Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review
Abstract
:1. Introduction
2. Anthocyanidins and Anthocyanins in the Popular Assays of Antioxidant Activity
3. Reactions of Anthocyanidins and Anthocyanins with Reactive Oxygen and Nitrogen Species
4. Electrochemical Properties of Anthocyanins and Anthocyanidins
5. Effect of Interactions on the Antioxidant Activity of Anthocyanins
6. In Vitro Cellular Antioxidant Effects of Anthocyanins
7. Antioxidant Effects of Anthocyanins in Animal Studies
8. Human Studies
9. Discussion
9.1. Validity of In Vitro Cellular Experiments
9.2. The Effects Are Time- and Concentration-Dependent
9.3. Direct vs. Indirect Action of Anthocyanins
9.4. How Specific Are the Anthocyanin Effects?
9.5. Some Remarks on Biomarkers Evaluating Antioxidant Effects
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holton, T.A.; Cornish, E.C. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 1995, 7, 1071. [Google Scholar] [CrossRef] [PubMed]
- Passeri, V.; Koes, R.; Quattrocchio, F.M. New challenges for the design of high value plant products: Stabilization of anthocyanins in plant vacuoles. Front. Plant Sci. 2016, 7, 153. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Tiwari, V.; Kumari, A.; Chaudhary, E.; Sharma, A.; Ali, U.; Garg, M. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture. J. Biotechnol. 2023, 361, 12–29. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Asif, S.; Asaf, S.; Lubna; Khan, Z.; Kim, K.M. Unveiling the protective role of anthocyanin in rice: Insights into drought-induced oxidative stress and metabolic regulation. Front. Plant Sci. 2024, 15, 1397817. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Liang, N.N.; Mu, L.; Pan, Q.H.; Wang, J.; Reeves, M.J.; Duan, C.Q. Anthocyanins and their variation in red wines. II. Anthocyanin derived pigments and their color evolution. Molecules 2012, 17, 1483–1519. [Google Scholar] [CrossRef]
- Cheng, S.; Wu, T.; Gao, J.; Han, X.; Huang, W.; You, Y.; Zhan, J. Color myth: Anthocyanins reactions and enological approaches achieving their stabilization in the aging process of red wine. Food Innov. Adv. 2023, 2, 255–271. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef]
- Ockermann, P.; Headley, L.; Lizio, R.; Hansmann, J. A review of the properties of anthocyanins and their influence on factors affecting cardiometabolic and cognitive health. Nutrients 2021, 13, 2831. [Google Scholar] [CrossRef]
- Sandoval-Ramírez, B.A.; Catalán, Ú.; Llauradó, E.; Valls, R.M.; Salamanca, P.; Rubió, L.; Yuste, S.; Sola, R. The health benefits of anthocyanins: An umbrella review of systematic reviews and meta-analyses of observational studies and controlled clinical trials. Nutr. Rev. 2022, 80, 1515–1530. [Google Scholar] [CrossRef]
- Gebhardt, B.; Sperl, R.; Carle, R.; Müller-Maatsch, J. Assessing the sustainability of natural and artificial food colorants. J. Clean. Prod. 2020, 260, 120884. [Google Scholar] [CrossRef]
- Nabi, B.G.; Mukhtar, K.; Ahmed, W.; Manzoor, M.F.; Ranjha, M.M.A.N.; Kieliszek, M.; Bhat, Z.F.; Aadil, R.M. Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as colorants in food products. Food Biosci. 2023, 52, 102403. [Google Scholar] [CrossRef]
- Wallace, T.C.; Giusti, M.M. Anthocyanins. Adv. Nutr. 2015, 6, 620–622. [Google Scholar] [CrossRef] [PubMed]
- dePascual-Teresa, S.; Sanchez-Ballesta, M.T. Anthocyanins: From plant to health. Phytochem. Rev. 2008, 7, 281–299. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jimenez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Wu, X.; Beecher, G.R.; Holden, J.M.; Haytowitz, D.B.; Gebhardt, S.E.; Prior, R.L. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J. Agric. Food Chem. 2006, 54, 4069–4075. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Carrera, C.; Palma, M.; Álvarez, J.A.; Ayuso, J.; Barbero, G.F. Extraction of anthocyanins and total phenolic compounds from açai (Euterpe oleracea Mart.) using an experimental design methodology. part 1: Pressurized liquid extraction. Agronomy 2020, 10, 183. [Google Scholar] [CrossRef]
- Clifford, M.N. Anthocyanins—Nature, occurrence and dietary burden. J. Sci. Food Agric. 2000, 80, 1063–1072. [Google Scholar] [CrossRef]
- Houghton, A.; Appelhagen, I.; Martin, C. Natural blues: Structure meets function in anthocyanins. Plants 2021, 10, 726. [Google Scholar] [CrossRef]
- Nassour, R.; Ayash, A.; Al-Tameemi, K. Anthocyanin pigments: Structure and biological importance. J. Chem. Pharm. Sci. 2020, 13, 45–57. [Google Scholar]
- Zhao, C.L.; Chen, Z.J.; Bai, X.S.; Ding, C.; Long, T.J.; Wei, F.G.; Miao, K.R. Structure–activity relationships of anthocyanidin glycosylation. Mol. Divers. 2014, 18, 687–700. [Google Scholar] [CrossRef]
- Hocine, R.; Farid, D.; Yasmine, S.; Khodir, M.; Kapranov, V.N.; Kiselev, E.F. Recent advances on stability of anthocyanins. Vest. RUDN J. Agron. Anim. Ind. 2018, 13, 257–286. [Google Scholar]
- Zhao, C.L.; Yu, Y.Q.; Chen, Z.J.; Wen, G.S.; Wei, F.G.; Zheng, Q.; Wang, C.D.; Xiao, X.L. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem. 2017, 214, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Tena, N.; Martín, J.; Asuero, A.G. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Bektaşoğlu, B.; Bener, M. Cupric ion reducing antioxidant capacity assay for antioxidants in human serum and for hydroxyl radical scavengers. Methods Mol. Biol. 2010, 594, 215–239. [Google Scholar]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Yamasaki, H.; Uefuji, H.; Sakihama, Y. Bleaching of the red anthocyanin induced by superoxide radical. Arch. Biochem. Biophys. 1996, 332, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Ichiyanagi, T.; Komiyama, T.; Hatano, Y.; Konishi, T. Superoxide radical-and peroxynitrite-scavenging activity of anthocyanins; structure-activity relationship and their synergism. Free Radic. Res. 2006, 40, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Nikkhah, E.L.H.A.M.; Khayami, M.A.S.O.U.D.; Heidari, R. Evaluation of nitric oxide scavenging activity of anthocyanins from black berry (Morus nigra L.), strawberry (Fragaria vesca L.) and berry (Morus alba L. var. nigra) extracts. Iran. J. Med. Aromat. Plants Res. 2009, 25, 120–128. [Google Scholar]
- Bi, X.; Zhang, J.; Chen, C.; Zhang, D.; Li, P.; Ma, F. Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. Food Chem. 2014, 152, 205–209. [Google Scholar] [CrossRef]
- Satake, R.; Yanase, E. Mechanistic studies of hydrogen-peroxide-mediated anthocyanin oxidation. Tetrahedron 2018, 74, 6187–6191. [Google Scholar] [CrossRef]
- Bartosz, G.; Grzesik-Pietrasiewicz, M.; Sadowska-Bartosz, I. Fluorescent products of anthocyanidin and anthocyanin oxidation. J. Agric. Food Chem. 2020, 68, 12019–12027. [Google Scholar] [CrossRef]
- Tsuda, T.; Kato, Y.; Osawa, T. Mechanism for the peroxynitrite scavenging activity by anthocyanins. FEBS Lett. 2000, 484, 207–210. [Google Scholar] [CrossRef]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Radical chemistry of flavonoid antioxidants. In Antioxidants in Therapy and Preventive Medicine; Emerit, I., Packer, L., Auclair, C., Eds.; Plenum Press: New York, NY, USA, 1990; pp. 165–169. [Google Scholar]
- Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. In Methods in Enzymology; Packer, L., Glazer, A.N., Eds.; Academic Press: New York, NY, USA, 1990; Volume 186, pp. 343–355. [Google Scholar]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common trends and differences in antioxidant activity analysis of phenolic substances using single electron transfer based assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Eisner, P. How does the phenol structure influence the results of the Folin-Ciocalteu assay? Antioxidants 2021, 10, 811. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Tybussek, T.; Herfellner, T.; Schneider, F.; Schweiggert-Weisz, U.; Eisner, P. Radical scavenging mechanisms of phenolic compounds: A quantitative structure-property relationship (QSPR) study. Front. Nutr. 2022, 9, 882458. [Google Scholar] [CrossRef]
- Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef]
