Ultrasound Irradiation as a Candidate Procedure to Improve the Transdermal Drug Delivery to the Tail Edema of a Mouse Model
Abstract
:1. Introduction
2. Results
2.1. Transdermal Administration of Fluorescein Isothiocyanate (FITC) Dextran by Ultrasound Irradiation
2.2. Effect of Ultrasound-Mediated Steroid Treatments for Reducing Lymphedema Volume
2.3. Reduced Formation of Abnormally Dilated Lymphatic Vessels with Fatty Lesions
2.4. Appearance of CD4-Positive T Cells Adjacent to the Lymphatic Vessels in the Lymphedemic Group
3. Discussion
3.1. Transdermal Administration of FITC Dextran as a Model Case
3.2. Effect of Steroidal Treatment in the Tail Model of Lymphedema
3.3. Implications for Future Research and Treatment
4. Materials and Methods
4.1. Animals
4.2. Lymphedema Mouse Tail Model
4.3. Transdermal FITC Dextran and Steroid Administration Using Ultrasound Irradiation
4.4. Calculation of the Edema Status
4.5. Histological and Fluorescent Immunohistochemistrical Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Executive Committee of the International Society of Lymphology. The diagnosis and treatment of peripheral lymphedema: 2020 Consensus Document of the International Society of Lymphology. Lymphology 2020, 53, 3–19. [Google Scholar]
- Bryan, C.S.; Biagio, M. StatPearls. Lymphedema. 2024. Available online: https://pubmed.ncbi.nlm.nih.gov/30725924/ (accessed on 7 October 2024).
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Keast, D.H.; Despatis, M.; Allen, J.O.; Brassard, A. Chronic oedema/lymphoedema: Under-recognised and under-treated. Int. Wound J. 2015, 12, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Patton, L.; Ricolfi, L.; Bortolon, M.; Gabriele, G.; Zolesio, P.; Cione, E.; Cannataro, R. Observational Study on a Large Italian Population with Lipedema: Biochemical and Hormonal Profile, Anatomical and Clinical Evaluation, Self-Reported History. Int. J. Mol. Sci. 2024, 25, 1599. [Google Scholar] [CrossRef]
- Ricolfi, L.; Reverdito, V.; Gabriele, G.; Bortolon, M.; Macherelli, I.; Haag, P.; De Santis, N.; Guerriero, M.; Patton, L. Micromassage Compression Leggings Associated with Physical Exercise: Pilot Study and Example of Evaluation of the Clinical and Instrumental Effectiveness of Conservative Treatment in Lipedema. Life 2024, 14, 854. [Google Scholar] [CrossRef]
- Shinaoka, A.; Kamiyama, K.; Yamada, K.; Kimata, Y. A new severity classification of lower limb secondary lymphedema based on lymphatic pathway defects in an indocyanine green fluorescent lymphography study. Sci. Rep. 2022, 12, 309. [Google Scholar] [CrossRef]
- Yasunaga, Y.; Kinjo, Y.; Yanagisawa, D.; Yuzuriha, S.; Kondoh, S. Changes in intracellular water volume after leg lymphedema onset and lymphaticovenular anastomosis as its surgical intervention. J. Vasc. Surg. Venous Lymphat. Disord. 2023, 11, 1243–1252. [Google Scholar] [CrossRef]
- Schaverien, M.V.; Coroneos, C.J. Surgical Treatment of Lymphedema. Plast. Reconstr. Surg. 2019, 144, 738–758. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, H.; Visconti, G.; Karakawa, R.; Hayashi, A. Lymphatic System Transfer for Lymphedema Treatment: Transferring the Lymph Nodes with Their Lymphatic Vessels. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2721. [Google Scholar] [CrossRef]
- Wang, D.; Lyons, D.; Skoracki, R. Lymphedema: Conventional to Cutting Edge Treatment. Semin. Interv. Radiol. 2020, 37, 295–308. [Google Scholar] [CrossRef]
- Brown, S.; Dayan, J.H.; Coriddi, M.; Campbell, A.; Kuonqui, K.; Shin, J.; Park, H.J.; Mehrara, B.J.; Kataru, R.P. Pharmacological Treatment of Secondary Lymphedema. Front. Pharmacol. 2022, 13, 828513. [Google Scholar] [CrossRef] [PubMed]
- Chiu, T.W.; Kong, S.L.; Cheng, K.F.; Leung, P.C. Treatment of Post-mastectomy Lymphedema with Herbal Medicine: An Innovative Pilot Study. Plast. Reconstr. Surg. Glob. Open 2020, 8, e2915. [Google Scholar] [CrossRef] [PubMed]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2022, 12, 758–791. [Google Scholar] [CrossRef]
