Novel Allelic Mutations in Dw3 Gene That Affect the Height of Sorghum Plants
Abstract
:1. Introduction
2. Results
2.1. Phenotyping and Genetic Analysis of Dwarf Sorghum Cultivars
2.2. BSA-Seq Analysis and Mapping of Candidate Gene
2.3. Identification of the Candidate Gene Related to Plant Height in Sorghum Plants
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Phenotyping, DNA Extraction, and Sanger Sequencing
4.2. SNP Library Construction and High-Throughput Sequencing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel Projections. Energy. Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Stamenković, O.S.; Siliveru, K.; Veljković, V.B.; Banković-Ilić, I.B.; Tasić, M.B.; Ciampitti, I.A.; Đalović, I.G.; Mitrović, P.M.; Sikora, V.Š.; Vara, P.V. Prasad Production of biofuels from sorghum. Renew. Sust. Energ. Rev. 2020, 124, 109769. [Google Scholar] [CrossRef]
- Mundia, C.W.; Secchi, S.; Akamani, K.; Wang, G. A regional comparison of factors affecting global Sorghum production: The case of north America, Asia and Africa’s sahel. Sustainability 2019, 11, 2135. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Karper, E.R.; Quinby, R.J. Sorghum-Its production, utilization and breeding. Econ. Bot. 1947, 1, 355–371. [Google Scholar] [CrossRef]
- Hilley, J.; Truong, S.; Olson, S.; Morishige, D.; Mullet, J. Identification of Dw1, a regulator of sorghum stem internode length. PLoS ONE 2016, 11, e0151271. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Fujimoto, H.; Hirano, K.; Araki-Nakamura, S.; Ohmae-Shinohara, K.; Fujii, A.; Tsunashima, M.; Song, X.J.; Ito, Y.; Nagae, R.; et al. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci Rep. 2016, 6, 28366. [Google Scholar] [CrossRef]
- Klein, R.R.; Mullet, J.E.; Jordan, D.R.; Miller, F.R.; Rooney, W.L.; Menz, M.A.; Franks, C.D.; Klein, P.E. The effect of tropical sorghum conversion and inbred development on genome diversity as revealed by high-resolution genotyping. Crop. Sci. 2008, 48, S12. [Google Scholar] [CrossRef]
- Morishige, D.T.; Klein, P.E.; Hilley, J.L.; Sahraeian, S.M.E.; Sharma, A.; Mullet, J.E. Digital genotyping of sorghum—A diverse plant species with a large repeat-rich genome. BMC. Genom. 2013, 14, 1–9. [Google Scholar] [CrossRef]
- Multani, D.S.; Briggs, S.P.; Chamberlin, M.A.; Blakeslee, J.J.; Murphy, A.S.; Johal, G.S. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 2003, 302, 81–84. [Google Scholar] [CrossRef]
- Diatta-Holgate, E.; Bergsma, B.; Tuinstra, M.R. Mutations in the dwarf3 gene confer height stability in sorghum. Plant. Genome 2024, 17, e20466. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.P.; Ramu, P.; Deshpande, S.P.; Hash, C.T.; Shah, T.; Upadhyaya, H.D.; Riera-Lizarazu, O.; Brown, P.J.; Acharya, C.B.; Mitchell, S.E.; et al. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Nat. Acad. Sci. USA 2013, 110, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Xian, R.L.; Eyal, F.; Jian, M.Y. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proc. Natl. Acad. Sci. USA 2015, 112, 11823–11828. [Google Scholar]
