Transforming Cardiotoxicity Detection in Cancer Therapies: The Promise of MicroRNAs as Precision Biomarkers
Abstract
:1. Introduction
2. MiRNAs Involved in CDTX
2.1. Let-7
2.2. miR-1
2.3. miR-106b-5p
2.4. miR-126
2.5. miR-129
2.6. miR-133
2.7. miR-140
2.8. miR-143
2.9. miR-194-5p
2.10. miR-199
2.11. miR-200a
2.12. miR-208
2.13. miR-21
2.14. miR-210
2.15. miR-34a-5p
2.16. miR-4732-3p
2.17. miR-494-3p
2.18. miR-499
2.19. miR-9-5p
2.20. miR-92a
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Terluk, A.; Stefani, L.; Boyd, A.; Vo, K.; Byth, K.; Hui, R.; Richards, D.; Thomas, L. Redefining Anthracycline-Related Subclinical Cardiotoxicity: “Absolute” and “Relative” Change in Longitudinal Strain. ESC Heart Fail. 2024, 11, 3210–3221. [Google Scholar] [CrossRef] [PubMed]
- Boen, H.M.; Cherubin, M.; Franssen, C.; Gevaert, A.B.; Witvrouwen, I.; Bosman, M.; Guns, P.J.; Heidbuchel, H.; Loeys, B.; Alaerts, M.; et al. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2024, 6, 183–199. [Google Scholar] [CrossRef] [PubMed]
- Puła, B.; Kępski, J.; Misiewicz-Krzemińska, I.; Szmit, S. Left and Right Ventricular Global Longitudinal Strain Assessment Together with Biomarker Evaluation May Have a Predictive and Prognostic Role in Patients Qualified for Hematopoietic Stem Cell Transplantation Due to Hematopoietic and Lymphoid Malignancies—A Pilot Study Description. Cardiooncology 2024, 10, 9. [Google Scholar] [CrossRef]
- Quagliariello, V.; Passariello, M.; Bisceglia, I.; Paccone, A.; Inno, A.; Maurea, C.; Rapuano Lembo, R.; Manna, L.; Iovine, M.; Canale, M.L.; et al. Combinatorial Immune Checkpoint Blockade Increases Myocardial Expression of NLRP-3 and Secretion of H-FABP, NT-Pro-BNP, Interleukin-1β and Interleukin-6: Biochemical Implications in Cardio-Immuno-Oncology. Front. Cardiovasc. Med. 2024, 11, 1232269. [Google Scholar] [CrossRef]
- Ananthan, K.; Lyon, A.R. The Role of Biomarkers in Cardio-Oncology. J. Cardiovasc. Transl. Res. 2020, 13, 431–450. [Google Scholar] [CrossRef]
- Ranganathan, K.; Sivasankar, V. MicroRNAs—Biology and Clinical Applications. J. Oral. Maxillofac. Pathol. 2014, 18, 229–234. [Google Scholar] [CrossRef]
- da Silva, D.C.P.; Carneiro, F.D.; de Almeida, K.C.; Fernandes-Santos, C. Role of MiRNAs on the Pathophysiology of Cardiovascular Diseases. Arq. Bras. Cardiol. 2018, 111, 738–746. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Zhou, S.S.; Jin, J.P.; Wang, J.Q.; Zhang, Z.G.; Freedman, J.H.; Zheng, Y.; Cai, L. MiRNAS in Cardiovascular Diseases: Potential Biomarkers, Therapeutic Targets and Challenges. Acta Pharmacol. Sin. 2018, 39, 1073–1084. [Google Scholar] [CrossRef]
- Sessa, F.; Salerno, M.; Esposito, M.; Cocimano, G.; Pomara, C. MiRNA Dysregulation in Cardiovascular Diseases: Current Opinion and Future Perspectives. Int. J. Mol. Sci. 2023, 24, 5192. [Google Scholar] [CrossRef]
- Condrat, C.E.; Thompson, D.C.; Barbu, M.G.; Bugnar, O.L.; Boboc, A.; Cretoiu, D.; Suciu, N.; Cretoiu, S.M.; Voinea, S.C. MiRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Searles, C.D. MicroRNAs and Cardiovascular Disease Risk. Curr. Cardiol. Rep. 2024, 26, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Mir, R.; Elfaki, I.; Khullar, N.; Waza, A.A.; Jha, C.; Mir, M.M.; Nisa, S.; Mohammad, B.; Mir, T.A.; Maqbool, M.; et al. Role of Selected MiRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J. Cardiovasc. Dev. Dis. 2021, 8, 22. [Google Scholar] [CrossRef]
- Pizzamiglio, S.; Ciniselli, C.M.; de Azambuja, E.; Agbor-tarh, D.; Moreno-Aspitia, A.; Suter, T.M.; Trama, A.; De Santis, M.C.; De Cecco, L.; Iorio, M.V.; et al. Circulating MicroRNAs and Therapy-Associated Cardiac Events in HER2-Positive Breast Cancer Patients: An Exploratory Analysis from NeoALTTO. Breast Cancer Res. Treat. 2024, 206, 285–294. [Google Scholar] [CrossRef]
- Bao, M.H.; Feng, X.; Zhang, Y.W.; Lou, X.Y.; Cheng, Y.U.; Zhou, H.H. Let-7 in Cardiovascular Diseases, Heart Development and Cardiovascular Differentiation from Stem Cells. Int. J. Mol. Sci. 2013, 14, 23086–23102. [Google Scholar] [CrossRef]
- Zhou, X.; Sun, F.; Luo, S.; Zhao, W.; Yang, T.; Zhang, G.; Gao, M.; Lu, R.; Shu, Y.; Mu, W.; et al. Let-7a Is an Antihypertrophic Regulator in the Heart via Targeting Calmodulin. Int. J. Biol. Sci. 2017, 13, 22–31. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.X.; Li, Y.L.; Zhang, C.C.; Zhou, C.Y.; Wang, L.; Xia, Y.L.; Du, J.; Li, H.H. MicroRNA Let-7i Negatively Regulates Cardiac Inflammation and Fibrosis. Hypertension 2015, 66, 776–785. [Google Scholar] [CrossRef]
- Hou, W.; Tian, Q.; Steuerwald, N.M.; Schrum, L.W.; Bonkovsky, H.L. The Let-7 MicroRNA Enhances Heme Oxygenase-1 by Suppressing Bach1 and Attenuates Oxidant Injury in Human Hepatocytes. Biochim. Biophys. Acta 2012, 1819, 1113–1122. [Google Scholar] [CrossRef]
- Kuppusamy, K.T.; Jones, D.C.; Sperber, H.; Madan, A.; Fischer, K.A.; Rodriguez, M.L.; Pabon, L.; Zhu, W.Z.; Tulloch, N.L.; Yang, X.; et al. Let-7 Family of MicroRNA Is Required for Maturation and Adult-like Metabolism in Stem Cell-Derived Cardiomyocytes. Proc. Natl. Acad. Sci. USA 2015, 112, E2785–E2794. [Google Scholar] [CrossRef]