- Ali, H.M.; Almagribi, W.; Al-Rashidi, M.N. Antiradical and reductant activities of anthocyanidins and anthocyanins, structure–activity relationship and synthesis. Food Chem. 2016, 194, 1275–1282. [Google Scholar] [CrossRef]
- Fleschhut, J.; Kratzer, F.; Rechkemmer, G.; Kulling, S.E. Stability and biotransformation of various dietary anthocyanins in vitro. Eur. J. Nutr. 2006, 45, 7–18. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Azevedo, J.; Fernandes, I.; Faria, A.; Oliveira, J.; Fernandes, A.; de Freitas, V.; Mateus, N. Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem. 2010, 119, 518–523. [Google Scholar] [CrossRef]
- Pereira, G.K.; Donate, P.M.; Galembeck, S.E. Electronic structure of hydroxylated derivatives of the flavylium cation. J. Mol. Struct. THEOCHEM 1996, 363, 87–96. [Google Scholar] [CrossRef]
- Foti, M.C.; Barclay, L.R.C.; Ingold, K.U. The role of hydrogen bonding on the H-atom-donating abilities of catechols and naphthalene diols and on a previously overlooked aspect of their infrared spectra. J. Am. Chem. Soc. 2002, 124, 12881–12888. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Dudek, A.; Spiegel, M.; Strugała-Danak, P.; Gabrielska, J. Analytical and theoretical studies of antioxidant properties of chosen anthocyanins; a structure-dependent relationships. Int. J. Mol. Sci. 2022, 23, 5432. [Google Scholar] [CrossRef]
- Jing, P.; Zhao, S.; Ruan, S.; Sui, Z.; Chen, L.; Jiang, L.; Qian, B. Quantitative studies on structure–ORAC relationships of anthocyanins from eggplant and radish using 3D-QSAR. Food Chem. 2014, 145, 365–371. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Stintzing, A.S.; Carle, R.; Frei, B.; Wrolstad, R.E. Color and antioxidant properties of cyanidin-based anthocyanin pigments. J. Agric. Food Chem. 2002, 50, 6172–6181. [Google Scholar] [CrossRef]
- Terahara, N.; Callebaut, A.; Ohba, R.; Nagata, T.; Ohnishi-Kameyama, M.; Suzuki, M. Acylated anthocyanidin 3-sophoroside-5-glucosides from Ajuga reptans flowers and the corresponding cell cultures. Phytochemistry 2001, 58, 493–500. [Google Scholar] [CrossRef]
- Azuma, K.; Ohyama, A.; Ippoushi, K.; Ichiyanagi, T.; Takeuchi, A.; Saito, T.; Fukuoka, H. Structures and antioxidant activity of anthocyanins in many accessions of eggplant and its related species. J. Agric. Food Chem. 2008, 56, 10154–10159. [Google Scholar] [CrossRef]
- Ali, H.M.; Ali, I.H. QSAR and mechanisms of radical scavenging activity of phenolic and anilinic compounds using structural, electronic, kinetic, and thermodynamic parameters. Med. Chem. Res. 2015, 24, 987–998. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Hu, J.; Li, X.; Wu, N.; Zhu, C.; Jiang, X.; Yuan, K.; Li, Y.; Sun, J.; Bai, W. Anthocyanins prevent AAPH-induced steroidogenesis disorder in Leydig cells by counteracting oxidative stress and StAR abnormal expression in a structure-dependent manner. Antioxidants 2023, 12, 508. [Google Scholar] [CrossRef]
- de Lima, A.A.; Sussuchi, E.M.; De Giovani, W.F. Electrochemical and antioxidant properties of anthocyanins and anthocyanidins. Croat. Chem. Acta 2007, 80, 29–34. [Google Scholar]
- Gonçalves, A.C.; Falcão, A.; Alves, G.; Silva, L.R.; Flores-Félix, J.D. Antioxidant activity of the main phenolics found in red fruits: An in vitro and in silico study. Food Chem. 2024, 452, 139459. [Google Scholar] [CrossRef] [PubMed]
- Foti, M.C.; Daquino, C.; Mackie, I.D.; DiLabio, G.A.; Ingold, K.U. Reaction of phenols with the 2, 2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism. J. Org. Chem. 2008, 73, 9270–9282. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, R.; Santiago, C.; Sánchez, M. A density functional study of antioxidant properties on anthocyanidins. J. Mol. Struct. 2009, 935, 110–114. [Google Scholar] [CrossRef]
- Noda, Y.; Kaneyuki, T.; Igarashi, K.; Mori, A.; Packer, L. Antioxidant activity of nasunin, an anthocyanin in eggplant. Res. Commun. Mol. Pathol. Pharmacol. 1998, 102, 175–187. [Google Scholar] [CrossRef]
- Vo, Q.V.; Hoa, N.T.; Thong, N.M.; Mechler, A. The hydroperoxyl and superoxide anion radical scavenging activity of anthocyanidins in physiological environments: Theoretical insights into mechanisms and kinetics. Phytochemistry 2021, 192, 112968. [Google Scholar] [CrossRef]
- Ichiyanagi, T.; Hatano, Y.; Matsugo, S.; Konishi, T. Simultaneous comparison of relative reactivities of twelve major anthocya-864 nins in bilberry towards reactive nitrogen species. Chem. Pharm. Bull. 2004, 52, 1312–1315. [Google Scholar] [CrossRef]
- Boveris, A.D.; Galatro, A.; Sambrotta, L.; Ricco, R.; Gurni, A.A.; Puntarulo, S. Antioxidant capacity of a 3-deoxyanthocyanidin from soybean. Phytochemistry 2001, 58, 1097–1105. [Google Scholar] [CrossRef]
- Rossetto, M.; Vanzani, P.; Lunelli, M.; Scarpa, M.; Mattivi, F.; Rigo, A. Peroxyl radical trapping activity of anthocyanins and generation of free radical intermediates. Free Radic. Res. 2007, 41, 854–859. [Google Scholar] [CrossRef]
- Yoshiki, Y.; Okubo, K.; Igarashi, K. Chemiluminescence of anthocyanins in the presence of acetaldehyde and tert-butyl hydroperoxide. J. Biolumin. Chemilum. 1995, 10, 335–338. [Google Scholar] [CrossRef]
- Brown, J.E.; Kelly, M.F. Inhibition of lipid peroxidation by anthocyanins, anthocyanidins and their phenolic degradation products. Eur. J. Lipid Sci. Technol. 2007, 109, 66–71. [Google Scholar] [CrossRef]
- Jaldappagari, S.; Motohashi, N.; Gangeenahalli, M.P.; Naismith, J.H. Bioactive mechanism of interaction between anthocyanins and macromolecules like DNA and proteins. In Bioactive Heterocycles VI: Flavonoids and Anthocyanins in Plants, and Latest Bioactive Heterocycles I; Monohashi, N., Ed.; Springer: Leipzig, Germany, 2008; pp. 49–65. [Google Scholar]
- Seeram, N.P.; Nair, M.G. Inhibition of lipid peroxidation and structure− activity-related studies of the dietary constituents anthocyanins, anthocyanidins, and catechins. J. Agric. Food Chem. 2002, 50, 5308–5312. [Google Scholar] [CrossRef] [PubMed]
- Janeiro, P.; Brett, A.M.O. Redox behavior of anthocyanins present in Vitis vinifera L. Electroanalysis 2007, 19, 1779–1786. [Google Scholar] [CrossRef]
- Sarma, A.D.; Sharma, R. Anthocyanin-DNA copigmentation complex: Mutual protection against oxidative damage. Phytochemistry 1999, 52, 1313–1318. [Google Scholar] [CrossRef]
- Zang, Z.; Chou, S.; Si, X.; Cui, H.; Tan, H.; Ding, Y.; Liu, Z.; Wang, H.; Lang, Y.; Tang, S.; et al. Effect of bovine serum albumin on the stability and antioxidant activity of blueberry anthocyanins during processing and in vitro simulated digestion. Food Chem. 2022, 373 Pt B, 131496. [Google Scholar] [CrossRef]
- Zang, Z.; Chou, S.; Tian, J.; Lang, Y.; Shen, Y.; Ran, X.; Gao, N.; Li, B. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Food Chem. 2021, 336, 127700. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; He, Y.; Wen, L.; Nan, H.; Zheng, F.; Liu, H.; Lu, S.; Wu, M.; Zhang, H. A review of the interaction between anthocyanins and proteins. Food Sci. Technol. Int. 2021, 27, 470–482. [Google Scholar] [CrossRef]
- Hidalgo, M.; Sánchez-Moreno, C.; de Pascual-Teresa, S. Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Kostka, T.; Ostberg-Potthoff, J.J.; Briviba, K.; Matsugo, S.; Winterhalter, P.; Esatbeyoglu, T. Pomegranate (Punica granatum L.) extract and its anthocyanin and copigment fractions-free radical scavenging activity and influence on cellular oxidative stress. Foods 2020, 9, 1617. [Google Scholar] [CrossRef]
- Moncada, M.C.; Moura, S.; Melo, M.J.; Roque, A.; Lodeiro, C.; Pina, F. Complexation of aluminum(III) by anthocyanins and synthetic flavylium salts: A source for blue and purple color. Inorg. Chim. Acta 2003, 356, 51–56. [Google Scholar] [CrossRef]
- Eghbaliferiz, S.; Iranshahi, M. Prooxidant activity of polyphenols, flavonoids, anthocyanins and carotenoids: Updated review of mechanisms and catalyzing metals. Phytother. Res. 2016, 30, 1379–1391. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Brownmiller, C.R.; Lee, S.O.; Kang, H.W. Anti-inflammatory and antioxidant effects of anthocyanins of Trifolium pratense (red clover) in lipopolysaccharide-stimulated RAW-267.4 macrophages. Nutrients 2020, 12, 1089. [Google Scholar] [CrossRef] [PubMed]