- Liang, T.; Bi, N. Scientific research road in the sorghum field-Chinese famous sorghum breeder cattle paradise. Seed. Technol. 2014, 15, 1–5. [Google Scholar]
- Michelmore, R.W.; Paran, I.; Kesseli, R. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Nat. Acad. Sci. USA 1991, 88, 9828–9832. [Google Scholar] [CrossRef]
- Zhang, K.; Yuan, M.; Xia, H.; He, L.Q.; Ma, J.; Wang, M.X.; Zhao, H.L.; Hou, L.; Zhao, S.Z.; Li, P.C.; et al. BSA-seq and genetic mapping reveals AhRt2 as a candidate gene responsible for red testa of peanut. Theor. Appl. Genet. 2022, 135, 1529–1540. [Google Scholar] [CrossRef]
- Klein, H.; Xiao, Y.G.; Conklin, P.A.; Govindarajulu, R.; Kelly, J.A.; Scanlon, M.J.; Whipple, C.J.; Bartlett, M. Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3-Genes. Genome Genet. 2018, 8, 3583–3592. [Google Scholar] [CrossRef]
- Vogel, G.; Laplant, K.E.; Mazourek, M.; Gore, M.A.; Smart, C.D. A combined BSA-Seq and linkage map approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. Theor. Appl. Genet. 2021, 134, 1015–1031. [Google Scholar] [CrossRef]
- USDA. World Agricultural Production; Circular Series WAP 3–19; USDA: Washington, DC, USA, 2019. [Google Scholar]
- Iqbal, M.A.; Iqbal, A. Overview on Sorghum for food, feed, forage and fodder: Opportunities and problems in Pakistan’s perspectives. Am. Eurasian. J. Agric. Environ. Sci. 2015, 15, 1818–1826. [Google Scholar]
- Chen, B.R.; Wang, C.Y.; Wang, G.P.; Zhu, Z.X.; Xu, N.; Shi, G.S.; Yu, M.; Wang, N.; Li, J.H.; Hou, J.M. Genome-wide association study for starch content and constitution in sorghum (Sorghum bicolor (L.) Moench). J. Integr. Agric. 2019, 18, 2446–2456. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Xu, X.J.; Ding, Y.Q.; Cao, N.; Gao, X.; Feng, Z.; Li, K.Y.; Cheng, B.; Zhou, L.B.; Ren, M.J.; et al. GWAS of grain color and tannin content in Chinese sorghum based on whole-genome sequencing. Theor. Appl. Genet. 2023, 136, 77. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, D.F.; Xu, M.L. A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J. Integr. Plant. Biol. 2012, 54, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Zuo, W.L.; Chao, Q.; Zhang, N.; Ye, J.R.; Tan, G.Q.; Li, B.L.; Xing, Y.X.; Zhang, B.Q.; Liu, H.J.; Fengler, K.A.; et al. A maize wall-associated kinase confers quantitative resistance to head smut. Nat. Genet. 2015, 47, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Barrero Farfan, I.D.; Bergsma, B.R.; Johal, G.; Tuinstra, M.R. A stable dw3 allele in sorghum and a molecular marker to facilitate selection. Crop. Sci. 2012, 52, 2063–2069. [Google Scholar] [CrossRef]
- Mendu, L.; Jalathge, G.; Dhillon, K.K.; Singh, N.P.; Balasubramanian, V.K.; Fewou, R.; Gitz, D.C.; Chen, J.; Xin, Z.; Mendu, V. Mutation in the endo-β-1,4-glucanase (KORRIGAN) is responsible for thick leaf phenotype in sorghum. Plants 2022, 11, 3531. [Google Scholar] [CrossRef]