- Kuang, Z.; Wu, J.; Tan, Y.; Zhu, G.; Li, J.; Wu, M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023, 13, 568. [Google Scholar] [CrossRef]
- Mester-Tonczar, J.; Einzinger, P.; Hasimbegovic, E.; Kastner, N.; Schweiger, V.; Spannbauer, A.; Han, E.; Müller-Zlabinger, K.; Traxler-Weidenauer, D.; Bergler-Klein, J.; et al. A CircRNA-MiRNA-MRNA Network for Exploring Doxorubicin- and Myocet-Induced Cardiotoxicity in a Translational Porcine Model. Biomolecules 2023, 13, 1711. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yingjie, X.U.; Deng, Z.; Wang, Y.; Zheng, Y.; Jiang, W.; Jiang, L. MicroRNA Expression Profiling Involved in Doxorubicin-Induced Cardiotoxicity Using High-Throughput Deep-Sequencing Analysis. Oncol. Lett. 2021, 22, 560. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Peng, C.; Wang, W.; Jin, H.; Tang, Q.; Wei, X. Let-7 g Is Involved in Doxorubicin Induced Myocardial Injury. Environ. Toxicol. Pharmacol. 2012, 33, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.D.; Tosatti, J.A.G.; Simões, R.; Luizon, M.R.; Gomes, K.B.; Alves, M.T. MicroRNAs Associated to Anthracycline-Induced Cardiotoxicity in Women with Breast Cancer: A Systematic Review and Pathway Analysis. Biomed. Pharmacother. 2020, 131, 110709. [Google Scholar] [CrossRef]
- Safa, A.; Bahroudi, Z.; Shoorei, H.; Majidpoor, J.; Abak, A.; Taheri, M.; Ghafouri-Fard, S. MiR-1: A Comprehensive Review of Its Role in Normal Development and Diverse Disorders. Biomed. Pharmacother. 2020, 132, 110903. [Google Scholar] [CrossRef]
- Kim, G.H. MicroRNA Regulation of Cardiac Conduction and Arrhythmias. Transl. Res. 2013, 161, 381–392. [Google Scholar] [CrossRef]
- Sayed, D.; Hong, C.; Chen, I.Y.; Lypowy, J.; Abdellatif, M. MicroRNAs Play an Essential Role in the Development of Cardiac Hypertrophy. Circ. Res. 2007, 100, 416–424. [Google Scholar] [CrossRef]
- Rigaud, V.O.C.; Ferreira, L.R.P.; Ayub-Ferreira, S.M.; Ávila, M.S.; Brandão, S.M.G.; Cruz, F.D.; Santos, M.H.H.; Cruz, C.B.B.V.; Alves, M.S.L.; Issa, V.S.; et al. Circulating MiR-1 as a Potential Biomarker of Doxorubicin-Induced Cardiotoxicity in Breast Cancer Patients. Oncotarget 2017, 8, 6994–7002. [Google Scholar] [CrossRef]
- Abkhooie, L.; Sarabi, M.M.; Kahroba, H.; Eyvazi, S.; Montazersaheb, S.; Tarhriz, V.; Hejazi, M.S. Potential Roles of MyomiRs in Cardiac Development and Related Diseases. Curr. Cardiol. Rev. 2021, 17, e010621188335. [Google Scholar] [CrossRef]
- Shan, Z.X.; Lin, Q.X.; Deng, C.Y.; Zhu, J.N.; Mai, L.P.; Liu, J.L.; Fu, Y.H.; Liu, X.Y.; Li, Y.X.; Zhang, Y.Y.; et al. MiR-1/MiR-206 Regulate Hsp60 Expression Contributing to Glucose-Mediated Apoptosis in Cardiomyocytes. FEBS Lett. 2010, 584, 3592–3600. [Google Scholar] [CrossRef]
- Lee, S. Cardiovascular Disease and MiRNAs: Possible Oxidative Stress-Regulating Roles of MiRNAs. Antioxidants 2024, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yang, D.; Xie, P.; Ren, G.; Sun, G.; Zeng, X.; Sun, X. MiR-106b and MiR-15b Modulate Apoptosis and Angiogenesis in Myocardial Infarction. Cell. Physiol. Biochem. 2012, 29, 851–862. [Google Scholar] [CrossRef] [PubMed]
- Lax, A.; Soler, F.; Fernandez del Palacio, M.J.; Pascual-Oliver, S.; Ballester, M.R.; Fuster, J.J.; Pascual-Figal, D.; del Carmen Asensio-Lopez, M. Silencing of MicroRNA-106b-5p Prevents Doxorubicin-Mediated Cardiotoxicity through Modulation of the PR55α/YY1/SST2 Signaling Axis. Mol. Ther. Nucleic Acids 2023, 32, 704–720. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.; Dai, C.; He, Y.; Shi, J.; Xu, C. Effects of MiR-106b-3p on Cell Proliferation and Epithelial-mesenchymal Transition, and Targeting of ZNRF3 in Esophageal Squamous Cell Carcinoma. Int. J. Mol. Med. 2019, 43, 1817–1829. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chen, Q.; Lu, Y.; Wei, F.; Chen, C.; Tang, G.; Huang, H. MiR-106b-5p Regulates the Migration and Invasion of Colorectal Cancer Cells by Targeting FAT4. Biosci. Rep. 2020, 40, BSR20200098. [Google Scholar] [CrossRef]
- Gong, L.; Zhu, L.; Yang, T. Fendrr Involves in the Pathogenesis of Cardiac Fibrosis via Regulating MiR-106b/SMAD3 Axis. Biochem. Biophys. Res. Commun. 2020, 524, 169–177. [Google Scholar] [CrossRef]
- Raso, A.; Dirkx, E.; Sampaio-Pinto, V.; el Azzouzi, H.; Cubero, R.J.; Sorensen, D.W.; Ottaviani, L.; Olieslagers, S.; Huibers, M.M.; de Weger, R.; et al. A MicroRNA Program Regulates the Balance between Cardiomyocyte Hyperplasia and Hypertrophy and Stimulates Cardiac Regeneration. Nat. Commun. 2021, 12, 4808. [Google Scholar] [CrossRef]
- Bakhashab, S.; O’Neill, J.; Barber, R.; Arden, C.; Weaver, J.U. Upregulation of Anti-Angiogenic MiR-106b-3p Correlates Negatively with IGF-1 and Vascular Health Parameters in a Model of Subclinical Cardiovascular Disease: Study with Metformin Therapy. Biomedicines 2024, 12, 171. [Google Scholar] [CrossRef]
- Guan, X.; Wang, L.; Liu, Z.; Guo, X.; Jiang, Y.; Lu, Y.; Peng, Y.; Liu, T.; Yang, B.; Shan, H.; et al. MiR-106a Promotes Cardiac Hypertrophy by Targeting Mitofusin 2. J. Mol. Cell. Cardiol. 2016, 99, 207–217. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Y.; Zhou, K.; Kao, G.; Xiao, J. MicroRNA-126 and VEGF Enhance the Function of Endothelial Progenitor Cells in Acute Myocardial Infarction. Exp. Ther. Med. 2022, 23, 142. [Google Scholar] [CrossRef]