- Chiang, A.N.; Wu, H.L.; Yeh, H.I.; Chu, C.S.; Lin, H.C.; Lee, W.C. Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities. Lipids 2006, 41, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhu, Y.; Li, C.; Sui, Z.; Min, W. Effect of blueberry anthocyanins malvidin and glycosides on the antioxidant properties in endothelial cells. Oxid. Med. Cell. Longev. 2016, 2016, 1591803. [Google Scholar] [CrossRef]
- Titta, L.; Trinei, M.; Stendardo, M.; Berniakovich, I.; Petroni, K.; Tonelli, C.; Riso, P.; Porrini, M.; Minucci, S.; Pelicci, P.G.; et al. Blood orange juice inhibits fat accumulation in mice. Int. J. Obes. 2010, 34, 578–588. [Google Scholar] [CrossRef]
- Hwang, J.W.; Kim, E.K.; Lee, S.J.; Kim, Y.S.; Moon, S.H.; Jeon, B.T.; Sung, S.H.; Kim, E.T.; Park, P.J. Antioxidant activity and protective effect of anthocyanin oligomers on H₂O₂-triggered G2/M arrest in retinal cells. J. Agric. Food Chem. 2012, 60, 4282–4288. [Google Scholar] [CrossRef]
- Molagoda, I.M.N.; Lee, K.T.; Choi, Y.H.; Kim, G.Y. Anthocyanins from Hibiscus syriacus L. inhibit oxidative stress-mediated apoptosis by activating the Nrf2/HO-1 signaling pathway. Antioxidants 2020, 9, 42. [Google Scholar] [CrossRef]
- Jung, H.; Lee, H.J.; Cho, H.; Lee, K.; Kwak, H.K.; Hwang, K.T. Anthocyanins in Rubus fruits and antioxidant and anti-inflammatory activities in RAW 264.7 cells. Food Sci. Biotechnol. 2015, 24, 1879–1886. [Google Scholar] [CrossRef]
- Lai, Y.S.; Hsu, W.H.; Huang, J.J.; Wu, S.C. Antioxidant and anti-inflammatory effects of pigeon pea (Cajanus cajan L.) extracts on hydrogen peroxide-and lipopolysaccharide-treated RAW264. 7 macrophages. Food Funct. 2012, 3, 1294–1301. [Google Scholar] [CrossRef]
- Huang, W.Y.; Wu, H.; Li, D.J.; Song, J.F.; Xiao, Y.D.; Liu, C.Q.; Zhou, J.Z.; Sui, Z.Q. Protective effects of blueberry anthocyanins against H2O2-induced oxidative injuries in human retinal pigment epithelial cells. J. Agric. Food Chem. 2018, 66, 1638–1648. [Google Scholar] [CrossRef]
- Seo, H.R.; Choi, M.J.; Choi, J.M.; Ko, J.C.; Ko, J.Y.; Cho, E.J. Malvidin protects WI-38 human fibroblast cells against stress-induced premature senescence. J. Cancer Prev. 2016, 21, 32. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Wang, K.; Yang, X.; Liu, X.; Chen, J.; Li, J.; Wang, J.; Guo, Q.; Wang, H. Black rice anthocyanin extract enhances the antioxidant capacity in PC12 cells and improves the lifespan by activating IIS pathway in Caenorhabditis elegans. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 265, 109533. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Bento, C.; Silva, B.M.; Silva, L.R. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res. Int. 2017, 95, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Elisia, I.; Kitts, D.D. Anthocyanins inhibit peroxyl radical-induced apoptosis in Caco-2 cells. Mol. Cell. Biochem. 2008, 312, 139–145. [Google Scholar] [CrossRef]
- Remigante, A.; Spinelli, S.; Patanè, G.T.; Barreca, D.; Straface, E.; Gambardella, L.; Bozzuto, G.; Caruso, D.; Falliti, G.; Dossena, S.; et al. AAPH-induced oxidative damage reduced anion exchanger 1 (SLC4A1/AE1) activity in human red blood cells: Protective effect of an anthocyanin-rich extract. Front. Physiol. 2023, 14, 1303815. [Google Scholar] [CrossRef]
- Paixão, J.; Dinis, T.C.; Almeida, L.M. Protective role of malvidin-3-glucoside on peroxynitrite-induced damage in endothelial cells by counteracting reactive species formation and apoptotic mitochondrial pathway. Oxid. Med. Cell. Longev. 2012, 2012, 428538. [Google Scholar] [CrossRef]
- Paixão, J.; Dinis, T.C.; Almeida, L.M. Dietary anthocyanins protect endothelial cells against peroxynitrite-induced mitochondrial apoptosis pathway and Bax nuclear translocation: An in vitro approach. Apoptosis 2011, 16, 976–989. [Google Scholar] [CrossRef]
- Zaim, M.; Kara, I.; Muduroglu, A. Black carrot anthocyanins exhibit neuroprotective effects against MPP+ induced cell death and cytotoxicity via inhibition of oxidative stress mediated apoptosis. Cytotechnology 2021, 73, 827–840. [Google Scholar] [CrossRef]
- Huang, W.; Hutabarat, R.P.; Chai, Z.; Zheng, T.; Zhang, W.; Li, D. Antioxidant blueberry anthocyanins induce vasodilation via PI3K/Akt signaling pathway in high-glucose-induced human umbilical vein endothelial cells. Int. J. Mol. Sci. 2020, 21, 1575. [Google Scholar] [CrossRef]
- Huang, W.; Yan, Z.; Li, D.; Ma, Y.; Zhou, J.; Sui, Z. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxid. Med. Cell. Longev. 2018, 2018, 1862462. [Google Scholar] [CrossRef]
- Rugină, D.; Diaconeasa, Z.; Coman, C.; Bunea, A.; Socaciu, C.; Pintea, A. Chokeberry anthocyanin extract as pancreatic β-cell protectors in two models of induced oxidative stress. Oxid. Med. Cell. Longev. 2015, 2015, 429075. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Ye, Z.; Xu, Y.J.; Liu, Y. Cyanidin-3-O-glucoside from blueberry anthocyanin extracts protects ARPE-19 cells against high glucose damage via REDD1/GSK3β pathway. Food Biosci. 2023, 56, 103322. [Google Scholar] [CrossRef]
- Markovics, A.; Biró, A.; Kun-Nemes, A.; Fazekas, M.É.; Rácz, A.A.; Paholcsek, M.; Lukács, J.; Stündl, L.; Remenyik, J. Effect of anthocyanin-rich extract of sour cherry for hyperglycemia-induced inflammatory response and impaired endothelium-dependnt vasodilation. Nutrients 2020, 12, 3373. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Hoang, T.H.; Jung, E.S.; Jung, S.J.; Chae, S.W.; Chae, H.J. Mulberry extract attenuates endothelial dysfunction through the regulation of uncoupling endothelial nitric oxide synthase in high fat diet rats. Nutrients 2019, 11, 978. [Google Scholar] [CrossRef]
- Bognar, E.; Sarszegi, Z.; Szabo, A.; Debreceni, B.; Kalman, N.; Tucsek, Z.; Sumegi, B.; Gallyas, F., Jr. Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of malvidin, a major red wine polyphenol. PLoS ONE 2013, 8, e65355. [Google Scholar] [CrossRef]
- Kim, J.N.; Han, S.N.; Ha, T.J.; Kim, H.K. Black soybean anthocyanins attenuate inflammatory responses by suppressing reactive oxygen species production and mitogen activated protein kinases signaling in lipopolysaccharide-stimulated macrophages. Nutr. Res. Pract. 2017, 11, 357–364. [Google Scholar] [CrossRef]
- Nas, J.S.; Medina, P.M. Cyanidin-3-glucoside promotes longevity and tolerance against UVA and oxidative stress in Caenorhabditis elegans. Explor. Anim. Med. Res. 2023, 13, 105–110. [Google Scholar] [CrossRef]
- Lozada-Ramírez, J.D.; Guerrero-Moras, M.C.; González-Peña, M.A.; Silva-Pereira, T.S.; Anaya de Parrodi, C.; Ortega-Regules, A.E. Stabilization of anthocyanins from coffee (Coffea arabica L.) husks and in vivo evaluation of their antioxidant activity. Molecules 2023, 28, 1353. [Google Scholar] [CrossRef]
- Li, J.; Zhao, R.; Zhao, H.; Chen, G.; Jiang, Y.; Lyu, X.; Wu, T. Reduction of aging-induced oxidative stress and activation of autophagy by bilberry anthocyanin supplementation via the AMPK–mTOR signaling pathway in aged female rats. J. Agric. Food Chem. 2019, 67, 7832–7843. [Google Scholar] [CrossRef]
- Han, K.H.; Shimada, K.I.; Sekikawa, M.; Fukushima, M. Anthocyanin-rich red potato flakes affect serum lipid peroxidation and hepatic SOD mRNA level in rats. Biosci. Biotechnol. Biochem. 2007, 71, 1356–1359. [Google Scholar] [CrossRef]
- Hassimotto, N.M.; Lajolo, F.M. Antioxidant status in rats after long-term intake of anthocyanins and ellagitannins from blackberries. J. Sci. Food Agric. 2011, 91, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Francik, R.; Kryczyk, J.; Krośniak, M.; Berköz, M.; Sanocka, I.; Francik, S. The neuroprotective effect of Cornus mas on brain tissue of Wistar rats. Sci. World J. 2014, 2014, 847368. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, X.; Zheng, J.; Herrera-Balandrano, D.D.; Zhang, X.; Huang, W.; Sui, Z. In vivo antioxidant activity of rabbiteye blueberry (Vaccinium ashei cv. ‘Brightwell’) anthocyanin extracts. J. Zhejiang Univ. SCIENCE B 2023, 24, 602–616. [Google Scholar] [CrossRef]
