Effect of Mild Conditions on PVA-Based Theta Gel Preparation: Thermal and Rheological Characterization
Abstract
:1. Introduction
2. Results and Discussion
2.1. PVA Framework Synthesis
2.2. Swelling Behavior
2.3. Thermal Analysis
2.3.1. Hydrophilicity and Water Characterization: Swollen Theta Gels
2.3.2. Thermal Stability: Dry Theta Gels
2.3.3. Differential Scanning Calorimetry (DSC)
2.4. Viscoelastic Properties
3. Materials and Methods
3.1. Materials
3.2. PVA Framework Synthesis
3.3. Swelling Behavior
3.4. Thermal Analysis
3.4.1. Thermogravimetric Analysis (TGA)
3.4.2. Differential Scanning Calorimetry (DSC)
3.5. Viscoelastic Properties
3.5.1. Frequency Sweep Test (SAOS)
3.5.2. Amplitude Sweep Test (SAOS and LAOS)
3.5.3. Creep–Recovery Test
3.5.4. Tribological Properties
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marin, E.; Rojas, J.; Yhors, C. A review of polyvinyl alcohol derivatives: Promising materials for pharmaceutical and biomedical apllications. Afr. J. Pharm. Pharmacol. 2014, 8, 674–684. [Google Scholar]
- Hassan, C.M.; Peppas, N.A. Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. In Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites. Advances in Polymer Science; Springer: Berlin, Heidelberg; New York, NY, USA, 2000; Volume 153, pp. 37–65. [Google Scholar]
- Chen, Y.; Song, J.; Wang, S.; Liu, W. PVA-Based Hydrogels: Promising Candidates for Articular Cartilage Repair. Macromol. Biosci. 2021, 21, 2100147. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; Solaro, R. Biodegradation of poly (vinyl alcohol) based blown films under different environmental conditions. Polym. Degrad. Stab. 1999, 64, 305–312. [Google Scholar] [CrossRef]
- Chen, W.; Hou, Y.; Tu, Z.; Gao, L.; Haag, R. pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. J. Control. Release 2017, 259, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Matijašić, G.; Gretić, M.; Vinčić, J.; Poropat, A.; Cuculić, L.; Rahelić, T. Design and 3D printing of multi-compartmental PVA capsules for drug delivery. J. Drug Deliv. Sci. Technol. 2019, 52, 677–686. [Google Scholar] [CrossRef]
- Kumar, A.; Han, S.S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159182. [Google Scholar] [CrossRef]
- Murugan, D.; Arumugam, H.; Arumugam, S.; Mani, M.; Kannan, S. Superparamagnetic freeze-thawed PVA hydrogel for applications in tissue engineering, drug delivery and bioimaging. Colloids Surf. A: Physicochem. Eng. Asp. 2024, 690, 133790. [Google Scholar] [CrossRef]
- Hayes, J.C.; Kennedy, J.E. An evaluation of the biocompatibility properties of a salt-modified polyvinyl alcohol hydrogel for a knee meniscus application. Mater. Sci. Eng. C 2016, 59, 894–900. [Google Scholar] [CrossRef]
- Elbadawy, A.K.; El-Refaie, S.K.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 8, 217–233. [Google Scholar]
- Baker, M.I.; Walsh, S.P.; Schwartz, Z.; Boyan, B.D. A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J. Biomed. Mater. Res. Part B 2012, 100B, 1451–1457. [Google Scholar] [CrossRef]
- Sasaki, S.; Murakami, T.; Suzuki, A. Frictional properties of physically cross-linked PVA hydrogels as artificial cartilage. Biosurface Biotribology 2016, 2, 11–17. [Google Scholar] [CrossRef]
- Li, H.; Wu, C.; Yu, X.; Zhang, W. Recent advances of PVA-based hydrogels in cartilage repair application. J. Mater. Res. Technol. 2023, 24, 2279–2298. [Google Scholar] [CrossRef]