- Harris, T.A.; Yamakuchi, M.; Ferlito, M.; Mendell, J.T.; Lowenstein, C.J. MicroRNA-126 Regulates Endothelial Expression of Vascular Cell Adhesion Molecule 1. Proc. Natl. Acad. Sci. USA 2008, 105, 1516–1521. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Liu, J.; Tian, X.; Jiang, P.; Cheng, Z.; Meng, C. MircoRNA-126-5p Inhibits Apoptosis of Endothelial Cell in Vascular Arterial Walls via NF-ΚB/PI3K/AKT/MTOR Signaling Pathway in Atherosclerosis. J. Mol. Histol. 2022, 53, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Coulson, D.J.; Bakhashab, S.; Latief, J.S.; Weaver, J.U. MiR-126, IL-7, CXCR1/2 Receptors, Inflammation and Circulating Endothelial Progenitor Cells: The Study on Targets for Treatment Pathways in a Model of Subclinical Cardiovascular Disease (Type 1 Diabetes Mellitus). J. Transl. Med. 2021, 19, 140. [Google Scholar] [CrossRef] [PubMed]
- Minjares, M.; Wu, W.; Wang, J.M. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023, 12, 1341. [Google Scholar] [CrossRef]
- Gryshkova, V.; Lushbough, I.; Palmer, J.; Burrier, R.; Delaunois, A.; Donley, E.; Valentin, J.P. MicroRNAs Signatures as Potential Biomarkers of Structural Cardiotoxicity in Human-Induced Pluripotent Stem-Cell Derived Cardiomyocytes. Arch. Toxicol. 2022, 96, 2033–2047. [Google Scholar] [CrossRef]
- Frères, P.; Bouznad, N.; Servais, L.; Josse, C.; Wenric, S.; Poncin, A.; Thiry, J.; Moonen, M.; Oury, C.; Lancellotti, P.; et al. Variations of Circulating Cardiac Biomarkers during and after Anthracycline-Containing Chemotherapy in Breast Cancer Patients. BMC Cancer 2018, 18, 102. [Google Scholar] [CrossRef]
- Qin, X.; Chang, F.; Wang, Z.; Jiang, W. Correlation of Circulating Pro-Angiogenic MiRNAs with Cardiotoxicity Induced by Epirubicin/Cyclophosphamide Followed by Docetaxel in Patients with Breast Cancer. Cancer Biomark. 2018, 23, 473–484. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, X.; Dong, H.; Ke, S.; Zheng, W.-H. Let-7f and MiRNA-126 Correlate with Reduced Cardiotoxicity Risk in Triple-Negative Breast Cancer Patients Who Underwent Neoadjuvant Chemotherapy. Int. J. Clin. Exp. Pathol. 2018, 11, 4987–4995. [Google Scholar]
- Zhang, H.; Zhang, X.; Zhang, J. MiR-129-5p Inhibits Autophagy and Apoptosis of H9c2 Cells Induced by Hydrogen Peroxide via the PI3K/AKT/MTOR Signaling Pathway by Targeting ATG14. Biochem. Biophys. Res. Commun. 2018, 506, 272–277. [Google Scholar] [CrossRef]
- Ye, H.; Xu, G.; Zhang, D.; Wang, R. The Protective Effects of the MiR-129-5p/Keap-1/Nrf2 Axis on Ang II-Induced Cardiomyocyte Hypertrophy. Ann. Transl. Med. 2021, 9, 154. [Google Scholar] [CrossRef]
- Akin, M.N.; Kasap, B.; Pirincci, F.; Sezgin, B.; Ozdemir, C.; Demirtas Bilgic, A.; Aftabi, Y.; Gokdogan Edgunlu, T. Changes of MiR-139-5p, TGFB1, and COL1A1 in the Placental Tissue of Cases with Gestational Diabetes Mellitus. Gene 2024, 897, 148061. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Song, T.; Wang, W.; Wang, H.; Zhang, Z. MiR-129-5p Alleviates Neuropathic Pain Through Regulating HMGB1 Expression in CCI Rat Models. J. Mol. Neurosci. 2020, 70, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Zhou, J.; Liu, H.; Mei, S.; Wang, K.; Ming, H. Depletion of LncRNA MEG3 Ameliorates Imatinib-Induced Injury of Cardiomyocytes via Regulating MiR-129-5p/HMGB1 Axis. Anal. Cell. Pathol. 2023, 2023, 1108280. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zhang, W.; Ji, J.; Ma, J.; Cheng, H.; Qin, M.; Wei, D.; Ren, L. LncRNA Miat Knockdown Protects against Pirarubicin-Induced Cardiotoxicity by Targeting MiRNA-129-1-3p. Environ. Toxicol. 2023, 38, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- KR, M.; WY, Q. Roles of the Canonical MyomiRs MiR-1, -133 and -206 in Cell Development and Disease. World J. Biol. Chem. 2015, 6, 162. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, J.; Tuazon, J.P.; Borlongan, C.V.; Yu, G. MicroRNA-133a and Myocardial Infarction. Cell Transplant. 2019, 28, 831–838. [Google Scholar] [CrossRef]
- Kenner, T.; Einspieler, C.; Holzer, A. Risk, Cost-Effectiveness and Profit: Problems in Cardiovascular Research and Practice. Theor. Med. 1986, 7, 283–297. [Google Scholar] [CrossRef]
- Alves, M.T.; da Conceição, I.M.C.A.; de Oliveira, A.N.; Oliveira, H.H.M.; Soares, C.E.; de Paula Sabino, A.; Silva, L.M.; Simões, R.; Luizon, M.R.; Gomes, K.B. MicroRNA MiR-133a as a Biomarker for Doxorubicin-Induced Cardiotoxicity in Women with Breast Cancer: A Signaling Pathway Investigation. Cardiovasc. Toxicol. 2022, 22, 655–662. [Google Scholar] [CrossRef]
- Yang, S.; Li, H.; Chen, L. MicroRNA-140 Attenuates Myocardial Ischemia-Reperfusion Injury through Suppressing Mitochondria-Mediated Apoptosis by Targeting YES1. J. Cell. Biochem. 2019, 120, 3813–3821. [Google Scholar] [CrossRef]
- Tian, M.; Zhou, Y.; Guo, Y.; Xia, Q.; Wang, Z.; Zheng, X.; Shen, J.; Guo, J.; Duan, S.; Wang, L. MicroRNAs in Adipose Tissue Fibrosis: Mechanisms and Therapeutic Potential. Genes. Dis. 2024, 101287. [Google Scholar] [CrossRef]