- Al-Jaryan, I.L.; Al-Jebory, H.H.; Al-Saeed, M.K.I. Effect of early feeding with different levels of anthocyanins in hatching, phenotypical and physical traits of hatching broiler chicks (Ross 308). Res. J. Agric. Biol. Sci. 2023, 15, 7–13. [Google Scholar]
- Wu, T.; Gao, Y.; Guo, X.; Zhang, M.; Gong, L. Blackberry and blueberry anthocyanin supplementation counteract high-fat-diet-induced obesity by alleviating oxidative stress and inflammation and accelerating energy expenditure. Oxid. Med. Cell. Longev. 2018, 2018, 4051232. [Google Scholar] [CrossRef]
- Cremonini, E.; Daveri, E.; Mastaloudis, A.; Adamo, A.M.; Mills, D.; Kalanetra, K.; Hester, S.N.; Wood, S.M.; Fraga, C.G.; Oteiza, P.I. Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis. Redox Biol. 2019, 26, 101269. [Google Scholar] [CrossRef]
- Rosenblat, M.; Volkova, N.; Coleman, R.; Aviram, M. Pomegranate byproduct administration to apolipoprotein e-deficient mice attenuates atherosclerosis development as a result of decreased macrophage oxidative stress and reduced cellular uptake of oxidized low-density lipoprotein. J. Agric. Food Chem. 2006, 54, 1928–1935. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, X.; Liu, Y.; Xia, M. Supplementation with cyanidin-3-o-ß-glucoside protects against hypercholesterolemia-mediated endothelial dysfunction and attenuates atherosclerosis in apolipoprotein E–deficient mice. J. Nutr. 2012, 142, 1033–1037. [Google Scholar] [CrossRef]
- Kabiri, N.; Asgary, S.; Setorki, M. Lipid lowering by hydroalcoholic extracts of Amaranthus caudatus L. induces regression of rabbits atherosclerotic lesions. Lipids Health Dis. 2011, 10, 89. [Google Scholar] [CrossRef]
- Song, E.K.; Park, H.; Kim, H.S. Additive effect of walnut and chokeberry on regulation of antioxidant enzyme gene expression and attenuation of lipid peroxidation in d-galactose-induced aging-mouse model. Nutr. Res. 2019, 70, 60–69. [Google Scholar] [CrossRef]
- Rozenberg, O.; Howell, A.; Aviram, M. Pomegranate juice sugar fraction reduces macrophage oxidative state, whereas white grape juice sugar fraction increases it. Atherosclerosis 2006, 188, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, N.; Khaki, A.A.; Khodarahmi, P.; Baharara, J.; Zakerbostanabadi, S. Effect of anthocyanin on oxidative stress and testis structure in streptozotocin-induced diabetic rats. Crescent J. Med. Biol. Sci. 2023, 10, 56–60. [Google Scholar] [CrossRef]
- Tony, S.K.; Hassan, M.S.; Ismail, H.A.; El-Naem, G.F.A.; Gazwi, H.S. Effect of anthocyanin-rich blackberry juice on endoplasmic reticulum stress in streptozotocin-induced diabetic rats. Environ. Sci. Pollut. Res. 2023, 30, 79067–79081. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Du, S.; Ye, Z.; Yang, W.; Ding, Z.; Liu, Y. Protective effect of cyanidin-3-O-glucoside from blueberry anthocyanin extracts against hyperglycemia-induced outer BRB damage by suppressing REDD1-mediated VEGFA upregulation. Food Biosci. 2024, 61, 104695. [Google Scholar] [CrossRef]
- Sun, M.; Li, D.; Hua, M.; Miao, X.; Su, Y.; Chi, Y.; Li, Y.; Sun, R.; Wang, J. Analysis of the alleviating effect of black bean peel anthocyanins on type 2 diabetes based on gut microbiota and serum metabolome. J. Funct. Foods 2023, 102, 105456. [Google Scholar] [CrossRef]
- Herawati, E.R.N.; Santosa, U.; Sentana, S.; Ariani, D. Protective effects of anthocyanin extract from purple sweet potato (Ipomoea batatas L.) on blood MDA levels, liver and renat activity, and blood pressure of hyperglycemic rats. Prev. Nutr. Food Sci. 2020, 25, 375–379. [Google Scholar] [CrossRef]
- Ouyang, S.; Chen, W.; Gaofeng, Z.; Changcheng, L.; Guoping, T.; Minyan, Z.; Yang, L.; Min, Y.; Luo, J. Cyanidin-3-O-β-glucoside protects against pulmonary artery hypertension induced by monocrotaline via the TGF-β1/p38 MAPK/CREB signaling pathway. Mol. Med. Rep. 2021, 23, 338. [Google Scholar] [CrossRef]
- Chiang, M.C.; Liu, Y.C.; Chen, B.Y.; Wu, D.L.; Wu, C.L.; Cheng, C.W.; Chang, W.L.; Lee, H.J. Purple sweet potato powder containing anthocyanin mitigates high-fat-diet-induced dry eye disease. Int. J. Mol. Sci. 2023, 24, 6983. [Google Scholar] [CrossRef]
- Emadi, S.; Sadeghi, I.; Khastar, H. Malvidin prevents kidney from renal ischemia-induced oxidative damage in rats. Jordan J. Pharm. Sci. 2020, 13, 273–281. [Google Scholar]
- Kurnianingsih, N.; Artamevia, D.; Winarta, A.K.; Wulandari, A.P.; Hasanah, D.; Widodo, E.; Ratnawati, R. Modifying effect of anthocyanin from purple sweet potatoes on visceral fat tissue inflammation and liver oxidative stress in psychological stress-induced mice: Purple sweet potatoes on psychological stress. J. Trop. Life Sci. 2023, 13, 393–398. [Google Scholar] [CrossRef]
- Teymoori, A.; Khaki, A.; Rahmanifar, G.; Khatami, A.; Rezaii, A. Effect of anthocyanin on the ovarian damage and oxidative stress markers in adult female rat after torsion/detorsion. Int. J. Womens Health Reprod. Sci. 2023, 11, 172–177. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, J.; Zhang, S.; Chen, Z.; Fan, Q.; Jiang, S. Dietary supplementation with anthocyanin attenuates lipopolysaccharide-induced intestinal damage through antioxidant effects in yellow-feathered broiler chicks. Poult. Sci. 2023, 102, 102325. [Google Scholar] [CrossRef] [PubMed]
- Qiu, P.; Chen, J.; Wu, J.; Wang, Q.; Hu, Y.; Li, X.; Shi, H.; Wang, X. The effect of anthocyanin from Dioscorea alata L. after purification, identification on antioxidant capacity in mice. Food Sci. Nutr. 2023, 11, 6106–6115. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Luo, Y.; Ma, C.; Dong, L.; Chen, F. Blueberry anthocyanins extract attenuates acrylamide-induced oxidative stress and neuroinflammation in rats. Oxid. Med. Cell. Longev. 2022, 2022, 7340881. [Google Scholar] [CrossRef]
- Dong, M.; Lu, J.; Xue, H.; Lou, Y.; Li, S.; Liu, T.; Ding, Z.; Chen, X. Anthocyanins from Lycium ruthenicum Murray mitigate cadmium-induced oxidative stress and testicular toxicity by activating the Keap1/Nrf2 signaling pathway. Pharmaceuticals 2024, 17, 322. [Google Scholar] [CrossRef]
- Ma, X.; Liu, Y.; Ding, B.; Lu, S.; Ni, B.; Chen, Y.; Yang, L.; Liu, Y.; Zhang, Y.; Wang, Y.; et al. Anthocyanins from blueberry ameliorated arsenic-induced memory impairment, oxidative stress, and mitochondrial-biosynthesis imbalance in rat hippocampal neurons. Cell. Signal. 2024, 119, 111177. [Google Scholar] [CrossRef]
- Eshaghi, M.; Zare, S.; Banihabib, N.; Nejati, V.; Farokhi, F.; Mikaili, P. Cardioprotective effect of Cornus mas fruit extract against carbon tetrachloride induced-cardiotoxicity in albino rats. J. Basic Appl. Sci. Res. 2012, 2, 11106–11114. [Google Scholar]
- Somi, M.H.; Banihabib, N.; Dehghan, G.; Haghi, M.E.; Panahi, F. Hepatoprotective effect of Cornus mas fruits extract against carbon tetrachloride-induced hepatic damage in male albino rats. Thrita 2014, 3, e17625. [Google Scholar] [CrossRef]
- Es Haghi, M.; Dehghan, G.; Banihabib, N.; Zare, S.; Mikaili, P.; Panahi, F. Protective effects of Cornus mas fruit extract on carbon tetrachloride induced nephrotoxicity in rats. Indian J. Nephrol. 2014, 24, 291–296. [Google Scholar]
- Jiménez-Gallardo, L.; López-Arrabé, J.; Pérez-Tris, J.; Remacha, C. Young male blackcaps with blood parasite coinfections cope with oxidative stress favouring anthocyanin-rich food during migratory fattening. J. Avian Biol. 2024, e03214. [Google Scholar] [CrossRef]
- Powers, S.K.; Jackson, M.J. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol. Rev. 2008, 88, 1243–1276. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Cabrera, M.C.; Ristow, M.; Viña, J. Antioxidant supplements in exercise: Worse than useless? Am. J. Physiol. Endocrinol. Metab. 2012, 302, E476–E477. [Google Scholar] [CrossRef] [PubMed]
- Duthie, S.J.; Jenkinson, A.M.; Crozier, A.; Mullen, W.; Pirie, L.; Kyle, J.; Yap, L.S.; Christen, P.; Duthie, G.G. The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur. J. Nutr. 2006, 45, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Kaspar, K.L.; Park, J.S.; Brown, C.R.; Mathison, B.D.; Navarre, D.A.; Chew, B.P. Pigmented potato consumption alters oxidative stress and inflammatory damage in men. J. Nutr. 2011, 141, 108–111. [Google Scholar] [CrossRef]
