Synovial Fluid Immune Cell Composition Following Intraarticular Fracture May Contribute to Posttraumatic Osteoarthritis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Polychromatic Flow Cytometry
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schenker, M.L.; Mauck, R.L.; Mehta, S. Pathogenesis and Prevention of Posttraumatic Osteoarthritis After Intra-Articular Fracture. J. Am. Acad. Orthop. Surg. 2014, 22, 20. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.D.; Chubinskaya, S.; Guilak, F.; Martin, J.A.; Oegema, T.R.; Olson, S.A.; Buckwalter, J.A. Post-Traumatic Osteoarthritis: Improved Understanding and Opportunities for Early Intervention. J. Orthop. Res. 2011, 29, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.D.; Johnston, R.C.; Saltzman, C.L.; Marsh, J.L.; Buckwalter, J.A. Posttraumatic Osteoarthritis: A First Estimate of Incidence, Prevalence, and Burden of Disease. J. Orthop. Trauma 2006, 20, 739–744. [Google Scholar] [CrossRef]
- Geiler, G. Pathology and Progression of Intra-Articular Inflammation in Rheumatoid Arthritis. Verh. Dtsch. Ges. Pathol. 1996, 80, 46–57. [Google Scholar]
- Furman, B.D.; Kimmerling, K.A.; Zura, R.D.; Reilly, R.M.; Zlowodzki, M.P.; Huebner, J.L.; Kraus, V.B.; Guilak, F.; Olson, S.A. Brief Report: Articular Ankle Fracture Results in Increased Synovitis, Synovial Macrophage Infiltration, and Synovial Fluid Concentrations of Inflammatory Cytokines and Chemokines. Arthritis Rheumatol. 2015, 67, 1234–1239. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Martel-Pelletier, J.; Pelletier, J.P. The Role of Cytokines in Osteoarthritis Pathophysiology. Biorheology 2002, 39, 237–246. [Google Scholar]
- Chalidapong, P.; Vaseenon, T.; Chattipakorn, N.; Chattipakorn, S.C. Potential Roles of Inflammation on Post-Traumatic Osteoarthritis of the Ankle. Int. J. Mol. Sci. 2024, 25, 5903. [Google Scholar] [CrossRef] [PubMed]
- Loi, F.; Córdova, L.A.; Pajarinen, J.; Lin, T.H.; Yao, Z.; Goodman, S.B. Inflammation, Fracture and Bone Repair. Bone 2016, 86, 119–130. [Google Scholar] [CrossRef]
- Allen, N.B.; Aitchison, A.H.; Bagheri, K.; Guardino, N.J.; Abar, B.; Adams, S.B. Exposure of Tissue-Engineered Cartilage Analogs to Synovial Fluid Hematoma After Ankle Fracture Is Associated with Chondrocyte Death and Altered Cartilage Maintenance Gene Expression. Foot Ankle Int. 2023, 44, 922–930. [Google Scholar] [CrossRef]
- McCulloch, R.S.; Ashwell, M.S.; Maltecca, C.; O’Nan, A.T.; Mente, P.L. Progression of Gene Expression Changes Following a Mechanical Injury to Articular Cartilage as a Model of Early Stage Osteoarthritis. Arthritis 2014, 2014, 371426. [Google Scholar] [CrossRef]
- Allen, N.B.; Abar, B.; Danilkowicz, R.M.; Kraus, V.B.; Olson, S.A.; Adams, S.B. Intra-Articular Synovial Fluid with Hematoma After Ankle Fracture Promotes Cartilage Damage In Vitro Partially Attenuated by Anti-Inflammatory Agents. Foot Ankle Int. 2022, 43, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Jansen, N.W.D.; Roosendaal, G.; Bijlsma, J.W.J.; DeGroot, J.; Theobald, M.; Lafeber, F.P.J.G. Degenerated and Healthy Cartilage Are Equally Vulnerable to Blood-Induced Damage. Ann. Rheum. Dis. 2008, 67, 1468–1473. [Google Scholar] [CrossRef] [PubMed]