- Al-Modawi, R.N.; Brinchmann, J.E.; Karlsen, T.A. Multi-Pathway Protective Effects of MicroRNAs on Human Chondrocytes in an In Vitro Model of Osteoarthritis. Mol. Ther. Nucleic Acids 2019, 17, 776–790. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Q.; Ren, K.; Liu, S.H.; Li, W.M.; Huang, C.J.; Yang, X.H. MicroRNA-140-5p Aggravates Hypertension and Oxidative Stress of Atherosclerosis via Targeting Nrf2 and Sirt2. Int. J. Mol. Med. 2019, 43, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Qi, Y.; Xu, L.; Tao, X.; Han, X.; Yin, L.; Peng, J. MicroRNA-140-5p Aggravates Doxorubicin-Induced Cardiotoxicity by Promoting Myocardial Oxidative Stress via Targeting Nrf2 and Sirt2. Redox Biol. 2018, 15, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tao, X.; Qi, Y.; Xu, L.; Yin, L.; Peng, J. Protective Effect of Dioscin against Doxorubicin-Induced Cardiotoxicity via Adjusting MicroRNA-140-5p-Mediated Myocardial Oxidative Stress. Redox Biol. 2018, 16, 189–198. [Google Scholar] [CrossRef]
- Chen, X.Y.; Huang, W.L.; Peng, X.P.; Lv, Y.N.; Li, J.H.; Xiong, J.P. MiR-140-5p Mediates Bevacizumab-Induced Cytotoxicity to Cardiomyocytes by Targeting the VEGFA/14-3-3γ Signal Pathway. Toxicol. Res. 2019, 8, 875–884. [Google Scholar] [CrossRef]
- Wang, Q.S.; Zhou, J.; Li, X. LncRNA UCA1 Protects Cardiomyocytes against Hypoxia/Reoxygenation Induced Apoptosis through Inhibiting MiR-143/MDM2/P53 Axis. Genomics 2020, 112, 574–580. [Google Scholar] [CrossRef]
- Chandy, M.; Ishida, M.; Shikatani, E.A.; El-Mounayri, O.; Park, L.C.; Afroze, T.; Wang, T.; Marsden, P.A.; Husain, M. C-Myb Regulates Transcriptional Activation of MiR-143/145 in Vascular Smooth Muscle Cells. PLoS ONE 2018, 13, e0202778. [Google Scholar] [CrossRef]
- Blumensatt, M.; Wronkowitz, N.; Wiza, C.; Cramer, A.; Mueller, H.; Rabelink, M.J.; Hoeben, R.C.; Eckel, J.; Sell, H.; Ouwens, D.M. Adipocyte-Derived Factors Impair Insulin Signaling in Differentiated Human Vascular Smooth Muscle Cells via the Upregulation of MiR-143. Biochim. Biophys. Acta 2014, 1842, 275–283. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Xue, K.; Zhang, J.; Wang, C.; Zhang, Q.; Chen, X.; Gao, C.; Yu, X.; Sun, L. MicroRNA-143-3p Promotes Human Cardiac Fibrosis via Targeting Sprouty3 after Myocardial Infarction. J. Mol. Cell. Cardiol. 2019, 129, 281–292. [Google Scholar] [CrossRef]
- González-López, P.; Ares-Carral, C.; López-Pastor, A.R.; Infante-Menéndez, J.; González Illaness, T.; Vega de Ceniga, M.; Esparza, L.; Beneit, N.; Martín-Ventura, J.L.; Escribano, Ó.; et al. Implication of MiR-155-5p and MiR-143-3p in the Vascular Insulin Resistance and Instability of Human and Experimental Atherosclerotic Plaque. Int. J. Mol. Sci. 2022, 23, 10253. [Google Scholar] [CrossRef]
- Zhang, P.; Du, J.; Wang, L.; Niu, L.; Zhao, Y.; Tang, G.; Jiang, Y.; Shuai, S.; Bai, L.; Li, X.; et al. MicroRNA-143a-3p Modulates Preadipocyte Proliferation and Differentiation by Targeting MAPK7. Biomed. Pharmacother. 2018, 108, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Ding, F.; Wang, X.; Huang, Q.; Zhang, L.; Bi, C.; Hua, B.; Yuan, Y.; Han, Z.; Jin, M.; et al. By Targeting Atg7 MicroRNA-143 Mediates Oxidative Stress-Induced Autophagy of c-Kit+ Mouse Cardiac Progenitor Cells. EBioMedicine 2018, 32, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Vacante, F.; Denby, L.; Sluimer, J.C.; Baker, A.H. The Function of MiR-143, MiR-145 and the MiR-143 Host Gene in Cardiovascular Development and Disease. Vascul. Pharmacol. 2019, 112, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yang, Y.; Hu, L.; Meng, X.; Guo, X.; Lei, M.; Ren, Z.; Chen, Q.; Ouyang, C.; Yang, X. Effects of MiR-143 Regulation on Cardiomyocytes Apoptosis in Doxorubicin Cardiotoxicity Based on Integrated Bioinformatics Analysis. Toxicol. Vitr. 2023, 93, 105662. [Google Scholar] [CrossRef]
- Li, X.Q.; Liu, Y.K.; Yi, J.; Dong, J.S.; Zhang, P.P.; Wan, L.; Li, K. MicroRNA-143 Increases Oxidative Stress and Myocardial Cell Apoptosis in a Mouse Model of Doxorubicin-Induced Cardiac Toxicity. Med. Sci. Monit. 2020, 26, e920394. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, Y.; Zhan, Y.; Zou, P.; Cai, X.; Chen, Y.; Shao, L. Circ-0006332 Stimulates Cardiomyocyte Pyroptosis via the MiR-143/TLR2 Axis to Promote Doxorubicin-Induced Cardiac Damage. Epigenetics 2024, 19, 2380145. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, X.; Yang, J. MiR-194-5p Protects against Myocardial Ischemia/Reperfusion Injury via MAPK1/PTEN/AKT Pathway. Ann. Transl. Med. 2021, 9, 654. [Google Scholar] [CrossRef]
- Wang, J.; An, Y.; Lin, J.; Tang, G. MicroRNA-194 Inhibits Isoproterenol-Induced Chronic Cardiac Hypertrophy via Targeting CnA/NFATc2 Signaling in H9c2 Cells. Ann. Transl. Med. 2022, 10, 780. [Google Scholar] [CrossRef]
- Fa, H.; Xiao, D.; Chang, W.; Ding, L.; Yang, L.; Wang, Y.; Wang, M.; Wang, J. MicroRNA-194-5p Attenuates Doxorubicin-Induced Cardiomyocyte Apoptosis and Endoplasmic Reticulum Stress by Targeting P21-Activated Kinase 2. Front. Cardiovasc. Med. 2022, 9, 815916. [Google Scholar] [CrossRef]