- de Liz, S.; Cardoso, A.L.; Copetti, C.L.K.; Hinnig, P.F.; Vieira, F.G.K.; da Silva, E.L.; Schulz, M.; Fett, R.; Micke, G.A.; Di Pietro, P.F. Açaí (Euterpe oleracea Mart.) and juçara (Euterpe edulis Mart.) juices improved HDL-c levels and antioxidant defense of healthy adults in a 4-week randomized cross-over study. Clin. Nutr. 2020, 39, 3629–3636. [Google Scholar] [CrossRef]
- Zern, T.L.; Wood, R.J.; Greene, C.; West, K.L.; Liu, Y.; Aggarwal, D.; Shachter, N.S.; Fernandez, M.L. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J. Nutr. 2005, 135, 1911–1917. [Google Scholar] [CrossRef]
- Traustadóttir, T.; Davies, S.S.; Stock, A.A.; Su, Y.; Heward, C.B.; Roberts, L.J., II; Harman, S.M. Tart cherry juice decreases oxidative stress in healthy older men and women. J. Nutr. 2009, 139, 1896–1900. [Google Scholar] [CrossRef]
- Xie, L.; Vance, T.; Kim, B.; Lee, S.G.; Caceres, C.; Wang, Y.; Hubert, P.A.; Lee, J.Y.; Chun, O.K.; Bolling, B.W. Aronia berry polyphenol consumption reduces plasma total and low-density lipoprotein cholesterol in former smokers without lowering biomarkers of inflammation and oxidative stress: A randomized controlled trial. Nutr. Res. 2017, 37, 67–77. [Google Scholar] [CrossRef]
- Davinelli, S.; Bertoglio, J.C.; Zarrelli, A.; Pina, R.; Scapagnini, G. A randomized clinical trial evaluating the efficacy of an anthocyanin–maqui berry extract (Delphinol®) on oxidative stress biomarkers. J. Am. Coll. Nutr. 2015, 34 (Suppl. S1), 28–33. [Google Scholar] [CrossRef]
- Hurst, R.D.; Lyall, K.A.; Roberts, J.M.; Perthaner, A.; Wells, R.W.; Cooney, J.M.; Jensen, D.J.; Burr, N.S.; Hurst, S.M. Consumption of an anthocyanin-rich extract made from New Zealand blackcurrants prior to exercise may assist recovery from oxidative stress and maintains circulating neutrophil function: A pilot study. Front. Nutr. 2019, 6, 73. [Google Scholar] [CrossRef]
- Morillas-Ruiz, J.; Zafrilla, P.; Almar, M.; Cuevas, M.J.; López, F.J.; Abellán, P.; Villegas, J.A.; González-Gallego, J. The effects of an antioxidant-supplemented beverage on exercise-induced oxidative stress: Results from a placebo-controlled double-blind study in cyclists. Eur. J. Appl. Physiol. 2005, 95, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K.A.; Hurst, S.M.; Cooney, J.; Jensen, D.; Lo, K.; Hurst, R.D.; Stevenson, L.M. Short-term blackcurrant extract consumption modulates exercise-induced oxidative stress and lipopolysaccharide-stimulated inflammatory responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 297, R70–R81. [Google Scholar] [CrossRef] [PubMed]
- Hurst, R.D.; Lyall, K.A.; Wells, R.W.; Sawyer, G.M.; Lomiwes, D.; Ngametua, N.; Hurst, S.M. Daily consumption of an anthocyanin-rich extract made from New Zealand blackcurrants for 5 weeks supports exercise recovery through the management of oxidative stress and inflammation: A randomized placebo controlled pilot study. Front. Nutr. 2020, 7, 16. [Google Scholar] [CrossRef] [PubMed]
- Broncel, M.; Kozirog, M.; Duchnowicz, P.; Koter-Michalak, M.; Sikora, J.; Chojnowska-Jezierska, J. Aronia melanocarpa extract reduces blood pressure, serum endothelin, lipid, and oxidative stress marker levels in patients with metabolic syndrome. Med. Sci. Monit. 2010, 16, CR28–CR34. [Google Scholar] [PubMed]
- Rosenblat, M.; Hayek, T.; Aviram, M. Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. Atherosclerosis 2006, 187, 363–371. [Google Scholar] [CrossRef]
- Riso, P.; Klimis-Zacas, D.; Del Bo’, C.; Martini, D.; Campolo, J.; Vendrame, S.; Møller, P.; Loft, S.; De Maria, R.; Porrini, M. Effect of a wild blueberry (Vaccinium angustifolium) drink intervention on markers of oxidative stress, inflammation and endothelial function in humans with cardiovascular risk factors. Eur. J. Nutr. 2013, 52, 949–961. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Zhao, H.; Wang, X.; Pang, J.; Li, Q.; Yang, Y.; Ling, W. Anthocyanin supplementation improves anti-oxidative and anti-inflammatory capacity in a dose-response manner in subjects with dyslipidemia. Redox Biol. 2020, 32, 101474. [Google Scholar] [CrossRef]
- Aviram, M.; Rosenblat, M.; Gaitini, D.; Nitecki, S.; Hoffman, A.; Dornfeld, L.; Volkova, N.; Presser, D.; Attias, J.; Liker, H.; et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin. Nutr. 2004, 23, 423–433. [Google Scholar] [CrossRef]
- Stote, K.S.; Burns, G.; Mears, K.; Sweeney, M.; Blanton, C. The effect of berry consumption on oxidative stress biomarkers: A systematic review of randomized controlled trials in humans. Antioxidants 2023, 12, 1443. [Google Scholar] [CrossRef]
- Lorzadeh, E.; Heidary, Z.; Mohammadi, M.; Nadjarzadeh, A.; Ramezani-Jolfaie, N.; Salehi-Abargouei, A. Does pomegranate consumption improve oxidative stress? A systematic review and meta-analysis of randomized controlled clinical trials. Clin. Nutr. ESPEN 2022, 47, 117–127. [Google Scholar] [CrossRef]
- Bahari, H.; Rafiei, H.; Goudarzi, K.; Omidian, K.; Asbaghi, O.; Kolbadi, K.S.H.; Naderian, M.; Hosseini, A. The effects of pomegranate consumption on inflammatory and oxidative stress biomarkers in adults: A systematic review and meta-analysis. Inflammopharmacology 2023, 31, 2283–2301. [Google Scholar] [CrossRef] [PubMed]
- Fallah, A.A.; Sarmast, E.; Jafari, T. Effect of dietary anthocyanins on biomarkers of oxidative stress and antioxidative capacity: A systematic review and meta-analysis of randomized controlled trials. J. Funct. Foods 2020, 68, 103912. [Google Scholar] [CrossRef]
- Mohammadi, N.; Farrell, M.; O’Sullivan, L.; Langan, A.; Franchin, M.; Azevedo, L.; Granato, D. Effectiveness of anthocyanin-containing foods and nutraceuticals in mitigating oxidative stress, inflammation, and cardiovascular health-related biomarkers: A systematic review of animal and human interventions. Food Funct. 2024, 15, 3274–3299. [Google Scholar] [CrossRef] [PubMed]
- Kimble, R.; Jones, K.; Howatson, G. The effect of dietary anthocyanins on biochemical, physiological, and subjective exercise recovery: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 1262–1276. [Google Scholar] [CrossRef]
- Martins, I.C.; Maciel, M.G.; Do Nascimento, J.L.; Mafra, D.; Santos, A.F.; Padilha, C.S. Anthocyanins-rich interventions on oxidative stress, inflammation and lipid profile in patients undergoing hemodialysis: Meta-analysis and meta-regression. Eur. J. Clin. Nutr. 2023, 77, 316–324. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, X.; Zhang, Y.; Wu, B.; Li, Y.; Tian, L.; Sun, J.; Bai, W. Mechanism of action of anthocyanin on the detoxification of foodborne contaminants-A review of recent literature. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13259. [Google Scholar] [CrossRef]
- Talavéra, S.; Felgines, C.; Texier, O.; Besson, C.; Gil-Izquierdo, A.; Lamaison, J.L.; Rémésy, C. Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain. J. Agric. Food Chem. 2005, 53, 3902–3928. [Google Scholar] [CrossRef]
- Eker, M.E.; Aaby, K.; Budic-Leto, I.; Rimac Brnčić, S.; El, S.N.; Karakaya, S.; Simsek, S.; Manach, C.; Wiczkowski, W.; de Pascual-Teresa, S. A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability. Foods 2019, 9, 2. [Google Scholar] [CrossRef]
- Gui, H.; Sun, L.; Liu, R.; Si, X.; Li, D.; Wang, Y.; Shu, C.; Sun, X.; Jiang, Q.; Qiao, Y.; et al. Current knowledge of anthocyanin metabolism in the digestive tract: Absorption, distribution, degradation, and interconversion. Crit. Rev. Food Sci. Nutr. 2023, 63, 5953–5966. [Google Scholar] [CrossRef]
- Long, L.H.; Hoi, A.; Halliwell, B. Instability of, and generation of hydrogen peroxide by, phenolic compounds in cell culture media. Arch. Biochem. Biophys. 2010, 501, 162–169. [Google Scholar] [CrossRef]
- Grzesik, M.; Bartosz, G.; Stefaniuk, I.; Pichla, M.; Namieśnik, J.; Sadowska-Bartosz, I. Dietary antioxidants as a source of hydrogen peroxide. Food Chem. 2019, 278, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- National Cancer Institute Dictionary of Cancer Terms. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/ (accessed on 25 September 2024).