- Xiang, C.; Guo, Z.; Zhang, Q.; Wang, Z.; Li, X.; Chen, W.; Wei, X.; Li, P.; Xiang, C. Physically crosslinked poly(vinyl alcohol)-based hydrogels for cartilage tissue engineering. Mater. Des. 2024, 243, 113048. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, W.; Shao, Z.; Wang, Z.; Chang, B.; Ding, X.; Yang, Y. Biodegradable glass fiber reinforced PVA hydrogel for cartilage repair: Mechanical properties, ions release behavior and cell recruitment. J. Mater. Res. Technol. 2023, 23, 154–164. [Google Scholar] [CrossRef]
- Hulupi, M.; Haryadi, H. Synthesis and characterization of electrospinning PVA nanofiber-crosslinked by glutaraldehyde. Mater. Today Proc. 2019, 13, 199–204. [Google Scholar] [CrossRef]
- Nunes, M.A.P.; Gois, P.M.P.; Rosa, M.E.; Martins, S.; Fernandes, P.C.B.; Ribeiro, M.H.L. Boronic acids as efficient cross linkers for PVA: Synthesis and application of tunable hollow microspheres in biocatalysis. Tetrahedron 2016, 72, 7293–7305. [Google Scholar] [CrossRef]
- Leone, G.; Bidini, A.; Lamponi, S.; Magnani, A. States of water, surface and rheological characterisation of a new biohydrogel as articular cartilage substitute. Polym. Adv. Technol. 2013, 24, 824–833. [Google Scholar] [CrossRef]
- Leone, G.; Volpato, M.D.; Nelli, N.; Lamponi, S.; Boanini, E.; Bigi, A.; Magnani, A. Continuous multilayered composite hydrogel as osteochondral substitute. J. Biomed. Mater. Res. Part A 2014, 103, 2521–2530. [Google Scholar] [CrossRef]
- Agudelo, J.I.D.; Badano, J.M.; Rintoul, I. Kinetics and thermodynamics of swelling and dissolution of PVA gels obtained by freeze-thaw technique. Mater. Chem. Phys. 2018, 216, 14–21. [Google Scholar] [CrossRef]
- Adelnia, H.; Ensandoost, R.; Moonshi, S.S.; Gavgani, N.J.; Vasafi, E.I.; Ta, H.T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J. 2022, 164, 110974. [Google Scholar] [CrossRef]
- Ruberti, J.W.; Braithwaite, G.J.C. Systems and methods for controlling and forming polymer gels. U.S. Patent 20040092653, 13 May 2004. [Google Scholar]
- Charron, P.N.; Braddish, T.A.; Floreani, R. PVA-gelatin hydrogels formed using combined theta-gel and cryo-gel fabrication techniques. J. Mech. Behav. Biomed. Mater. 2019, 92, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Bodugoz-Senturk, H.; Choi, J.; Oral, E.; Kung, J.H.; Macias, C.E.; Braithwaite, G.; Muratoglu, O.K. The effect of polyethylene glycol on the stability of pores in polyvinyl alcohol hydrogels during annealing. Biomaterials 2008, 29, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Charron, P.N.; Blatt, S.E.; McKenzie, C.; Oldinski, R.A. Dynamic mechanical response of polyvinyl alcohol-gelatin theta-gels for nucleus pulposus tissue replacement. Biointerphases 2017, 12, 02C409. [Google Scholar] [CrossRef] [PubMed]
- Virdi, C.; Lu, Z.; Zreiqat, H.; No, Y.J. Theta-Gel-Reinforced Hydrogel Composites for Potential Tensile Load-Bearing Soft Tissue Repair Applications. J. Funct. Biomater. 2023, 14, 291. [Google Scholar] [CrossRef] [PubMed]
- LaMastro, V.; Erik Brewer, E.; Lowman, A. Crystallinity, reversibility, and injectability of physically crosslinked poly(vinyl alcohol) and poly(ethylene glycol) hydrogels. J. Appl. Polym. Sci. 2020, 137, 48706. [Google Scholar] [CrossRef]
- Chunming, Z.; Lu, X.; Hu, Q.; Liu, S.; Guan, S. PVA/PEG hybrid hydrogels prepared by freeze-thawing and high energy electron beam irradiation. Chem. Res. Chin. Univ. 2017, 33, 995–999. [Google Scholar]
- Zhang, Z.; Ye, Z.; Hu, F.; Wang, W.; Zhang, S.; Gao, L.; Lu, H. Double-network polyvinyl alcohol composite hydrogel with self-healing and low friction. J. Appl. Polym. Sci. 2022, 139, e51563. [Google Scholar] [CrossRef]