- Rane, S.; He, M.; Sayed, D.; Vashistha, H.; Malhotra, A.; Sadoshima, J.; Vatner, D.E.; Vatner, S.F.; Abdellatif, M. Downregulation of MiR-199a Derepresses Hypoxia-Inducible Factor-1alpha and Sirtuin 1 and Recapitulates Hypoxia Preconditioning in Cardiac Myocytes. Circ. Res. 2009, 104, 879–886. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Hou, N.; Song, Y.; An, X.; Zhang, Y.; Yang, X.; Wang, J. MiR-199-Sponge Transgenic Mice Develop Physiological Cardiac Hypertrophy. Cardiovasc. Res. 2016, 110, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Song, Y.; Liu, L.; Hou, N.; An, X.; Zhan, D.; Li, Y.; Zhou, L.; Li, P.; Yu, L.; et al. MiR-199a Impairs Autophagy and Induces Cardiac Hypertrophy through MTOR Activation. Cell Death Differ. 2017, 24, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Im, E. Regulation of MiRNAs by Natural Antioxidants in Cardiovascular Diseases: Focus on SIRT1 and ENOS. Antioxidants 2021, 10, 377. [Google Scholar] [CrossRef]
- Verjans, R.; Derks, W.J.A.; Korn, K.; Sönnichsen, B.; van Leeuwen, R.E.W.; Schroen, B.; van Bilsen, M.; Heymans, S. Functional Screening Identifies MicroRNAs as Multi-Cellular Regulators of Heart Failure. Sci. Rep. 2019, 9, 6055. [Google Scholar] [CrossRef]
- Wang, W.; Dong, L.; Lv, H.; An, Y.; Zhang, C.; Zheng, Z.; Guo, Y.; He, L.; Wang, L.; Wang, J.; et al. Downregulating MiRNA-199a-5p Exacerbates Fluorouracil-Induced Cardiotoxicity by Activating the ATF6 Signaling Pathway. Aging 2024, 16, 5916–5928. [Google Scholar] [CrossRef]
- Brown, C.; Mantzaris, M.; Nicolaou, E.; Karanasiou, G.; Papageorgiou, E.; Curigliano, G.; Cardinale, D.; Filippatos, G.; Memos, N.; Naka, K.K.; et al. A Systematic Review of MiRNAs as Biomarkers for Chemotherapy-Induced Cardiotoxicity in Breast Cancer Patients Reveals Potentially Clinically Informative Panels as Well as Key Challenges in MiRNA Research. Cardiooncology 2022, 8, 16. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Sun, X.; Shen, X.; Wang, H.; Dong, C.; Lu, B.; Yan, Y.; Lu, Y.; Fasae, M.B.; et al. Downregulation of MiR-200a Protects Cardiomyocyte against Apoptosis. Biomed. Pharmacother. 2020, 123, 109303. [Google Scholar] [CrossRef]
- Saha, S. Role of MicroRNA in Oxidative Stress. Stresses 2024, 4, 269–281. [Google Scholar] [CrossRef]
- Gregory, P.A.; Bracken, C.P.; Smith, E.; Bert, A.G.; Wright, J.A.; Roslan, S.; Morris, M.; Wyatt, L.; Farshid, G.; Lim, Y.Y.; et al. An Autocrine TGF-Beta/ZEB/MiR-200 Signaling Network Regulates Establishment and Maintenance of Epithelial-Mesenchymal Transition. Mol. Biol. Cell 2011, 22, 1686–1698. [Google Scholar] [CrossRef]
- Ma, Y.; Pan, C.; Tang, X.; Zhang, M.; Shi, H.; Wang, T.; Zhang, Y. MicroRNA-200a Represses Myocardial Infarction-Related Cell Death and Inflammation by Targeting the Keap1/Nrf2 and β-Catenin Pathways. Hell. J. Cardiol. 2021, 62, 139–148. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, J. Taxifolin Protects against Doxorubicin-Induced Cardiotoxicity and Ferroptosis by Adjusting MicroRNA-200a-Mediated Nrf2 Signaling Pathway. Heliyon 2023, 9, e22011. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, H.; Wang, Z.; Hu, Z.; Li, L. MiR-200a Attenuated Doxorubicin-Induced Cardiotoxicity through Upregulation of Nrf2 in Mice. Oxid. Med. Cell. Longev. 2019, 2019, 1512326. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Pan, H.; Tang, Y.; Rong, J.; Zheng, Z. MiR-200a-3p Aggravates DOX-Induced Cardiotoxicity by Targeting PEG3 Through SIRT1/NF-ΚB Signal Pathway. Cardiovasc. Toxicol. 2021, 21, 302–313. [Google Scholar] [CrossRef]
- Huang, X.H.; Li, J.L.; Li, X.Y.; Wang, S.X.; Jiao, Z.H.; Li, S.Q.; Liu, J.; Ding, J. MiR-208a in Cardiac Hypertrophy and Remodeling. Front. Cardiovasc. Med. 2021, 8, 773314. [Google Scholar] [CrossRef]
- Grueter, C.E.; Van Rooij, E.; Johnson, B.A.; Deleon, S.M.; Sutherland, L.B.; Qi, X.; Gautron, L.; Elmquist, J.K.; Bassel-Duby, R.; Olson, E.N. A Cardiac MicroRNA Governs Systemic Energy Homeostasis by Regulation of MED13. Cell 2012, 149, 671–683. [Google Scholar] [CrossRef]
- Zhang, Y.; Yuan, B.; Xu, Y.; Zhou, N.; Zhang, R.; Lu, L.; Feng, Z. MiR-208b/MiR-21 Promotes the Progression of Cardiac Fibrosis Through the Activation of the TGF-Β1/Smad-3 Signaling Pathway: An in Vitro and in Vivo Study. Front. Cardiovasc. Med. 2022, 9, 924629. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Sun, X. The Functions of MicroRNA-208 in the Heart. Diabetes Res. Clin. Pract. 2020, 160, 108004. [Google Scholar] [CrossRef]
- Nishimura, Y.; Kondo, C.; Morikawa, Y.; Tonomura, Y.; Torii, M.; Yamate, J.; Uehara, T. Plasma MiR-208 as a Useful Biomarker for Drug-Induced Cardiotoxicity in Rats. J. Appl. Toxicol. 2015, 35, 173–180. [Google Scholar] [CrossRef]
- Dai, B.; Wang, F.; Nie, X.; Du, H.; Zhao, Y.; Yin, Z.; Li, H.; Fan, J.; Wen, Z.; Wang, D.W.; et al. The Cell Type-Specific Functions of MiR-21 in Cardiovascular Diseases. Front. Genet. 2020, 11, 563166. [Google Scholar] [CrossRef]
- Ando, Y.; Yang, G.X.; Kenny, T.P.; Kawata, K.; Zhang, W.; Huang, W.; Leung, P.S.C.; Lian, Z.X.; Okazaki, K.; Ansari, A.A.; et al. Overexpression of MicroRNA-21 Is Associated with Elevated pro-Inflammatory Cytokines in Dominant-Negative TGF-β Receptor Type II Mouse. J. Autoimmun. 2013, 41, 111–119. [Google Scholar] [CrossRef]