- Fang, J. Bioavailability of anthocyanins. Drug Metab. Rev. 2014, 46, 508–520. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.; Faria, A.; Calhau, C.; de Freitas, V.; Mateus, N. Bioavailability of anthocyanins and derivatives. J. Funct. Foods 2014, 7, 54–66. [Google Scholar] [CrossRef]
- Braga, A.R.C.; Murador, D.C.; de Souza Mesquita, L.M.; de Rosso, V.V. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. J. Food Compos. Anal. 2018, 68, 31–40. [Google Scholar] [CrossRef]
- Mohammadalinejhad, S.; Kurek, M.A. Microencapsulation of anthocyanins—Critical review of techniques and wall materials. Appl. Sci. 2021, 11, 3936. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Karim, N.; Xu, Y.; Xie, J.; Cui, H.; Mozafari, M.R.; Chen, W. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Crit. Rev. Food Sci. Nutr. 2023, 63, 3362–3385. [Google Scholar] [CrossRef]
- Forman, H.J.; Davies, K.J.; Ursini, F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radic. Biol. Med. 2014, 66, 24–35. [Google Scholar] [CrossRef]
- Wu, T.; Yang, L.; Guo, X.; Zhang, M.; Liu, R.; Sui, W. Raspberry anthocyanin consumption prevents diet-induced obesity by alleviating oxidative stress and modulating hepatic lipid metabolism. Food Funct. 2018, 9, 2112–2120. [Google Scholar] [CrossRef]
- Li, P.; Feng, D.; Yang, D.; Li, X.; Sun, J.; Wang, G.; Tian, L.; Jiang, X.; Bai, W. Protective effects of anthocyanins on neurodegenerative diseases. Trends Food Sci. Technol. 2021, 117, 205–217. [Google Scholar] [CrossRef]
- Groh, I.A.M.; Bakuradze, T.; Pahlke, G.; Richling, E.; Marko, D. Consumption of anthocyanin-rich beverages affects Nrf2 and Nrf2-dependent gene transcription in peripheral lymphocytes and DNA integrity of healthy volunteers. BMC Chem. 2020, 14, 39. [Google Scholar] [CrossRef]
- Speciale, A.; Anwar, S.; Canali, R.; Chirafisi, J.; Saija, A.; Virgili, F.; Cimino, F. Cyanidin-3-O-glucoside counters the response to TNF-alpha of endothelial cells by activating Nrf2 pathway. Mol. Nutr. Food Res. 2013, 57, 1979–1987. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Mathew, S.; Nair, P.; Ramadan, W.S.; Vazhappilly, C.G. Health benefits of cyanidin-3-glucoside as a potent modulator of Nrf2-mediated oxidative stress. Inflammopharmacology 2021, 29, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Xu, J.; Yang, M.; Hussain, M.; Liu, X.; Feng, F.; Guan, R. Protective effect of anthocyanins against neurodegenerative diseases through the microbial-intestinal-brain axis: A critical review. Nutrients 2023, 15, 496. [Google Scholar] [CrossRef]
- de Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The pharmacokinetics of anthocyanins and their metabolites in humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Zhao, T.; Zhang, Z.; Mao, G.; Feng, W.; Wu, X.; Yang, L. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora. Food Chem. 2017, 237, 887–894. [Google Scholar] [CrossRef]
- Fernandes, I.; Marques, F.; de Freitas, V.; Mateus, N. Antioxidant and antiproliferative properties of methylated metabolites of anthocyanins. Food Chem. 2013, 141, 2923–2933. [Google Scholar] [CrossRef]
- Winter, A.N.; Brenner, M.C.; Punessen, N.; Snodgrass, M.; Byars, C.; Arora, Y.; Linseman, D.A. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid. Oxid. Med. Cell. Longev. 2017, 2017, 6297080. [Google Scholar] [CrossRef]
- Nakano, H.; Sakao, K.; Wada, K.; Hou, D.X. Ameliorative effects of anthocyanin metabolites on western diet-induced NAFLD by modulating co-occurrence networks of gut microbiome. Microorganisms 2023, 11, 2408. [Google Scholar] [CrossRef]
- Liang, A.; Leonard, W.; Beasley, J.T.; Fang, Z.; Zhang, P.; Ranadheera, C.S. Anthocyanins-gut microbiota-health axis: A review. Crit. Rev. Food Sci. Nutr. 2024, 64, 7563–7588. [Google Scholar] [CrossRef]
- Bakuradze, T.; Tausend, A.; Galan, J.; Groh, I.A.M.; Berry, D.; Tur, J.A.; Marko, D.; Richling, E. Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers. Free Radic. Res. 2019, 53 (Suppl. S1), 1045–1055. [Google Scholar] [CrossRef]
- Mikhailova, D.V.; Shevchenko, O.G.; Golubev, D.A.; Platonova, E.Y.; Zemskaya, N.V.; Shoeva, O.Y.; Gordeeva, E.I.; Patov, S.A.; Shaposhnikov, M.V.; Khlestkina, E.K.; et al. Antioxidant properties and geroprotective potential of wheat bran extracts with increased content of anthocyanins. Antioxidants 2023, 12, 2010. [Google Scholar] [CrossRef] [PubMed]
- Bartosz, G. Use of spectroscopic probes for detection of reactive oxygen species. Clin. Chim. Acta 2006, 368, 53–76. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, T.; Mizutani, A.; Murakami, A.; Kojo, S.; Ishii, T.; Taketani, S. Rapid oxidation of dichlorodihydrofluorescin with heme and hemoproteins: Formation of the fluorescein is independent of the generation of reactive oxygen species. FEBS Lett. 2002, 511, 21–27. [Google Scholar] [CrossRef]
- Tirmenstein, M.A.; Hu, C.X.; Scicchitano, M.S.; Narayanan, P.K.; McFarland, D.C.; Thomas, H.C.; Schwartz, L.W. Effects of 6-hydroxydopamine on mitochondrial function and glutathione status in SH-SY5Y human neuroblastoma cells. Toxicol. In Vitro 2005, 19, 471–479. [Google Scholar] [CrossRef]
- Pieńkowska, N.; Bartosz, G.; Sadowska-Bartosz, I. Effect of 6-hydroxydopamine increase the glutathione level in SH-SY5Y human neuroblastoma cells. Acta Biochim. Pol. 2023, 70, 457–464. [Google Scholar] [CrossRef]
- Guillen-Sans, R.; Guzman-Chozas, M. The thiobarbituric acid (TBA) reaction in foods: A review. Crit. Rev. Food Sci. Nutr. 1998, 38, 315–350. [Google Scholar] [CrossRef]
- Aguilar Diaz De Leon, J.; Borges, C.R. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp. 2020. [Google Scholar] [CrossRef]
- Milne, G.L.; Dai, Q.; Roberts, L.J., II. The isoprostanes—25 years later. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 433–445. [Google Scholar] [CrossRef]
- Jadoon, S.; Malik, A. A comprehensive review article on isoprostanes as biological markers. Biochem. Pharmacol. 2018, 7, 246. [Google Scholar] [CrossRef]
- Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res. 2010, 44, 711–720. [Google Scholar] [CrossRef]
Compound | Epa vs. Ag/AgCl [mV] |
---|---|
Delphinidin | 519, 608, 844, 1108 |
Cyanidin | 564, 646, 1084 |
Pelargonidin | 598, 1121 |
Kuromanin | 678, 773, 940, 1115 |
Callistephin | 948, 1086 |
Compound | EP1 [mV] | EP2 [mV] |
---|---|---|
Myrtillin | 195 | 490 |
Peonidin-3-O-glucoside | 210 | 600 |
Petunidin | 285 | 630 |
Kuromanin | 310 | 500 |
Cyanin | 310 | 630 |
Oenin | 380 | 500 |
Malvin | 380 | 640 |
Anthocyanin Preparation | Cells | Effect | Reference |
---|---|---|---|
Anthocyanin fraction of the pomegranate (Punica granatum) juice | Human hepatocellular carcinoma HepG2 cells | Decrease in ROS level | [82] |
Anthocyanins of red clover (Trifolium pratense) flowers | Mouse RAW 264.7 monocytes | Decrease in ROS level | [85] |
Anthocyanin-rich black rice extract or its main components (kuromanin and peonidin-3-O-glucoside) | HepG2 cells | Decrease in ROS level, increased SOD and CAT activities | [86] |
Malvidin, oenin, and malvidin-3-galactoside | Human umbilical vein endothelial cells (HUVECs) | Decreased ROS and XO-1 levels, increased SOD level | [87] |
Anthocyanin-rich Moro (red) orange extract or cyanidin-3-glucoside | Mouse adipocytes | Decreased basic and insulin-induced ROS level | [88] |
Anthocyanin extract from the skin of grape berries | Human retinal pigment epithelial cells ARPR-19 treated with H2O2 | Increased SOD, CAT, GPx, and GST activities, decreased lipid peroxidation | [89] |
Anthocyanin extract of Hibiscus syriacus petals | Human immortalized keratinocytes HaCaT treated with H2O2 | Protection against apoptosis and increase in ROS level | [90] |
