–598. [Google Scholar] [CrossRef]
- Miinea, C.P.; Sano, H.; Kane, S.; Sano, E.; Fukuda, M.; Peranen, J.; Lane, W.S.; Lienhard, G.E. As160, the Akt Substrate Regulating Glut4 Translocation, Has a Functional Rab Gtpase-Activating Protein Domain. Biochem. J. 2005, 391, 87–93. [Google Scholar] [CrossRef]
- Sudhamsu, J.; Yin, J.; Chiang, E.Y.; Starovasnik, M.A.; Grogan, J.L.; Hymowitz, S.G. Dimerization of Ltbetar by Ltalpha1beta2 Is Necessary and Sufficient for Signal Transduction. Proc. Natl. Acad. Sci. USA 2013, 110, 19896–19901. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Yao, J.; Cui, G.; Xiao, H.; Kim, T.W.; Fraczek, J.; Wightman, P.; Sato, S.; Akira, S.; Puel, A.; et al. Tlr8-Mediated Nf-Kappab and Jnk Activation Are Tak1-Independent and Mekk3-Dependent. J. Biol. Chem. 2006, 281, 21013–21021. [Google Scholar] [CrossRef] [PubMed]
- Thomes, P.G.; Donohue, T.M. Role of Early Growth Response-1 in the Development of Alcohol-Induced Steatosis. Curr. Mol. Pharmacol. 2017, 10, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Gillan, L.; Matei, D.; Fishman, D.A.; Gerbin, C.S.; Karlan, B.Y.; Chang, D.D. Periostin Secreted by Epithelial Ovarian Carcinoma Is a Ligand for Alpha(V)Beta(3) and Alpha(V)Beta(5) Integrins and Promotes Cell Motility. Cancer Res. 2002, 62, 5358–5364. [Google Scholar] [PubMed]
- Lassen, K.G.; McKenzie, C.I.; Mari, M.; Murano, T.; Begun, J.; Baxt, L.A.; Goel, G.; Villablanca, E.J.; Kuo, S.Y.; Huang, H.; et al. Genetic Coding Variant in Gpr65 Alters Lysosomal Ph and Links Lysosomal Dysfunction with Colitis Risk. Immunity 2016, 44, 1392–1405. [Google Scholar] [CrossRef]
- Wang, L.; Aschenbrenner, D.; Zeng, Z.; Cao, X.; Mayr, D.; Mehta, M.; Capitani, M.; Warner, N.; Pan, J.; Wang, L.; et al. Gain-of-Function Variants in Syk Cause Immune Dysregulation and Systemic Inflammation in Humans and Mice. Nat. Genet. 2021, 53, 500–510. [Google Scholar] [CrossRef]
- Benditt, E.P.; Hoffman, J.S.; Eriksen, N.; Parmelee, D.C.; Walsh, K.A. Saa, an Apoprotein of Hdl: Its Structure and Function. Ann. N. Y Acad. Sci. 1982, 389, 183–189. [Google Scholar] [CrossRef]
- Elomaa, O.; Sankala, M.; Pikkarainen, T.; Bergmann, U.; Tuuttila, A.; Raatikainen-Ahokas, A.; Sariola, H.; Tryggvason, K. Structure of the Human Macrophage Marco Receptor and Characterization of Its Bacteria-Binding Region. J. Biol. Chem. 1998, 273, 4530–4538. [Google Scholar] [CrossRef]
- Cai, T.; Xu, L.; Xia, D.; Zhu, L.; Lin, Y.; Yu, S.; Zhu, K.; Wang, X.; Pan, C.; Chen, Y.; et al. Polyguanine Alleviated Autoimmune Hepatitis through Regulation of Macrophage Receptor with Collagenous Structure and Tlr4-Trif-Nf-Kappab Signalling. J. Cell Mol. Med. 2022, 26, 5690–5701. [Google Scholar] [CrossRef]
- DiLillo, D.J.; Tan, G.S.; Palese, P.; Ravetch, J.V. Broadly Neutralizing Hemagglutinin Stalk-Specific Antibodies Require Fcgammar Interactions for Protection against Influenza Virus in Vivo. Nat. Med. 2014, 20, 143–151. [Google Scholar] [CrossRef]
- Schattenberg, J.M.; Singh, R.; Wang, Y.; Lefkowitch, J.H.; Rigoli, R.M.; Scherer, P.E.; Czaja, M.J. Jnk1 but Not Jnk2 Promotes the Development of Steatohepatitis in Mice. Hepatology 2006, 43, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Sharma, M.; Brocardo, M.G.; Henderson, B.R. Iqgap1 Translocates to the Nucleus in Early S-Phase and Contributes to Cell Cycle Progression after DNA Replication Arrest. Int. J. Biochem. Cell Biol. 2011, 43, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chang, N.; Liu, Y.; Liu, F.; Dong, C.; Hou, L.; Qi, C.; Yang, L.; Li, L. Silencing Iqgap1 Alleviates Hepatic Fibrogenesis Via Blocking Bone Marrow Mesenchymal Stromal Cell Recruitment to Fibrotic Liver. Mol. Ther. Nucleic Acids 2022, 27, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zeldin, S.; Shi, H.; Zhu, C.; Saito, Y.; Corey, K.E.; Osganian, S.A.; Remotti, H.E.; Verna, E.C.; Pajvani, U.B.; et al. Taz-Induced Cybb Contributes to Liver Tumor Formation in Non-Alcoholic Steatohepatitis. J. Hepatol. 