- Sengar, A.S.; Kumar, M.; Rai, C.; Chakraborti, S.; Kumar, D.; Kumar, P.; Mukherjee, S.; Mondal, K.; Stewart, A.; Maity, B. RGS6 Drives Cardiomyocyte Death Following Nucleolar Stress by Suppressing Nucleolin/MiRNA-21. J. Transl. Med. 2024, 22, 204. [Google Scholar] [CrossRef] [PubMed]
- Abdel Hamid, O.I.; Ibrahim, E.M.; Hussien, M.H.; ElKhateeb, S.A. The Molecular Mechanisms of Lithium-Induced Cardiotoxicity in Male Rats and Its Amelioration by N-Acetyl Cysteine. Hum. Exp. Toxicol. 2020, 39, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, C.; Gioffré, S.; Achilli, F.; Colombo, G.I.; D’Alessandra, Y. Role of MicroRNAs in Doxorubicin-Induced Cardiotoxicity: An Overview of Preclinical Models and Cancer Patients. Heart Fail. Rev. 2018, 23, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Jafari-Nozad, A.M.; Rostami, N.; Esmaeili, M.; Vahdati, H.; Hosseini, S.; Farkhondeh, T.; Samarghandian, S. A Review of the Dual Role of MicroRNA-21 in Cardiovascular Diseases: Risk Factor or a Potential Therapeutic Target. Curr. Mol. Pharmacol. 2024, 17, e18761429287057. [Google Scholar] [CrossRef]
- Wu, T.Y.; Leng, Q.; Tian, L.Q. The MicroRNA-210/Casp8ap2 Axis Alleviates Hypoxia-Induced Myocardial Injury by Regulating Apoptosis and Autophagy. Cytogenet. Genome Res. 2021, 161, 132–142. [Google Scholar] [CrossRef]
- Li, K.; Pan, J.; Li, Q.; Li, S.; Li, K.; Cheng, Y.; Chai, L.; Li, C.; Li, J.; Fu, Z.; et al. The MicroRNA-210/Casp8ap2 Pathway Alleviates Hypoxia-Induced Injury in Myocardial Cells by Regulating Apoptosis and Autophagy. Heart Surg. Forum 2020, 23, E797–E802. [Google Scholar] [CrossRef]
- Ivan, M.; Huang, X. MiR-210: Fine-Tuning the Hypoxic Response. Adv. Exp. Med. Biol. 2014, 772, 205–227. [Google Scholar] [CrossRef]
- Zhu, J.N.; Fu, Y.H.; Hu, Z.Q.; Li, W.Y.; Tang, C.M.; Fei, H.W.; Yang, H.; Lin, Q.X.; Gou, D.M.; Wu, S.L.; et al. Activation of MiR-34a-5p/Sirt1/P66shc Pathway Contributes to Doxorubicin-Induced Cardiotoxicity. Sci. Rep. 2017, 7, 11879. [Google Scholar] [CrossRef]
- Zhao, M.; Qi, Q.; Liu, S.; Huang, R.; Shen, J.; Zhu, Y.; Chai, J.; Zheng, H.; Wu, H.; Liu, H. MicroRNA-34a: A Novel Therapeutic Target in Fibrosis. Front. Physiol. 2022, 13, 895242. [Google Scholar] [CrossRef]
- Raucci, A.; Macrì, F.; Castiglione, S.; Badi, I.; Vinci, M.C.; Zuccolo, E. MicroRNA-34a: The Bad Guy in Age-Related Vascular Diseases. Cell. Mol. Life Sci. 2021, 78, 7355–7378. [Google Scholar] [CrossRef]
- Zhong, Z.; Gao, Y.; Zhou, J.; Wang, F.; Zhang, P.; Hu, S.; Wu, H.; Lou, H.; Chi, J.; Lin, H.; et al. Inhibiting Mir-34a-5p Regulates Doxorubicin-Induced Autophagy Disorder and Alleviates Myocardial Pyroptosis by Targeting Sirt3-AMPK Pathway. Biomed. Pharmacother. 2023, 168, 115654. [Google Scholar] [CrossRef] [PubMed]
- Piegari, E.; Russo, R.; Cappetta, D.; Esposito, G.; Urbanek, K.; Dell’Aversana, C.; Altucci, L.; Berrino, L.; Rossi, F.; De Angelis, A. MicroRNA-34a Regulates Doxorubicin-Induced Cardiotoxicity in Rat. Oncotarget 2016, 7, 62312. [Google Scholar] [CrossRef] [PubMed]
- Desai, V.G.; Vijay, V.; Lee, T.; Han, T.; Moland, C.L.; Phanavanh, B.; Herman, E.H.; Stine, K.; Fuscoe, J.C. MicroRNA-34a-5p as a Promising Early Circulating Preclinical Biomarker of Doxorubicin-Induced Chronic Cardiotoxicity. J. Appl. Toxicol. 2022, 42, 1477–1490. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, R.; Gómez-Ferrer, M.; Reinal, I.; Buigues, M.; Villanueva-Bádenas, E.; Ontoria-Oviedo, I.; Hernándiz, A.; González-King, H.; Peiró-Molina, E.; Dorronsoro, A.; et al. MiR-4732-3p in Extracellular Vesicles From Mesenchymal Stromal Cells Is Cardioprotective During Myocardial Ischemia. Front. Cell Dev. Biol. 2021, 9, 734143. [Google Scholar] [CrossRef]
- Reinal, I.; Ontoria-Oviedo, I.; Selva, M.; Casini, M.; Peiró-Molina, E.; Fambuena-Santos, C.; Climent, A.M.; Balaguer, J.; Cañete, A.; Mora, J.; et al. Modeling Cardiotoxicity in Pediatric Oncology Patients Using Patient-Specific IPSC-Derived Cardiomyocytes Reveals Downregulation of Cardioprotective MicroRNAs. Antioxidants 2023, 12, 1378. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, R.; Reinal, I.; Peiró-Molina, E.; Buigues, M.; Tejedor, S.; Hernándiz, A.; Selva, M.; Hervás, D.; Cañada, A.J.; Dorronsoro, A.; et al. MicroRNA-4732-3p Is Dysregulated in Breast Cancer Patients with Cardiotoxicity, and Its Therapeutic Delivery Protects the Heart from Doxorubicin-Induced Oxidative Stress in Rats. Antioxidants 2022, 11, 1955. [Google Scholar] [CrossRef]
- Wu, P.; Kong, L.; Li, J. MicroRNA-494-3p Protects Rat Cardiomyocytes against Septic Shock via PTEN. Exp. Ther. Med. 2019, 17, 1706–1716. [Google Scholar] [CrossRef]
- Tang, X.; Leng, M.; Tang, W.; Cai, Z.; Yang, L.; Wang, L.; Zhang, Y.; Guo, J. The Roles of Exosome-Derived MicroRNAs in Cardiac Fibrosis. Molecules 2024, 29, 1199. [Google Scholar] [CrossRef]