- De Riseis, S.; Chen, J.; Xin, Z.; Harmon, F.G. Sorghum bicolor INDETERMINATE1 is a conserved primary regulator of flowering. Front. Plant. Sci. 2023, 14, 1304822. [Google Scholar] [CrossRef]
- Mewa, D.B.; Lee, S.; Liao, C.J.; Adeyanju, A.; Helm, M.; Lisch, D.; Mengiste, T. Anthracnose Resistance GENE2 confers fungal resistance in sorghum. Plant. J. 2023, 113, 308–326. [Google Scholar] [CrossRef]
- Quinby, J.R. Sorghum Improvement and the Genetics of Growth; Texas A&M University Press: College Station, TX, USA, 1974. [Google Scholar]
- Shinoda. Baijiu—The Introduction of Sorghum; Taiwan Elite Publishing Co., Ltd.: Taipei, Taiwan, 1958. [Google Scholar]
- Yang, L.; Wang, Q.; Guo, X.K.; Guo, R.; Shao, Q.; Liu, Q.S. Effect of tannin content of sorghum on bacterial community in fermented grains of Fen-flavor Daqu Baijiu. China Brew. 2020, 39, 6. [Google Scholar]
- Cui, Z.H.; Luo, J.H.; Qi, C.H.Y.; Ruan, Y.Y.; Li, J.; Zhang, A.; Yang, X.H.; He, Y. Genome-wide association study (GWAS) reveals the genetic architecture of four husk traits in maize. BMC Genom. 2016, 17, 946–960. [Google Scholar] [CrossRef]
- Upadhyay, H.D.; Pundir, R.P.S.; Dwivedi, S.L.; Gowda, C.L.L.; Reddy, V.G.; Singh, S. Developing a mini core collection of sorghum for diversified utilization of germplasm. Crop. Sci. 2009, 49, 1769–1780. [Google Scholar] [CrossRef]
- Zou, G.H.; Yan, S.; Zhai, G.W.; Zhang, Z.P.; Zou, J.Q.; Tao, Y.Z. Genetic variability and correlation of stalk yield related traits and sugar concentration of stalk juice in a sweet sorghum (Sorghum bicolor L. Moench) population. Australian. J. Crop. Sci. 2011, 5, 1232–1238. [Google Scholar]
- Mace, E.S.; Buhariwalla, K.K.; Buhariwalla, H.K.; Crouch, J.H. A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant. Mol. Biol. Rep. 2003, 21, 459–460. [Google Scholar] [CrossRef]
- Sun, X.W.; Liu, D.Y.; Zhang, X.F.; Li, W.B.; Liu, H.; Hong, W.G.; Jiang, C.B.; Guan, N.; Ma, C.X.; Zeng, H.P.; et al. SLAF-seq: An efficient method of large-scale De novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar] [CrossRef] [PubMed]
- Kent, W.J. BLAT—The BLAST-like alignment tool. Genome. Res. 2002, 12, 656–664. [Google Scholar] [PubMed]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Roberts, A.; McMillan, L.; Wang, W.; Parker, J.; Rusyn, I.; Threadgill, D. Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. Bioinformatics 2007, 23, 401–407. [Google Scholar] [CrossRef]
Cultivar Number | Plant Height (cm) | Heading Date (Day) |
---|---|---|
8R277 | 170 ± 10 a | 68 |
8R262 | 107 ± 10 c | 65 |
8R037 | 175 ± 7 a | 72 |
8R417 | 133 ± 6 b | 70 |
Population | Generation | Total Plants | Tall | Dwarf | a Expected Ratio | b χ2 | c p-Value |
---|---|---|---|---|---|---|---|
8R262 × 8R277 | F2 | 708 | 536 | 172 | 3:1 | 0.19 | 0.67 |
8R037 × 8R417 | F2 | 594 | 456 | 138 | 3:1 | 0.99 | 0.32 |
Sample | Clean Reads | Clean Bases | Mapped (%) | Properly Mapped (%) | Average Depth | Q20 (%) | Q30 (%) | GC Content (%) | |
---|---|---|---|---|---|---|---|---|---|
Group 1 | B8R262 | 106,444,214 | 15,966,632,100 | 98.40 | 90.03 | 21 | 97.71 | 93.38 | 43.64 |