Anthocyanin extract of Rubus blackberries fruits | RAW 264.7 cells treated with H2O2 | Decreased ROS level, increased SOD and GPx activities, reduced DNA oxidation | [91] |
Anthocyanin-rich hydroethanolic extract of pigeon pea (Cajanus cajan) and its major component, kuromanin | RAW 264.7 cells treated with H2O2 | Protection against DNA damage | [92] |
Blueberry anthocyanin extract, malvidin, myrtillin, and malvidin-3-galactoside | Human retinal pigment epithelial cells | Decreased ROS and MDA levels, increased SOD, CAT, and GPx levels | [93] |
Malvidin | Human WI-38 fibroblasts treated with H2O2 | Amelioration of increases in the levels of MDA, and COX-2 and NFκB proteins | [94] |
Black rice anthocyanin extract | Rat pheochromocytoma PC-12 cells treated with H2O2 | Increased survival, smaller decreases in SOD and CAT activities, attenuation of increase in MDA levels | [95] |
Anthocyanin extract of sweet cherries (Prunus avium) | Human erythrocytes exposed to AAPH | Protection against hemolysis and oxidation of hemoglobin | [96] |
Blackberry anthocyanin extract | Human colorectal carcinoma Caco-2 cells exposed to AAPH | Reduced oxidation of intracellular DCFH2 | [97] |
Anthocyanin-enriched extract of the lemon bottle-brush Callistemon citrinus flowers | Human erythrocytes exposed to AAPH | Amelioration of increase in TBARS content, hemoglobin oxidation, decrease in GSH and total thiol content, band 3 phosphorylation, increases in SOD and CAT activities | [98] |
Oenin | Bovine aortic endothelial cells treated with peroxynitrite | Attenuation of protein carbonyl formation | [99] |
Kuromanin, myrtillin > callistephin | Bovine aortic endothelial cells treated with peroxynitrite | Decrease in the level of induced ROS | [100] |
Black carrot anthocyanins | Human neuroblastoma SH-SY5Y cells treated with MPTP | Attenuation of increase in ROS level | [101] |
Blueberry anthocyanin extract, malvidin, oenin, malvidin-3-galactoside | HUVECs exposed to high glucose concentration | Increased SOD and heme oxygenase-1 levels, lowered ROS level | [102] |
Anthocyanin extract of blueberries and its main components (malvidin, malvidin-3-glucoside, and malvidin-3-galactoside) | Human retinal capillary endothelial cells exposed to high glucose concentration | Attenuation of increase in ROS level and decreases in SOD and CAT activities | [103] |
Anthocyanin extract of Aronia melanocarpa fruits | Mouse TC3 pancreatic β cells treated with high glucose concentrations | Increase in CAT and GPx activities | [104] |
Anthocyanin extract of Aronia melanocarpa fruits | Mouse TC3 pancreatic β cells treated with H2O2 | Increase in GPx activity | [104] |
Anthocyanin extract of Aronia melanocarpa fruits | Mouse TC3 pancreatic β cells treated with high glucose concentrations or H2O2 | Attenuation of decrease in the GSH content | [104] |
Cyanidin-3-glucoside | ARPE-19 cells exposed to high glucose concentration | Attenuation of increase in ROS level | [105] |
Anthocyanin-rich sour cherry extract | HUVECs exposed to high glucose concentration | Amelioration of increase ROS level and of decrease in eNOS expression | [106] |
Anthocyanin-rich mulberry extract | HUVECs treated with oxidized LDL | Decreased superoxide production and nitrotyrosine level, increased NO release | [107] |
Malvidin | RAW 264.7 cells stimulated by LPS | Decreased ROS production | [108] |
Anthocyanin extracted from black soybean seed coats | RAW 264.7 cells stimulated by LPS | Decreased ROS production | [109] |
Anthocyanin Preparation | Animals Studied | Effect | Reference |
---|---|---|---|
Black rice anthocyanin extract (70–280 µg/mL) | Cenorhabditis elegans | Lifespan prolongation, increased resistance to oxidative stress, increased activities of SOD and CAT, reduced lipofuscin accumulation, ROS, and MDA levels | [95] |
Kuromanin (25 µM) | Caenorhabditis elegans exposed to 100 µM H2O2 | Lifespan prolongation | [110] |
Anthocyanin extracted from coffee (Coffea arabica) husks, both fresh (50 µM) and stabilized in ZnO nanoparticles | Caenorhabditis elegans exposed to H2O2 | Increased survival | [111] |
Bilberry anthocyanin extract | Aging female rats | Increased TAC, total SOD, and CAT activities, decreased MDA level in serum | [112] |
Anthocyanin-rich red potato flakes | Rats | Increased blood serum TAC, decreased TBARS level in blood serum and liver, decreased expression of genes coding for MnSOD and CuZnSOD in the liver | [113] |
Blackberry extract enriched in anthocyanins (35 d) | Rats | Increased blood plasma TAC, reduced liver TBARS level, increased liver, kidney, and brain GSH levels, increased erythrocyte and kidney GPx activities, increased liver SOD activity, increased CuZnSOD and MnSOD gene expression in the kidneys, and GPx gene expression in the spleen | [114] |
Enrichment of rat diet with freeze-dried fruit of cornelian cherry Cornus mas (5 wk) | Rats | Increased brain and serum CAT and PON 1 activities | [115] |
Rabbit eye blueberry (Vaccinium ashei cv. ‘Brightwell’) (100–800 mg/kg bw), administered intragastrically | Mice | Transient increases of blood plasma TAC, eyeball, intestine, liver, and adipose tissue. SOD and GPx activities. Decreased MDA content | [116] |
Injection of anthocyanin (10–30 ppm) | Eggs containing developing embryos of broiler chicks | Increased hatchability, and GPx activity, decreased MDA content | [117] |
Anthocyanin extracts from blackberry (Rubus sp.) and blueberry (Vaccinium ashei) | Mice fed high-fat diet | Prevention of increase in hepatic MDA and of decreases in activities of hepatic SOD and GPx | [118] |
Anthocyanin-rich mix (NSE Products, Inc. Provo, UT, USA) (40 mg AC/kg bw, 14 w) | Mice fed high-fat diet | Mitigation of upregulation of NOX1, NOX4, and NOS2, and of increase in the level of HNE-protein adducts | [119] |
Anthocyanin-rich mulberry extract | Rats fed high-fat diet | Attenuation of increase in the levels of oxidized LDL in serum, superoxide, and MDA adducts in aorta | [107] |
Pomegranate byproduct (whole pomegranate fruit left after juice preparation) | Apolipoprotein E-deficient (E°) mice | Reduced lipid peroxide content, attenuation of increase of GSH content in peritoneal macrophages, increased PON 2 activity | [120] |
Cyanidin-3-O-β-glucoside (2 g/kg diet, 8 w) | ApoE-deficient mice with hypercholesterolemia-induced endothelial dysfunction | Decreased levels of ketosterol, superoxide, and lipid peroxides in the aorta | [121] |
Anthocyanin-containing alcoholic extract of Amaranthus caudatus (150 mg of lyophilized extract/(kg bw × d)) | Rabbits fed hypercholesterolemic diet | Regression of atherosclerotic lesions, without reduction in serum levels of MDA and oxidized LDL | [122] |
Dried chokeberry (Aronia melanocarpa) | Mice treated with D-galactose | Prevention of increase in serum, kidney, and liver (but not brain) MDA levels | [123] |
Anthocyanin-rich pomegranate juice sugar fraction (10 d) | Diabetic mice | Decreased ROS level, increased GSH level in macrophages; opposite effects of analogous fraction isolated from white grapes | [124] |
Anthocyanin * (100 mg/kg bw, 8 wk) | Rats with streptozotocin-induced diabetes | Attenuation of increase in the MDA level, and decreases in the SOD and GPx activities in serum | [125] |
Anthocyanin-rich blackberry juice (9 mL/kg bw, 56 d) | Rats with streptozotocin-induced diabetes | Amelioration of decreases in SOD, CAT, and GPx activities and of increase in liver MDA content | [126] |
Blueberry anthocyanin extract (20–80 mg/kg bw), 10 wk | Mice with streptozotocin-induced diabetes | Alleviation of decrease in TAC and SOD activity and of increase in MDA content in the retina | [127] |
Black bean peel anthocyanin extract (200 or 400 mg/kg bw, 4 wk) | Rats with streptozotocin-induced diabetes | Amelioration of decreases in SOD and CAT activities and of increases in MDA level in serum | [128] |