- Tang, Z.P.; Zhao, W.; Du, J.K.; Ni, X.; Zhu, X.Y.; Lu, J.Q. MiR-494 Contributes to Estrogen Protection of Cardiomyocytes Against Oxidative Stress via Targeting (NF-ΚB) Repressing Factor. Front. Endocrinol. 2018, 9, 215. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Yuan, J.; Gao, W.; Zhong, X.; Yao, K.; Lin, L.; Ge, J. Dendritic Cell-derived Exosomal MiR-494-3p Promotes Angiogenesis Following Myocardial Infarction. Int. J. Mol. Med. 2021, 47, 315–325. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, Y.; Wang, F.; Qin, M.; Ma, J.; Ji, J.; Wei, D.; Ren, L. Astaxanthin Protects against Pirarubicin-Induced H9c2 Cardiomyocytes by Adjusting MicroRNA-494-3p-Mediated MDM4/P53 Signalling Pathway. J. Pharm. Pharmacol. 2023, 75, 1521–1529. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Zhang, Y.; Wang, F.; Qin, M.; Ma, J.; Ji, J.; Wei, D.; Ren, L. MiR-494-3p Aggravates Pirarubicin-Induced Cardiomyocyte Injury by Regulating MDM4/P53 Signaling Pathway. Environ. Toxicol. 2023, 38, 2499–2508. [Google Scholar] [CrossRef] [PubMed]
- Jia, Z.; Wang, J.; Shi, Q.; Liu, S.; Wang, W.; Tian, Y.; Lu, Q.; Chen, P.; Ma, K.; Zhou, C. SOX6 and PDCD4 Enhance Cardiomyocyte Apoptosis through LPS-Induced MiR-499 Inhibition. Apoptosis 2016, 21, 174–183. [Google Scholar] [CrossRef]
- Kura, B.; Bacova, B.S.; Kalocayova, B.; Sykora, M.; Slezak, J. Oxidative Stress-Responsive MicroRNAs in Heart Injury. Int. J. Mol. Sci. 2020, 21, 358. [Google Scholar] [CrossRef]
- Pourrajab, F.; Sharifi, M.; Hekmatimoghaddam, S.; Khanaghaei, M.; Rahaie, M. Elevated Levels of MiR-499 Protect Ischemic Myocardium against Uric Acid in Patients Undergoing off-Pump CABG. Cor Vasa 2016, 58, e600–e608. [Google Scholar] [CrossRef]
- Wang, J.X.; Jiao, J.Q.; Li, Q.; Long, B.; Wang, K.; Liu, J.P.; Li, Y.R.; Li, P.F. MiR-499 Regulates Mitochondrial Dynamics by Targeting Calcineurin and Dynamin-Related Protein-1. Nat. Med. 2011, 17, 71–78. [Google Scholar] [CrossRef]
- Ma, C.; Yang, Z.; Wang, J.; She, H.; Tan, L.; Ye, Q.; Wang, F.; Feng, X.; Mo, X.; Liu, K.; et al. Exosomes MiRNA-499a-5p Targeted CD38 to Alleviate Anthraquinone Induced Cardiotoxicity: Experimental Research. Int. J. Surg. 2024, 110, 1992–2006. [Google Scholar] [CrossRef]
- Jeyabal, P.; Bhagat, A.; Wang, F.; Roth, M.; Livingston, J.A.; Gilchrist, S.C.; Banchs, J.; Hildebrandt, M.A.T.; Chandra, J.; Deswal, A.; et al. Circulating MicroRNAs and Cytokines as Prognostic Biomarkers for Doxorubicin-Induced Cardiac Injury and for Evaluating the Effectiveness of an Exercise Intervention. Clin. Cancer Res. 2023, 29, 4430–4440. [Google Scholar] [CrossRef]
- Chai, C.Y.; Tai, I.C.; Zhou, R.; Song, J.; Zhang, C.; Sun, S. MicroRNA-9-5p Inhibits Proliferation and Induces Apoptosis of Human Hypertrophic Scar Fibroblasts through Targeting Peroxisome Proliferator-Activated Receptor β. Biol. Open 2020, 9, bio051904. [Google Scholar] [CrossRef]
- Fierro-Fernández, M.; Busnadiego, Ó.; Sandoval, P.; Espinosa-Díez, C.; Blanco-Ruiz, E.; Rodríguez, M.; Pian, H.; Ramos, R.; López-Cabrera, M.; García-Bermejo, M.L.; et al. MiR-9-5p Suppresses pro-Fibrogenic Transformation of Fibroblasts and Prevents Organ Fibrosis by Targeting NOX4 and TGFBR2. EMBO Rep. 2015, 16, 1358–1377. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Y.; Chen, Y.; Li, J.; Zhang, Z.; Sun, Y.; Shen, H.; Zhao, Z.; Huang, Z.; Zhang, W.; et al. Inhibition of MicroRNA-9-5p Protects Against Cardiac Remodeling Following Myocardial Infarction in Mice. Hum. Gene Ther. 2019, 30, 286–301. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zuo, X.; Han, J.; Dai, Q.; Xu, H.; Liu, Y.; Cui, S. MiR-9-5p Inhibits Mitochondrial Damage and Oxidative Stress in AD Cell Models by Targeting GSK-3β. Biosci. Biotechnol. Biochem. 2020, 84, 2273–2280. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Liang, X.; Liu, B.; Huang, X.; Shen, Y.; Lin, F.; Chen, J.; Gao, X.; He, H.; Li, W.; et al. Exosomal MiR-9-5p Derived from IPSC-MSCs Ameliorates Doxorubicin-Induced Cardiomyopathy by Inhibiting Cardiomyocyte Senescence. J. Nanobiotechnol. 2024, 22, 195. [Google Scholar] [CrossRef]
- Bonauer, A.; Carmona, G.; Iwasaki, M.; Mione, M.; Koyanagi, M.; Fischer, A.; Burchfield, J.; Fox, H.; Doebele, C.; Ohtani, K.; et al. MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice. Science 2009, 324, 1710–1713. [Google Scholar] [CrossRef]
- Chen, Z.; Shentu, T.P.; Wen, L.; Johnson, D.A.; Shyy, J.Y.J. Regulation of SIRT1 by Oxidative Stress-Responsive MiRNAs and a Systematic Approach to Identify Its Role in the Endothelium. Antioxid. Redox Signal 2013, 19, 1522–1538. [Google Scholar] [CrossRef]
- King, J.R.; Green, L.A.; Leckie, K.; Wang, K.S.; Kusumanchi, P.; Maijub, J.G.; Fajardo, A.; Motaganahalli, R.L.; Murphy, M.P. The MicroRNA Cluster of MiR-15a, MiR-27a, and MiR-92a Is Associated With Diminished Interleukin 10 Levels and Decreased Frequency and Immune Suppressor Function of Type 1 Regulatory T Cells in Patients With Abdominal Aortic Aneurysms. J. Vasc. Surg. 2019, 70, e61. [Google Scholar] [CrossRef]
- Gou, L.; Zhao, L.; Song, W.; Wang, L.; Liu, J.; Zhang, H.; Lau, C.W.; Yao, X.; Tian, X.Y.; Wong, W.T.; et al. Inhibition of MiR-92a Suppresses Oxidative Stress and Improves Endothelial Function by Upregulating Heme Oxygenase-1 in Db/Db Mice. Antioxid. Redox Signal 2018, 28, 358–370. [Google Scholar] [CrossRef]
- Meng, Y.; Hu, Z.; Zhang, C.; Bai, H.; Li, Z.; Guo, X.; Chen, L. MiR-92a-3p Regulates Ethanol-Induced Apoptosis in H9c2 Cardiomyocytes. Cell Stress Chaperones 2024, 29, 381–391. [Google Scholar] [CrossRef]