- Jansen, N.W.D.; Roosendaal, G.; Bijlsma, J.W.J.; DeGroot, J.; Lafeber, F.P.J.G. Exposure of Human Cartilage Tissue to Low Concentrations of Blood for a Short Period of Time Leads to Prolonged Cartilage Damage: An in Vitro Study. Arthritis Rheum. 2007, 56, 199–207. [Google Scholar] [CrossRef]
- Valentino, L.A.; Hakobyan, N.; Rodriguez, N.; Hoots, W.K. Pathogenesis of Haemophilic Synovitis: Experimental Studies on Blood-Induced Joint Damage. Haemophilia 2007, 13, 10–13. [Google Scholar] [CrossRef]
- Lafeber, F.P.J.G.; Miossec, P.; Valentino, L.A. Physiopathology of Haemophilic Arthropathy. Haemophilia 2008, 14, 3–9. [Google Scholar] [CrossRef]
- Knobe, K.; Berntorp, E. Haemophilia and Joint Disease: Pathophysiology, Evaluation, and Management. J. Comorb 2011, 1, 51. [Google Scholar] [CrossRef]
- Adams, S.B.; Setton, L.A.; Bell, R.D.; Easley, M.E.; Huebner, J.L.; Stabler, T.; Kraus, V.B.; Leimer, E.M.; Olson, S.A.; Nettles, D.L. Inflammatory Cytokines and Matrix Metalloproteinases in the Synovial Fluid after Intra-Articular Ankle Fracture. Foot Ankle Int. 2015, 36, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.M.; Frich, L.H.; Lambertsen, K.L.; Overgaard, S.; Schmal, H. Elevation of Inflammatory Cytokines and Proteins after Intra-Articular Ankle Fracture: A Cross-Sectional Study of 47 Ankle Fracture Patients. Mediators Inflamm. 2021, 2021, 8897440. [Google Scholar] [CrossRef]
- Godoy-Santos, A.L.; Ranzoni, L.; Teodoro, W.R.; Capelozzi, V.; Giglio, P.; Fernandes, T.D.; Rammelt, S. Increased Cytokine Levels and Histological Changes in Cartilage, Synovial Cells and Synovial Fluid after Malleolar Fractures. Injury 2017, 48, S27–S33. [Google Scholar] [CrossRef]
- Schmal, H.; Salzmann, G.M.; Niemeyer, P.; Langenmair, E.; Guo, R.; Schneider, C.; Habel, M.; Riedemann, N. Early Intra-Articular Complement Activation in Ankle Fractures. Biomed. Res. Int. 2014, 2014, 426893. [Google Scholar] [CrossRef]
- Pham, T.M.; Erichsen, J.L.; Kowal, J.M.; Overgaard, S.; Schmal, H. Elevation of Pro-Inflammatory Cytokine Levels Following Intra-Articular Fractures—A Systematic Review. Cells 2021, 10, 902. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.B.; Reilly, R.M.; Huebner, J.L.; Kraus, V.B.; Nettles, D.L. Time-Dependent Effects on Synovial Fluid Composition During the Acute Phase of Human Intra-Articular Ankle Fracture. Foot Ankle Int. 2017, 38, 1055–1063. [Google Scholar] [CrossRef]
- Lohmander, L.S.; Hoerrner, L.A.; Dahlberg, L.; Roos, H.; Bjornsson, S.; Lark, M.W. Stromelysin, Tissue Inhibitor of Metalloproteinases and Proteoglycan Fragments in Human Knee Joint Fluid after Injury. J. Rheumatol. 1993, 20, 1362–1368. [Google Scholar]
- Adams, S.B.; Leimer, E.M.; Setton, L.A.; Bell, R.D.; Easley, M.E.; Huebner, J.L.; Stabler, T.V.; Kraus, V.B.; Olson, S.A.; Nettles, D.L. Inflammatory Microenvironment Persists After Bone Healing in Intra-Articular Ankle Fractures. Foot Ankle Int. 2017, 38, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid Arthritis: Pathological Mechanisms and Modern Pharmacologic Therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef]