Anthocyanin extract of purple sweet potato (Ipomoea batatas) (50 and 100 mg/kg bw, 35 d) | Rats with alloxan-induced diabetes | Amelioration of increase in MDA levels in blood, liver, and kidneys | [129] |
Cyanidin-3-O-β-glucoside (200 or 400 mg per kg bw, 4 wk) | Rats with monocrotaline-induced lung artery hypertension | Reduction in MDA level increase and SOD activity decrease in plasma | [130] |
Purple sweet potato extract (0.42 mg of anthocyanins in 100 g diet) | Rats fed high-fat diet inducing a model of dry eye disease | Mitigation of the drop in CuZnSOD level in the lacrimal gland | [131] |
Malvidin (100 mg/kg bw, 21 d) | Rats with ischemia-reperfusion kidney injury | Amelioration of increase in renal MDA level and of decreases in SOD and CAT activities | [132] |
Anthocyanin extract from purple sweet potatoes (10 mg/kg bw, 2 wk) | Mice subjected to restraint stress | Decreased in MDA content, prevention of increase in SOD activity in the liver | [133] |
Anthocyanin * (100 mg/kg bw, administered 30 min before the experiment) | Rats subjected to ovary torsion/detorsion | Amelioration of decreases in serum SOD and GPx activities and of increase in serum MDA level | [134] |
Ethanolic (61%) extract of bilberry (100 or 400 mg AC/kg bw, 21 d) | Female broiler chicks treated with LPS | Mitigation of loss of plasma jejunum mucosa and liver SOD activities, and of increase in the MDA content in jejunum mucosa and liver | [135] |
Anthocyanins purified from winged yam Dioscorea alata (10 mg/kg bw, 3 d) | Mice treated with LPS | Amelioration of decreases in serum TAC, SOD, and GPx activities and of increase in serum MDA level | [136] |
Blueberry (Vaccinium uliginosum) anthocyanins extract (35 or 175 mg/(kg bw × d), 19 d) | Rats intoxicated with acrylamide | Amelioration of decreases in SOD, CAT, and GPx activities and GSH level, and of increase in the MDA level in hippocampus, cortex, and blood serum | [137] |
Russian box thorn (Lycium ruthenicum) anthocyanin extract (500 mg/(kg bw × d) | Rats intoxicated with CdCl2 | Prevented of cadmium-induced increase in serum ROS level and testicular MDA content, and of decreases in SOD, CAT, and GR activities and GSH content | [138] |
Blueberry anthocyanins extract | Mice intoxicated with NaAsO2 | Amelioration of decreases in SOD and CAT activities and TAC, and of increase in MDA level in serum | [139] |
Extract of air-dried fruit of cornelian cherry Cornus mas (300 and 700 mg/kg bw, 16 d) | Rats intoxicated with CCl4 | Mitigation of decreases in SOD, CAT, and GPx activities and of increase in MDA content in the liver | [140] |
Extract of air-dried fruit of cornelian cherry Cornus mas (200 and 500 mg/kg bw, 16 d) | Rats intoxicated with CCl4 | Mitigation of decreases in SOD, CAT, and GPx activities and of increase in MDA content in the liver | [141] |
Extract of air-dried fruit of cornelian cherry Cornus mas (300 and 700 mg/kg bw, 16 d) | Rats intoxicated with CCl4 | Mitigation of decreases in SOD, CAT, and GPx activities and of increase in MDA content in the kidneys | [142] |
Anthocyanin Preparation | Subjects Studied | Effect | Reference |
---|---|---|---|
Cranberry juice (750 mL/day, 2 wk) | Healthy volunteers | No significant effect on blood plasma TAC and MDA level, 8-OHdG excretion in urine and 8-OHdG in lymphocyte DNA | [146] |
Anthocyanin-rich purple-flesh potatoes (150 g/d of cooked potato, 6 wk) | Healthy volunteers | No effect on blood plasma TBARS and protein carbonyl levels, lower plasma 8-OHdG concentration (with respect to volunteers eating white potatoes) | [147] |
Purple-flesh potatoes (consumption of 300 g) | Healthy volunteers | A 160% higher plasma TAC 6 h after consumption | [147] |
Anthocyanin-rich açaí (Euterpe oleracea) juice (200 mL/day, 4 wk) | Healthy adults | Increased blood serum and erythrocyte CAT and GPx activities in healthy adults | [148] |
Anthocyanin-rich lyophilized grape powder extract (36 g/d, 4 wk) | Premenopausal and postmenopausal women | Decreased urinary excretion of prostaglandins | [149] |
Tart cherry juice (240 mL twice daily, 14 d) | Elderly persons (61–75 y) | Reduced basal urinary excretion of 8-OHdG, enhanced capacity to resist oxidative damage in response to forearm I/R as evaluated by changes in plasma F2-isoprostane level | [150] |
Aronia berry extract (500 mg daily, 4 wk) | Former smokers | No effect markers on urinary 8-isoprostane excretion and ox-LDL level in plasma | [151] |
Maqui berry (Aristotelia chilensis) extract, Delphinol® (162 mg ACs, three times daily for 4 weeks) | Healthy adults, overweight adults, and adult smokers | Reduced level of ox-LDL, decrease in urinary F2-isoprostanes (8-iso-prostaglandin F2α) excretion | [152] |
New Zealand blackcurrant anthocyanin-rich extract) (3.2 mg/kg bw, 1 h before experiment) | Volunteers subjected to a 30-min rowing exercise | Attenuation of the transient increase in the level of plasma protein carbonyls | [153] |
Antioxidant supplement containing black grape, raspberry, and red currant concentrates, 30 min before experiment) | Volunteers subjected to a 90-min bicycle ergometric exercise | Attenuation of the exercise-induced increase in the levels of plasma protein carbonyls and urinary 8-OHdG | [154] |
Freeze-dried whole blackcurrant fruit extract (48 g of blackcurrants, half before and half after the experiment) | Volunteers subjected to a 30-min rowing exercise | Attenuation of the exercise-induced increase in plasma protein carbonyls | [155] |
Anthocyanin-rich New Zealand blackcurrants (3.2 mg ACs/kg bw, 5 wk) | Volunteers subjected to a 30-min rowing exercise | Attenuation of the exercise-induced increase in plasma MDA level, no effect on plasma TAC | [156] |
Anthocyanin-rich Aronia melanocarpa extract (100 mg, three times daily, 2 m) | Patients with metabolic syndrome | Increase in SOD and GPx activities, decrease in TBARS content in erythrocytes | [157] |
Pomegranate juice (50 mL per day, 3 m) | Patients with non-insulin dependent diabetes mellitus | Increase in blood plasma -SH level, decrease in level of TBARS in serum, normalization of PON 1 activity and GSH level in monocyte-derived macrophages | [158] |
Wild blueberry (Vaccinium angustifolium) freeze-dried powder (375 mg of ACs/d), 6 wk | Persons with cardiovascular risk factors | Decrease in the level of formamidopyrimidine-sensitive sites in DNA in blood mononuclear cells, decreased H2O2-induced DNA damage | [159] |
Anthocyanin capsules (Medox) (320 mg ACs/d, 12 wk), | Patients with dyslipidemia | Decrease in urinary 8-OHdG and 8-iso-PGF2α excretion and serum MDA level | [160] |
Pomegranate juice (50 mL/d, up to 3 y) | Patients with carotid artery stenosis | Progressive decrease in the peroxide content of LDL and increase in serum PON 1; decrease in the content of lipid peroxides and increase in the GSH content in carotid lesions | [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadowska-Bartosz, I.; Bartosz, G. Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review. Int. J. Mol. Sci. 2024, 25, 12001. https://doi.org/10.3390/ijms252212001
Sadowska-Bartosz I, Bartosz G. Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review. International Journal of Molecular Sciences. 2024; 25(22):12001. https://doi.org/10.3390/ijms252212001
Chicago/Turabian StyleSadowska-Bartosz, Izabela, and Grzegorz Bartosz. 2024. "Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review" International Journal of Molecular Sciences 25, no. 22: 12001. https://doi.org/10.3390/ijms252212001
APA StyleSadowska-Bartosz, I., & Bartosz, G. (2024). Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review. International Journal of Molecular Sciences, 25(22), 12001. https://doi.org/10.3390/ijms252212001