- Newman, C.M.; Lawrie, A.; Brisken, A.F.; Cumberland, D.C. Ultrasound gene therapy: On the road from concept to reality. Echocardiography 2001, 18, 339–347. [Google Scholar] [CrossRef]
- Mitragotri, S.; Blankschtein, D.; Langer, R. Ultrasound-mediated transdermal protein delivery. Science 1995, 269, 850–853. [Google Scholar] [CrossRef]
- Tachibana, K.; Tachibana, S. Transdermal delivery of insulin by ultrasonic vibration. J. Pharm. Pharmacol. 1991, 43, 270–271. [Google Scholar] [CrossRef]
- Kumegawa, S.; Yamada, G.; Hashimoto, D.; Hirashima, T.; Kajimoto, M.; Isono, K.; Fujimoto, K.; Suzuki, K.; Uemura, K.; Ema, M.; et al. Development of Surgical and Visualization Procedures to Analyze Vasculatures by Mouse Tail Edema Model. Biol. Proced. Online 2021, 23, 21. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, M.G.; Toyserkani, N.M.; Hansen, C.R.; Hvidsten, S.; Baun, C.; Hejbøl, E.K.; Schrøder, H.D.; Sørensen, J.A. Quantification of Chronic Lymphedema in a Revised Mouse Model. Ann. Plast. Surg. 2018, 81, 594–603. [Google Scholar] [CrossRef]
- Kwon, S.; Janssen, C.F.; Velasquez, F.C.; Zhang, S.; Aldrich, M.B.; Shaitelman, S.F.; DeSnyder, S.M.; Sevick-Muraca, E.M. Radiation Dose-Dependent Changes in Lymphatic Remodeling. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 852–860. [Google Scholar] [CrossRef]
- Ogata, F.; Fujiu, K.; Matsumoto, S.; Nakayama, Y.; Shibata, M.; Oike, Y.; Koshima, I.; Watabe, T.; Nagai, R.; Manabe, I. Excess Lymphangiogenesis Cooperatively Induced by Macrophages and CD4(+) T Cells Drives the Pathogenesis of Lymphedema. J. Investig. Dermatol. 2016, 136, 706–714. [Google Scholar] [CrossRef]
- Zampell, J.C.; Elhadad, S.; Avraham, T.; Weitman, E.; Aschen, S.; Yan, A.; Mehrara, B.J. Toll-like receptor deficiency worsens inflammation and lymphedema after lymphatic injury. Am. J. Physiol. Cell Physiol. 2012, 302, C709–C719. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Kim, K.Y.; Yoon, S.H.; Park, J.H.; Choi, J.; Bakheet, N.; Hu, H.T.; Lopera, J.E.; Song, H.Y.; Jeon, J.Y. Radiation Inhibits Lymph Drainage in an Acquired Lymphedema Mouse Hindlimb Model. Lymphat. Res. Biol. 2020, 18, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Sakae, Y.; Takada, H.; Ichinose, S.; Nakajima, M.; Sakai, A.; Ogawa, R. Treatment with YIGSR peptide ameliorates mouse tail lymphedema by 67 kDa laminin receptor (67LR)-dependent cell-cell adhesion. Biochem. Biophys. Rep. 2023, 35, 101514. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, K.; Yoshida, S.; Yoshimoto, H.; Fujioka, M.; Saijo, H.; Migita, K.; Kumaya, M.; Akita, S. Adipose-Derived Stem Cells and Vascularized Lymph Node Transfers Successfully Treat Mouse Hindlimb Secondary Lymphedema by Early Reconnection of the Lymphatic System and Lymphangiogenesis. Plast. Reconstr. Surg. 2017, 139, 639–651. [Google Scholar] [CrossRef]
- Tu, J.; Yu, A.C.H. Ultrasound-Mediated Drug Delivery: Sonoporation Mechanisms, Biophysics, and Critical Factors. BME Front. 2022, 2022, 9807347. [Google Scholar] [CrossRef]
- Feril, L.B.; Tachibana, K. Use of ultrasound in drug delivery systems: Emphasis on experimental methodology and mechanisms. Int. J. Hyperth. 2012, 28, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S.; Suzuki, K.; Ogino, Y.; Miyagawa, S.; Murashima, A.; Matsumaru, D.; Yamada, G. Gene transduction by sonoporation. Dev. Growth Differ. 2008, 50, 517–520. [Google Scholar] [CrossRef]
- Ohta, S.; Yukiko, O.; Suzuki, K.; Kamimura, M.; Tachibana, K.; Yamada, G. Sonoporation for gene transfer into embryos. Cold Spring Harb. Protoc. 2011, 2011, prot5581. [Google Scholar] [CrossRef]
- Ohta, S.; Suzuki, K.; Tachibana, K.; Tanaka, H.; Yamada, G. Cessation of gastrulation is mediated by suppression of epithelial-mesenchymal transition at the ventral ectodermal ridge. Development 2007, 134, 4315–4324. [Google Scholar] [CrossRef]
- Nair, A.B.; Kumar, S.; Dalal, P.; Nagpal, C.; Dalal, S.; Rao, R.; Sreeharsha, N.; Jacob, S. Novel Dermal Delivery Cargos of Clobetasol Propionate: An Update. Pharmaceutics 2022, 14. [Google Scholar] [CrossRef]