B8R277 | 110,755,784 | 16,613,367,600 | 98.33 | 89.73 | 22 | 97.80 | 93.62 | 43.78 | |
Dwarf pool | 256,010,212 | 38,401,531,800 | 96.04 | 89.16 | 49 | 98.18 | 94.43 | 44.63 | |
Tall pool | 252,264,022 | 37,839,603,300 | 97.81 | 90.06 | 49 | 97.88 | 93.66 | 43.71 | |
Group 2 | B8R037 | 59,041,644 | 8,856,246,600 | 96.15 | 88.82 | 11 | 98.09 | 94.15 | 45.21 |
B8R417 | 62,894,480 | 9,434,172,000 | 96.94 | 90.73 | 12 | 97.71 | 93.37 | 45.55 | |
Dwarf pool | 338,573,164 | 50,785,974,600 | 94.91 | 87.23 | 62 | 98.29 | 94.77 | 44.81 | |
Tall pool | 310,540,860 | 46,581,129,000 | 96.38 | 89.46 | 57 | 98.31 | 94.86 | 44.62 |
Gene Number | Annotation |
---|---|
SORBI_3007G163300 | NA |
SORBI_3007G143400 | Tetraspanin-8, Arabidopsis thaliana (Mouse-ear cress). |
SORBI_3007G163433 | NA |
SORBI_3007G163466 | NA |
SORBI_3007G143500 | Uncharacterized protein, Arabidopsis thaliana (Mouse-ear cress). |
SORBI_3007G153600 | Protein HVA22, Hordeum vulgare (Barley). |
SORBI_3007G163700 | NA |
SORBI_3007G163800 | ABC transporter B family member 1 (Dw3, Sorghum) |
SORBI_3007G163901 | NA |
Cultivar Number | Origin | Genotype | Plant Height (cm) |
---|---|---|---|
8R019 | India | Dw1dw2dw3 | 111 ± 16 ef |
8R037 | Morocco | Dw1Dw2Dw3 | 170 ± 10 abc |
8R082 | South Africa | Dw1Dw2Dw3 | 192 ± 11 ab |
8R100 | India | Dw1dw2bdw3 | 122 ± 12 ef |
8R105 | Sultan | dw1Dw2Dw3 | 121 ± 21 ef |
8R151 | India | Dw1Dw2Dw3 | 199 ± 48 a |
8R205 | Zimbabwe | Dw1dw2Dw3 | 142 ± 11 cde |
8R206 | Zimbabwe | Dw1dw2Dw3 | 144 ± 8 cdef |
8R219 | South Korea | Dw1dw2Dw3 | 165 ± 7 abcd |
8R260 | China | Dw1Dw2Dw3 | 184 ± 17 ab |
8R258 | China | Dw1dw2Dw3 | 129 ± 6 def |
8R262 | China | Dw1Dw2dw3 | 107 ± 10 f |
8R277 | China | Dw1Dw2Dw3 | 169 ± 10 abc |
8R281 | China | Dw1Dw2Dw3 | 160 ± 24 bcd |
8R315 | India | Dw1dw2Dw3 | 157 ± 22 bcd |
8R390 | The United States | Dw1dw2Dw3 | 159 ± 11 bcd |
8R402 | China | Dw1Dw2dw3 | 122 ± 11 ef |
8R417 | China | Dw1Dw2dw3 | 120 ± 29 ef |
8R428 | China | Dw1Dw2Dw3 | 170 ± 4 abc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Liang, B.; Li, Z.; Wang, C.; Zhang, L.; Lu, X. Novel Allelic Mutations in Dw3 Gene That Affect the Height of Sorghum Plants. Int. J. Mol. Sci. 2024, 25, 12000. https://doi.org/10.3390/ijms252212000
Wang P, Liang B, Li Z, Wang C, Zhang L, Lu X. Novel Allelic Mutations in Dw3 Gene That Affect the Height of Sorghum Plants. International Journal of Molecular Sciences. 2024; 25(22):12000. https://doi.org/10.3390/ijms252212000
Chicago/Turabian StyleWang, Ping, Bingbing Liang, Zhengjun Li, Chunyu Wang, Lixia Zhang, and Xiaochun Lu. 2024. "Novel Allelic Mutations in Dw3 Gene That Affect the Height of Sorghum Plants" International Journal of Molecular Sciences 25, no. 22: 12000. https://doi.org/10.3390/ijms252212000
APA StyleWang, P., Liang, B., Li, Z., Wang, C., Zhang, L., & Lu, X. (2024). Novel Allelic Mutations in Dw3 Gene That Affect the Height of Sorghum Plants. International Journal of Molecular Sciences, 25(22), 12000. https://doi.org/10.3390/ijms252212000