- Xia, W.; Chen, H.; Xie, C.; Hou, M. Long-Noncoding RNA MALAT1 Sponges MicroRNA-92a-3p to Inhibit Doxorubicin-Induced Cardiac Senescence by Targeting ATG4a. Aging 2020, 12, 8241–8260. [Google Scholar] [CrossRef]
MicroRNA | Species | Cell Type/Tissue | Treatment | Expression Change | Function | References |
---|---|---|---|---|---|---|
Let-7 | Rat, pig, human | H9c2, cardiomyocytes, heart tissue, plasma | DOX | Decrease | Apoptosis, hypertrophy, inflammation, oxidative stress, regeneration | [19,20,21,22,23,24] |
miR-1 | Human, rat | Plasma, iPS-CM | DOX | Increase | Arrhythmias, hypertrophy, apoptosis, oxidative stress | [20,28,29] |
miR-106b-5p | Mouse, human | iPS-CM, heart tissue | DOX | Increase | Apoptosis, regeneration, angiogenesis, fibrosis, oxidative stress, inflammation, hypertrophy | [33] |
miR-126 | Human | Patients, iPS-CM | DOX, neoadjuvant | Increase Decrease | Angiogenesis, inflammation, oxidative stress | [45,46,47,48] |
miR-129 | Rat, mouse | H9c2, HL-1 | TKI, anthracyclines | Decrease | Apoptosis, autophagy, hypertrophy, fibrosis, inflammation, oxidative stress | [53,54] |
miR-133 | Mouse, human | HL-1, heart tissue, serum | Anthracyclines, DOX | Decrease | Hypertrophy, apoptosis, arrythmias, oxidative stress, fibrosis | [20,31,58] |
miR-140 | Rat, mouse, human | H9c2, serum, heart tissue, cardiomyocytes | DOX, bevacizumab | Increase | Apoptosis, hypertrophy, fibrosis, inflammation, oxidative stress | [20,64,65] |
miR-143 | Mouse, rat | H9c2, cardiomyocytes | DOX | Decrease | Apoptosis, vascular integrity, fibrosis, lipid and glucose metabolism, oxidative stress, inflammation | [74,75,76] |
miR-194-5p | Mouse, rat | Heart tissue, H9c2 | DOX | Decrease | Apoptosis, oxidative stress, hypertrophy | [79] |
miR-199 | Rat, human | Neonatal cardiomyocytes, plasma | Fluorouracil, neoadjuvant | Decrease Increase | Apoptosis, hypertrophy, autophagy, oxidative stress, fibrosis | [85,86] |
miR-200a | Mouse, rats | Heart tissue, cardiomyocytes, H9c2 | DOX | Decrease Increase | Apoptosis, oxidative stress, fibrosis, inflammation | [91,92,93] |
miR-208 | Rats, mouse | Heart tissue, plasma | DOX | Decrease Increase | Hypertrophy, fibrosis, contractility | [20,98] |
miR-21 | Mouse, rat, human | Heart tissue, serum, H9c2, cardiomyocytes, plasma | DOX | Decrease | Fibrosis, apoptosis, oxidative stress, inflammation | [20,101,102,103] |
miR-210 | Human | Patients, iPS-CM | Neoadjuvant | Decrease | Hypoxia, apoptosis, angiogenesis, mitochondrial function, oxidative stress | [24,47,48] |
miR-34a-5p | Rats, mouse, human | H9c2, progenitor cells, aortic endothelial cells, heart tissue, plasma | DOX | Increase | Apoptosis, fibrosis, inflammation, hypertrophy, oxidative stress | [20,86,112,113] |
miR-4732-3p | Human, rats | Serum, iPS-CM, cardiomyocytes | DOX | Decrease | Apoptosis, hypertrophy, fibrosis, oxidative stress, regeneration | [115,116] |
miR-494-3p | Rat, mouse | H9c2, HL1 | Pirarubicin | Increase | Apoptosis, fibrosis, inflammation, oxidative stress, angiogenesis | [121,122] |
miR-499 | Rat, mouse, human | H9c2, heart tissue, plasma | DOX | Decrease Increase | Apoptosis, hypertrophy, oxidative stress, mitochondrial function | [20,127,128] |
miR-9-5p | Human | iPS, MSCs | DOX | Decrease | Apoptosis, fibrosis, inflammation, oxidative stress | [133] |
miR-92a | Human | iPS-CM | DOX | Increase | Angiogenesis, vascular integrity, inflammation, apoptosis, oxidative stress, autophagy | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscoso, I.; Rodríguez-Mañero, M.; Cebro-Márquez, M.; Vilar-Sánchez, M.E.; Serrano-Cruz, V.; Vidal-Abeijón, I.; Martínez-Monzonís, M.A.; Mazón-Ramos, P.; Pedreira, M.; González-Juanatey, J.R.; et al. Transforming Cardiotoxicity Detection in Cancer Therapies: The Promise of MicroRNAs as Precision Biomarkers. Int. J. Mol. Sci. 2024, 25, 11910. https://doi.org/10.3390/ijms252211910
Moscoso I, Rodríguez-Mañero M, Cebro-Márquez M, Vilar-Sánchez ME, Serrano-Cruz V, Vidal-Abeijón I, Martínez-Monzonís MA, Mazón-Ramos P, Pedreira M, González-Juanatey JR, et al. Transforming Cardiotoxicity Detection in Cancer Therapies: The Promise of MicroRNAs as Precision Biomarkers. International Journal of Molecular Sciences. 2024; 25(22):11910. https://doi.org/10.3390/ijms252211910
Chicago/Turabian StyleMoscoso, Isabel, Moisés Rodríguez-Mañero, María Cebro-Márquez, Marta E. Vilar-Sánchez, Valentina Serrano-Cruz, Iria Vidal-Abeijón, María Amparo Martínez-Monzonís, Pilar Mazón-Ramos, Milagros Pedreira, José Ramón González-Juanatey, and et al. 2024. "Transforming Cardiotoxicity Detection in Cancer Therapies: The Promise of MicroRNAs as Precision Biomarkers" International Journal of Molecular Sciences 25, no. 22: 11910. https://doi.org/10.3390/ijms252211910
APA StyleMoscoso, I., Rodríguez-Mañero, M., Cebro-Márquez, M., Vilar-Sánchez, M. E., Serrano-Cruz, V., Vidal-Abeijón, I., Martínez-Monzonís, M. A., Mazón-Ramos, P., Pedreira, M., González-Juanatey, J. R., & Lage, R. (2024). Transforming Cardiotoxicity Detection in Cancer Therapies: The Promise of MicroRNAs as Precision Biomarkers. International Journal of Molecular Sciences, 25(22), 11910. https://doi.org/10.3390/ijms252211910