- Tran, C.N.; Lundy, S.K.; Fox, D.A. Synovial Biology and T Cells in Rheumatoid Arthritis. Pathophysiology 2005, 12, 183. [Google Scholar] [CrossRef]
- Jang, S.; Kwon, E.J.; Lee, J.J. Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int. J. Mol. Sci. 2022, 23, 905. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, L.I.; Platsoucas, C.D. The Role of T Cells in the Pathogenesis of Osteoarthritis. Arthritis Rheum. 2007, 56, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.D.; Triantafillou, S.; Parker, A.; Youssef, P.P.; Coleman, M. Synovial Membrane Inflammation and Cytokine Production in Patients with Early Osteoarthritis. J. Rheumatol. 1997, 24, 365–371. [Google Scholar]
- Furman, B.D.; Zeitlin, J.H.; Buchanan, M.W.; Huebner, J.L.; Kraus, V.B.; Yi, J.S.; Adams, S.B.; Olson, S.A. Immune Cell Profiling in the Joint Following Human and Murine Articular Fracture. Osteoarthr. Cartil. 2021, 29, 915–923. [Google Scholar] [CrossRef]
- Zhang, T.; Harrison, M.R.; O’Donnell, P.H.; Alva, A.S.; Hahn, N.M.; Appleman, L.J.; Cetnar, J.; Burke, J.M.; Fleming, M.T.; Milowsky, M.I.; et al. A Randomized Phase 2 Trial of Pembrolizumab versus Pembrolizumab and Acalabrutinib in Patients with Platinum-Resistant Metastatic Urothelial Cancer. Cancer 2020, 126, 4485–4497. [Google Scholar] [CrossRef] [PubMed]
- Skapenko, A.; Leipe, J.; Lipsky, P.E.; Schulze-Koops, H. The Role of the T Cell in Autoimmune Inflammation. Arthritis Res. Ther. 2005, 7, S4–S14. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, M.; Alesaeidi, S.; Khorramdelazad, H.; Behzadi, M.; Baharlou, R.; Alizadeh-Fanalou, S.; Karami, J. Role of T Cells in the Pathogenesis of Rheumatoid Arthritis: Focus on Immunometabolism Dysfunctions. Inflammation 2022, 46, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Confalone, E.; D’Alessio, G.; Furia, A. IL-6 Induction by TNFα and IL-1β in an Osteoblast-Like Cell Line. Int. J. Biomed. Sci. 2010, 6, 135. [Google Scholar] [CrossRef]
- Wang, T.; He, C. TNF-α and IL-6: The Link between Immune and Bone System. Curr. Drug Targets 2020, 21, 213–227. [Google Scholar] [CrossRef]
- Valerio, M.S.; Edwards, J.B.; Dolan, C.P.; Motherwell, J.M.; Potter, B.K.; Dearth, C.L.; Goldman, S.M. Effect of Targeted Cytokine Inhibition on Progression of Post-Traumatic Osteoarthritis Following Intra-Articular Fracture. Int. J. Mol. Sci. 2023, 24, 13606. [Google Scholar] [CrossRef]
- Furman, B.D.; Mangiapani, D.S.; Zeitler, E.; Bailey, K.N.; Horne, P.H.; Huebner, J.L.; Kraus, V.B.; Guilak, F.; Olson, S.A. Targeting Pro-Inflammatory Cytokines Following Joint Injury: Acute Intra-Articular Inhibition of Interleukin-1 Following Knee Injury Prevents Post-Traumatic Arthritis. Arthritis Res. Ther. 2014, 16, R134. [Google Scholar] [CrossRef]
Variable | N (%)/Mean ± SD |
---|---|
Age (years) | 50.7 ± 15.8 |
Sex | |
Female | 15 (63%) |
Male | 9 (37%) |
Fracture Type | |
Trimalleolar | 10 (42%) |
Bimalleolar | 10 (42%) |
Fibular (+Deltoid Ligament Tear) | 2 (8%) |
Pilon | 2 (8%) |
Time from injury to aspiration (days) | 12.2 ± 4.9 |
Parent | Subset/Marker | Mean Percentage (%) ± SD |
---|---|---|
CD45+ | Lymphocytes (SSC low FSC low) | 72.8 ± 25.2% |
Lymphocytes | T Cells (CD3+) | 76.5 ± 14.5% |