- Ye, Z.; Lu, H.; Jia, E.; Chen, J.; Fu, L. Organic solvents enhance polyvinyl alcohol/polyethylene glycol self-healing hydrogels for artificial cartilage. Polym. Adv. Technol. 2022, 33, 3455–3469. [Google Scholar] [CrossRef]
- Liu, P.; Chen, W.; Liu, C.; Ming Tian, M.; Liu, P. A novel poly (vinyl alcohol)/poly (ethylene glycol) scaffold for tissue engineering with a unique bimodal open-celled structure fabricated using supercritical fluid foaming. Sci. Rep. 2019, 9, 9534. [Google Scholar] [CrossRef]
- Bodugoz-Senturk, H.; Oral, E.; Choi, J.; Macias, C.E.; Muratoglu, O.K. Molecular Weight Effect on Theta-Gel Formation in Poly(vinyl alcohol)–Poly(ethylene glycol) Mixtures. J. Appl. Polym. Sci. 2012, 125, 2890–2895. [Google Scholar] [CrossRef]
- Huang, L.; Li, H.; Wen, S.; Xia, P.; Zeng, F.; Peng, C.; Yang, J.; Tan, Y.; Ji Liu, J.; Jiang, L.; et al. Control nucleation for strong and tough crystalline hydrogels with high water content. Nat. Commun. 2024, 15, 7777. [Google Scholar] [CrossRef] [PubMed]
- Darabi, M.A.; Khosrozadeh, A.; Wang, Y.; Ashammakhi, N.; Alem, H.; Erdem, A.; Chang, Q.; Xu, K.; Liu, Y.; Luo, G.; et al. An Alkaline Based Method for Generating Crystalline, Strong, and Shape Memory Polyvinyl Alcohol Biomaterials. Adv. Sci. 2020, 7, 1902740. [Google Scholar] [CrossRef] [PubMed]
- Netti, P.A.; Ambrosio, L. Articular Cartilage. In Integrated Biomaterials Science; Barbucci, R., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 381–402. [Google Scholar]
- Boettcher, K.; Kienle, S.; Nachtsheim, J.; Burgkart, R.; Hugel, T.; Lieleg, O. The structure and mechanical properties of articular cartilage are highly resilient towards transient dehydration. Acta Biomater. 2016, 29, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Consumi, M.; Leone, G.; Pepi, S.; Pardini, A.; Lamponi, S.; Bonechi, C.; Tamasi, G.; Rossi, C.; Magnani, A. Calcium ions hyaluronan/gellan gum protective shell for delivery of oleuropein in the knee. Int. J. Polym. Mater. Polym. Biomater. 2022, 71, 414–424. [Google Scholar] [CrossRef]
- Leone, G.; Pepi, S.; Consumi, M.; Lamponi, S.; Fragai, M.; Martinucci, M.; Baldoneschi, V.; Francesconi, O.; Nativi, C.; Magnani, A. Sodium hyaluronate-g-2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide with enhanced affinity towards MMP12 catalytic domain to be used as visco-supplement with increased degradation resistance. Carbohydr. Polym. 2021, 271, 118452. [Google Scholar] [CrossRef]
- Borzacchiello, A.; Della Sala, F.; Ambrosio, L.A. Rheometry of polymeric biomaterials. In Characterization of Polymeric Biomaterials; Tanzi, M.C., Farè, S., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 233–253. [Google Scholar]
- Mezger, T.G. The Rheology Handbook, 4th ed.; Vincentz Network: Hanover, Germany, 2014; pp. 155–159. [Google Scholar]
- Kaleem, B.; Maier, F.; Drissi, H.; Pierce, D.M. Low-energy impact of human cartilage: Predictors for microcracking the network of collagen. Osteoarthr. Cartil. 2017, 25, 544–553. [Google Scholar] [CrossRef]
- Choi, J.; Bodugoz-Senturk, H.; Kung, H.J.; Malhi, A.S.; Muratoglu, O.K. Effects of solvent dehydration on creep resistance of poly(vinyl alcohol) hydrogel. Biomaterials 2007, 28, 772–780. [Google Scholar] [CrossRef]
- Dehghan-Baniani, D.; Chen, Y.; Wang, D.; Bagheri, R.; Solouk, A.; Wu, H. Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids Surf. B Biointerface 2022, 192, 111059. [Google Scholar] [CrossRef]
- Charnley, J. Surgery of the Hip-joint. Br. Med. J. 1960, 1, 821–826. [Google Scholar] [CrossRef]
- Cilingir, A.C. Effect of rotational and sliding motions on friction and degeneration of articular cartilage under dry and wet friction. J. Bionic Eng. 2015, 12, 464–472. [Google Scholar] [CrossRef]