2022, 76, 910–920. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Zheng, W.; Zhang, J.; Wang, J.; Jin, T.; Tao, P.; Wang, Y.; Liu, C.; Huang, J.; et al. Identification of an Il-1 Receptor Mutation Driving Autoinflammation Directs Il-1-Targeted Drug Design. Immunity 2023, 56, 1485–1501.e7. [Google Scholar] [CrossRef]
- Wang, C.; Deng, L.; Hong, M.; Akkaraju, G.R.; Inoue, J.; Chen, Z.J. Tak1 Is a Ubiquitin-Dependent Kinase of Mkk and Ikk. Nature 2001, 412, 346–351. [Google Scholar] [CrossRef]
- Yu, J.E.; Han, S.Y.; Wolfson, B.; Zhou, Q. The Role of Endothelial Lipase in Lipid Metabolism, Inflammation, and Cancer. Histol. Histopathol. 2018, 33, 1–10. [Google Scholar] [CrossRef]
- De Minicis, S.; Bataller, R.; Brenner, D.A. Nadph Oxidase in the Liver: Defensive, Offensive, or Fibrogenic? Gastroenterology 2006, 131, 272–275. [Google Scholar] [CrossRef]
- Wang, C.; Ma, C.; Gong, L.; Guo, Y.; Fu, K.; Zhang, Y.; Zhou, H.; Li, Y. Macrophage Polarization and Its Role in Liver Disease. Front. Immunol. 2021, 12, 803037. [Google Scholar] [CrossRef]
- Hintermann, E.; Christen, U. The Many Roles of Cell Adhesion Molecules in Hepatic Fibrosis. Cells 2019, 8, 1503. [Google Scholar] [CrossRef]
- Kim, C.W.; Addy, C.; Kusunoki, J.; Anderson, N.N.; Deja, S.; Fu, X.; Burgess, S.C.; Li, C.; Ruddy, M.; Chakravarthy, M.; et al. Acetyl Coa Carboxylase Inhibition Reduces Hepatic Steatosis but Elevates Plasma Triglycerides in Mice and Humans: A Bedside to Bench Investigation. Cell Metab. 2017, 26, 394–406.e6. [Google Scholar] [CrossRef] [PubMed]
- Huber, C.; Martensson, A.; Bokoch, G.M.; Nemazee, D.; Gavin, A.L. Fgd2, a Cdc42-Specific Exchange Factor Expressed by Antigen-Presenting Cells, Localizes to Early Endosomes and Active Membrane Ruffles. J. Biol. Chem. 2008, 283, 34002–34012. [Google Scholar] [CrossRef] [PubMed]
- Aryal, B.; Price, N.L.; Suarez, Y.; Fernandez-Hernando, C. Angptl4 in Metabolic and Cardiovascular Disease. Trends Mol. Med. 2019, 25, 723–734. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Romero, X.; de la Fuente, M.A.; Tovar, V.; Zapater, N.; Esplugues, E.; Pizcueta, P.; Bosch, J.; Engel, P. Cd84 Functions as a Homophilic Adhesion Molecule and Enhances Ifn-Gamma Secretion: Adhesion Is Mediated by Ig-Like Domain 1. J Immunol 2001, 167, 3668–3676. [Google Scholar] [CrossRef] [PubMed]
- Hoon, J.L.; Tan, M.H.; Koh, C.G. The Regulation of Cellular Responses to Mechanical Cues by Rho Gtpases. Cells 2016, 5, 17. [Google Scholar] [CrossRef]
- Nalkurthi, C.; Schroder, W.A.; Melino, M.; Irvine, K.M.; Nyuydzefe, M.; Chen, W.; Liu, J.; Teng, M.W.L.; Hill, G.R.; Bertolino, P.; et al. Rock2 Inhibition Attenuates Profibrogenic Immune Cell Function to Reverse Thioacetamide-Induced Liver Fibrosis. JHEP Rep. 2022, 4, 100386. [Google Scholar] [CrossRef]
- Oka, T.; Kujiraoka, T.; Ito, M.; Egashira, T.; Takahashi, S.; Nanjee, M.N.; Miller, N.E.; Metso, J.; Olkkonen, V.M.; Ehnholm, C.; et al. Distribution of Phospholipid Transfer Protein in Human Plasma: Presence of Two Forms of Phospholipid Transfer Protein, One Catalytically Active and the Other Inactive. J. Lipid Res. 2000, 41, 1651–1657. [Google Scholar] [CrossRef]
- Schlitt, A.; Bickel, C.; Thumma, P.; Blankenberg, S.; Rupprecht, H.J.; Meyer, J.; Jiang, X.C. High Plasma Phospholipid Transfer Protein Levels as a Risk Factor for Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1857–1862. [Google Scholar] [CrossRef]