CD3+ T Cells | Helper T Cells (CD4+) | 42.1 ± 24.5% |
CD4+ Th Cells | - Naïve (CD45RA+CCR7+) | 10.8 ± 11.9% |
CD4+ Th Cells | - Central Memory (CD45RA-CCR7+) | 27.0 ± 26.6% |
CD4+ Th Cells | - Effector Memory (CD45RA-CCR7-) | 42.4 ± 32.5% |
CD4+ Th Cells | - TEMRA (CD45RA+CCR7-) | 7.9 ± 15.5% |
CD4+ Th Cells | - Activated Helper T Cells (HLA-DR+) | 4.9 ± 5.5% |
CD3+ T Cells | Cytotoxic T Cells (CD8+) | 39.2 ± 15.4% |
CD8+ Tc Cells | - Naïve (CD45RA+CCR7+) | 13.3 ± 11.7% |
CD8+ Tc Cells | - Central Memory (CD45RA-CCR7+) | 11.8 ± 15.1% |
CD8+ Tc Cells | - Effector Memory (CD45RA-CCR7-) | 36.0 ± 23.4% |
CD8+ Tc Cells | - TEMRA (CD45RA+CCR7-) | 34.8 ± 23.2 |
CD8+ Tc Cells | - Activated Cytotoxic T Cells (HLA-DR+) | 22.7 ± 14.9% |
CD3+ T Cells | NKT Cells (CD56+) | 8.4 ± 6.5% |
Lymphocytes | B Cells (CD19+) | 2.3 ± 2.9% |
CD3-CD19- | NK Cells (CD16+CD56+) | 59.4 ± 27.4% |
CD45+ | Monocytes (SSC high FSC low) | 21.2 ± 21.0% |
Monocytes | Classical (CD14++CD16-) | 36.3 ± 18.5% |
Monocytes | Intermediate (CD14++CD16+) | 19.2 ± 16.0% |
Monocytes | Non-Classical (CD14+CD16++) | 17.3 ± 20.9% |
Monocytes | MDSCs (Lin-CD14+DRlow) | 15.1 ± 21.9% |
Live Scatter (CD45+CD235a-CD34-) | DCs (Lin-DR+) | 2.6 ± 3.3% |
mAb | Fluorophore | Clone |
---|---|---|
nIR Zombie | n/a | |
CD197 (CCR7) | FITC | G043H7 |
CD3 | PerCP-Cy5.5 | SK7 |
CD14 | BV510 | M5E2 |
CD45RA | BV605 | HI100 |
HLA-DR | BV650 | L243 |
CD4 | BV786 | Sk3 |
CD56 | APC | MHCD56 |
CD19 | R718 | HIB19 |
CD235a | PE | HI264 |
CD34 | PE-Cy7 | 8G12 |
CD16 | BUV395 | 3G8 |
CD8 | BUV496 | SK1 |
CD45 | BUV805 | HI30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aitchison, A.H.; Allen, N.B.; O’Neill, C.N.; Droz, L.G.; Patel, P.; Anastasio, A.T.; Reilly, R.M.; Pean, C.A.; DeBaun, M.R.; Nunley, J.A.; et al. Synovial Fluid Immune Cell Composition Following Intraarticular Fracture May Contribute to Posttraumatic Osteoarthritis. Int. J. Mol. Sci. 2024, 25, 12037. https://doi.org/10.3390/ijms252212037
Aitchison AH, Allen NB, O’Neill CN, Droz LG, Patel P, Anastasio AT, Reilly RM, Pean CA, DeBaun MR, Nunley JA, et al. Synovial Fluid Immune Cell Composition Following Intraarticular Fracture May Contribute to Posttraumatic Osteoarthritis. International Journal of Molecular Sciences. 2024; 25(22):12037. https://doi.org/10.3390/ijms252212037
Chicago/Turabian StyleAitchison, Alexandra Hunter, Nicholas B. Allen, Conor N. O’Neill, Lindsey G. Droz, Prekshaben Patel, Albert T. Anastasio, Rachel M. Reilly, Christian A. Pean, Malcolm R. DeBaun, James A. Nunley, and et al. 2024. "Synovial Fluid Immune Cell Composition Following Intraarticular Fracture May Contribute to Posttraumatic Osteoarthritis" International Journal of Molecular Sciences 25, no. 22: 12037. https://doi.org/10.3390/ijms252212037
APA StyleAitchison, A. H., Allen, N. B., O’Neill, C. N., Droz, L. G., Patel, P., Anastasio, A. T., Reilly, R. M., Pean, C. A., DeBaun, M. R., Nunley, J. A., & Adams, S. B. (2024). Synovial Fluid Immune Cell Composition Following Intraarticular Fracture May Contribute to Posttraumatic Osteoarthritis. International Journal of Molecular Sciences, 25(22), 12037. https://doi.org/10.3390/ijms252212037