- Simon, J.; Jouanmiqueou, B.; Rols, M.P.; Flahaut, E.; Golzio, M. Transdermal Delivery of Macromolecules Using Two-in-One Nanocomposite Device for Skin Electroporation. Pharmaceutics 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- García Nores, G.D.; Ly, C.L.; Cuzzone, D.A.; Kataru, R.P.; Hespe, G.E.; Torrisi, J.S.; Huang, J.J.; Gardenier, J.C.; Savetsky, I.L.; Nitti, M.D.; et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat. Commun. 2018, 9, 1970. [Google Scholar] [CrossRef] [PubMed]
- Kida, H.; Nishimura, K.; Ogawa, K.; Watanabe, A.; Feril, L.B.; Irie, Y.; Endo, H.; Kawakami, S.; Tachibana, K. Nanobubble Mediated Gene Delivery in Conjunction With a Hand-Held Ultrasound Scanner. Front. Pharmacol. 2020, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Chávez, J.J.; Bonilla-Martínez, D.; Villegas-González, M.A.; Rodríguez-Cruz, I.M.; Domínguez-Delgado, C.L. The use of sonophoresis in the administration of drugs throughout the skin. J. Pharm. Pharm. Sci. 2009, 12, 88–115. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Mizuoka, H.; Kohata, Y.; Takada, M. External control of drug release and penetration. VI. Enhancing effect of ultrasound on the transdermal absorption of indomethacin from an ointment in rats. Chem. Pharm. Bull. 1992, 40, 2826–2830. [Google Scholar] [CrossRef]
- Tiwari, S.B.; Pai, R.M.; Udupa, N. Influence of ultrasound on the percutaneous absorption of ketorolac tromethamine in vitro across rat skin. Drug Deliv. 2004, 11, 47–51. [Google Scholar] [CrossRef]
- Tachibana, K.; Feril, L.B.; Ikeda-Dantsuji, Y. Sonodynamic therapy. Ultrasonics 2008, 48, 253–259. [Google Scholar] [CrossRef]
- Kida, H.; Feril, L.B.; Irie, Y.; Endo, H.; Itaka, K.; Tachibana, K. Influence of Nanobubble Size Distribution on Ultrasound-Mediated Plasmid DNA and Messenger RNA Gene Delivery. Front. Pharmacol. 2022, 13, 855495. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, T. Mouse tail skin wholemount staining and intravital calcium imaging. STAR Protoc. 2022, 3, 101235. [Google Scholar] [CrossRef]
- Olnes, M.J.; Kotliarov, Y.; Biancotto, A.; Cheung, F.; Chen, J.; Shi, R.; Zhou, H.; Wang, E.; Tsang, J.S.; Nussenblatt, R.; et al. Effects of Systemically Administered Hydrocortisone on the Human Immunome. Sci. Rep. 2016, 6, 23002. [Google Scholar] [CrossRef]
- Kashiwagi, S.; Hosono, K.; Suzuki, T.; Takeda, A.; Uchinuma, E.; Majima, M. Role of COX-2 in lymphangiogenesis and restoration of lymphatic flow in secondary lymphedema. Lab. Investig. 2011, 91, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, T.; Bry, M.; Alitalo, K.; Saaristo, A. Perspectives on lymphangiogenesis and angiogenesis in cancer. J. Surg. Oncol. 2011, 103, 484–488. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumegawa, S.; Suzuki, T.; Fujimoto, K.; Uemura, K.; Tachibana, K.; Yamada, G.; Asamura, S. Ultrasound Irradiation as a Candidate Procedure to Improve the Transdermal Drug Delivery to the Tail Edema of a Mouse Model. Int. J. Mol. Sci. 2024, 25, 11883. https://doi.org/10.3390/ijms252211883
Kumegawa S, Suzuki T, Fujimoto K, Uemura K, Tachibana K, Yamada G, Asamura S. Ultrasound Irradiation as a Candidate Procedure to Improve the Transdermal Drug Delivery to the Tail Edema of a Mouse Model. International Journal of Molecular Sciences. 2024; 25(22):11883. https://doi.org/10.3390/ijms252211883
Chicago/Turabian StyleKumegawa, Shinji, Takuya Suzuki, Kota Fujimoto, Kazuhisa Uemura, Katsuro Tachibana, Gen Yamada, and Shinichi Asamura. 2024. "Ultrasound Irradiation as a Candidate Procedure to Improve the Transdermal Drug Delivery to the Tail Edema of a Mouse Model" International Journal of Molecular Sciences 25, no. 22: 11883. https://doi.org/10.3390/ijms252211883
APA StyleKumegawa, S., Suzuki, T., Fujimoto, K., Uemura, K., Tachibana, K., Yamada, G., & Asamura, S. (2024). Ultrasound Irradiation as a Candidate Procedure to Improve the Transdermal Drug Delivery to the Tail Edema of a Mouse Model. International Journal of Molecular Sciences, 25(22), 11883. https://doi.org/10.3390/ijms252211883