- Hornung, V.; Ablasser, A.; Charrel-Dennis, M.; Bauernfeind, F.; Horvath, G.; Caffrey, D.R.; Latz, E.; Fitzgerald, K.A. Aim2 Recognizes Cytosolic Dsdna and Forms a Caspase-1-Activating Inflammasome with Asc. Nature 2009, 458, 514–518. [Google Scholar] [CrossRef]
- Lozano-Ruiz, B.; Gonzalez-Navajas, J.M. The Emerging Relevance of Aim2 in Liver Disease. Int. J. Mol. Sci. 2020, 21, 6535. [Google Scholar] [CrossRef]
- Perry, R.J.; Ridgway, N.D. Oxysterol-Binding Protein and Vesicle-Associated Membrane Protein-Associated Protein Are Required for Sterol-Dependent Activation of the Ceramide Transport Protein. Mol. Biol. Cell 2006, 17, 2604–2616. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Lehto, M.; Rasilainen, L.; Metso, J.; Ehnholm, C.; Yla-Herttuala, S.; Jauhiainen, M.; Olkkonen, V.M. Oxysterol Binding Protein Induces Upregulation of Srebp-1c and Enhances Hepatic Lipogenesis. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Vulpe, C.; Levinson, B.; Whitney, S.; Packman, S.; Gitschier, J. Isolation of a Candidate Gene for Menkes Disease and Evidence That It Encodes a Copper-Transporting Atpase. Nat. Genet. 1993, 3, 7–13. [Google Scholar] [CrossRef]
- Xiang, C.; Li, H.; Tang, W. Targeting Csf-1r Represents an Effective Strategy in Modulating Inflammatory Diseases. Pharmacol. Res. 2023, 187, 106566. [Google Scholar] [CrossRef] [PubMed]
- Preisser, L.; Miot, C.; Le Guillou-Guillemette, H.; Beaumont, E.; Foucher, E.D.; Garo, E.; Blanchard, S.; Fremaux, I.; Croue, A.; Fouchard, I.; et al. Il-34 and Macrophage Colony-Stimulating Factor Are Overexpressed in Hepatitis C Virus Fibrosis and Induce Profibrotic Macrophages That Promote Collagen Synthesis by Hepatic Stellate Cells. Hepatology 2014, 60, 1879–1890. [Google Scholar] [CrossRef] [PubMed]
- Couvelard, A.; Scoazec, J.Y.; Feldmann, G. Expression of Cell-Cell and Cell-Matrix Adhesion Proteins by Sinusoidal Endothelial Cells in the Normal and Cirrhotic Human Liver. Am. J. Pathol. 1993, 143, 738–752. [Google Scholar]
- Goel, R.; Boylan, B.; Gruman, L.; Newman, P.J.; North, P.E.; Newman, D.K. The Proinflammatory Phenotype of Pecam-1-Deficient Mice Results in Atherogenic Diet-Induced Steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G1205–G1214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pagano, S.; Somm, E.; Juillard, C.; Liaudet, N.; Ino, F.; Ferrari, J.; Braunersreuther, V.; Jornayvaz, F.R.; Vuilleumier, N. Linking Antibodies Against Apolipoprotein A-1 to Metabolic Dysfunction-Associated Steatohepatitis in Mice. Int. J. Mol. Sci. 2024, 25, 11875. https://doi.org/10.3390/ijms252211875
Pagano S, Somm E, Juillard C, Liaudet N, Ino F, Ferrari J, Braunersreuther V, Jornayvaz FR, Vuilleumier N. Linking Antibodies Against Apolipoprotein A-1 to Metabolic Dysfunction-Associated Steatohepatitis in Mice. International Journal of Molecular Sciences. 2024; 25(22):11875. https://doi.org/10.3390/ijms252211875
Chicago/Turabian StylePagano, Sabrina, Emmanuel Somm, Catherine Juillard, Nicolas Liaudet, Frédérique Ino, Johan Ferrari, Vincent Braunersreuther, François R. Jornayvaz, and Nicolas Vuilleumier. 2024. "Linking Antibodies Against Apolipoprotein A-1 to Metabolic Dysfunction-Associated Steatohepatitis in Mice" International Journal of Molecular Sciences 25, no. 22: 11875. https://doi.org/10.3390/ijms252211875
APA StylePagano, S., Somm, E., Juillard, C., Liaudet, N., Ino, F., Ferrari, J., Braunersreuther, V., Jornayvaz, F. R., & Vuilleumier, N. (2024). Linking Antibodies Against Apolipoprotein A-1 to Metabolic Dysfunction-Associated Steatohepatitis in Mice. International Journal of Molecular Sciences, 25(22), 11875. https://doi.org/10.3390/ijms252211875