- Krishnan, R.; Kopacz, M.; Ateshian, G.A. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J. Orthop. Res. 2004, 22, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, H.; Eckold, D.; Stead, I.; Shepherd, D.E.; Espino, D.M.; Dearn, K.D. A method for the assessment of the coefficient of friction of articular cartilage and a replacement biomaterial. J. Mech. Behav. Biomed. Mater. 2020, 103, 103580. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.; Zauscher, S.; Varghese, S. Progress in the design and synthesis of viscosupplements for articular joint lubrication. Curr. Opin. Colloid Interface Sci. 2023, 66, 101708. [Google Scholar] [CrossRef]
- Wei, P.; Ma, Y.; Qin, K.; Fan, Z. A 3D printed biomimetic scaffold for cartilage regeneration with lubrication, load-bearing, and adhesive fixation properties. Tribol. Int. 2024, 192, 109328. [Google Scholar] [CrossRef]
- Mostakhdemin, M.; Nand, A.; Ramezani, M. Tribological assessments of bilayer titanium nanocomposite hydrogels for cartilage replacement in articular joints. Wear 2021, 484–485, 204017. [Google Scholar]
- Leone, G.; Consumi, M.; Pepi, S.; Lamponi, S.; Bonechi, C.; Tamasi, G.; Donati, A.; Rossi, C.; Magnani, A. New formulations to enhance lovastatin release from red yeast rice (RYR). J. Drug Deliv. Sci. Technol. 2016, 36, 110–119. [Google Scholar] [CrossRef]
Sample ID | WH% | WfH% * | WnfH% |
---|---|---|---|
274 | 89% ± 3% | 81% ± 6% | 19% ± 3% |
278 | 84% ± 1% | 69% ± 5% | 31% ± 6% |
2720 | 75% ± 5% | 57% ± 6% | 43% ± 6% |
474 | 94% ± 5% | 80% ± 3% | 20% ± 1% |
478 | 79% ± 3% | 62% ± 17% | 38% ± 4% |
4720 | 67% ± 7% | 57% ± 4% | 43% ± 5% |
614 | 83% ± 2% | 71% ± 17% | 29% ± 3% |
618 | 77% ± 3% | 62% ± 2% | 38% ± 4% |
6120 | 67% ± 3% | 46% ± 6% | 54% ± 1% |
1254 | 75% ± 2% | 63% ± 9% | 37% ± 1% |
1258 | 74% ± 1% | 56% ± 3% | 44% ± 1% |
12520 | 72% ± 6% | 51% ± 10% | 49% ± 1% |
1954 | 74% ± 3% | 58% ± 7% | 42% ± 1% |
1958 | 70% ± 4% | 49% ± 4% | 51% ± 4% |
19520 | 87% ± 17% | 50% ± 7% | 50% ± 1% |
Sample ID | Weight Loss (%) | R (-) | ||
---|---|---|---|---|
30–200 °C | 200–400 °C | 400–600 °C | ||
274 | 6.0% ± 0.2% | 79.3% ± 0.4% | 15.4% ± 1.3% | 0.21 ± 0.02 |
278 | 5.6% ± 0.3% | 65.6% ± 5.6% | 24.1% ± 7.3% | 0.37 ± 0.14 |
2720 | 5.9% ± 0.2% | 68.3% ± 1.5% | 22.1% ± 2.5% | 0.32 ± 0.04 |
474 | 5.3% ± 0.0% | 72.9% ± 0.3% | 17.7% ± 0.3% | 0.24 ± 0.00 |
478 | 5.1% ± 0.9% | 66.2% ± 0.3% | 24.4% ± 0.4% | 0.37 ± 0.00 |
4720 | 5.3% ± 0.7% | 67.4% ± 2.3% | 23.9% ± 2.4% | 0.36 ± 0.05 |
614 | 5.1% ± 0.4% | 67.9% ± 1.2% | 22.1% ± 0.0% | 0.32 ± 0.01 |
618 | 4.4% ± 0.5% | 65.5% ± 4.1% | 26.6% ± 4.8% | 0.41 ± 0.10 |
6120 | 4.4% ± 0.3% | 67.0% ± 0.4% | 24.7% ± 1.5% | 0.37 ± 0.02 |
1254 | 4.2% ± 0.1% | 66.1% ± 3.1% | 26.0% ± 2.0% | 0.40 ± 0.04 |
1258 | 4.5% ± 0.2% | 67.3% ± 1.0% | 25.4% ± 0.8% | 0.38 ± 0.01 |
12520 | 3.9% ± 0.2% | 65.8% ± 4.7% | 25.3% ± 0.8% | 0.39 ± 0.04 |
1954 | 4.2% ± 0.5% | 66.4% ± 1.1% | 27.0% ± 1.0% | 0.40 ± 0.03 |
1958 | 4.6% ± 0.5% | 66.0% ± 0.6% | 27.0% ± 1.0% | 0.41 ± 0.02 |
19520 | 4.1% ± 0.3% | 67.8% ± 0.2% | 25.2% ± 0.7% | 0.37 ± 0.01 |
Sample ID | G* (Pa) | tan δ (-) |
---|---|---|
274 | 3243 ± 3508 | 6.7 × 10−2 ± 4.4 × 10−3 |
278 | 16,452 ± 5589 | 9.8 × 10−2 ± 4.4 × 10−2 |
2720 | 29,869 ± 3962 | 7.6 × 10−2 ± 1.7 × 10−2 |
474 | 5383 ± 482 | 6.9 × 10−2 ± 7.0 × 10−3 |
478 | 15,677 ± 4793 | 6.2 × 10−2 ± 1.5 × 10−2 |
4720 | 21,588 ± 2915 | 7.8 × 10−2 ± 1.5 × 10−2 |
614 | 7227 ± 3899 | 5.7 × 10−2 ± 1.4 × 10−3 |
618 | 22,221 ± 10,124 | 6.5 × 10−2 ± 1.1 × 10−2 |
6120 | 53,202 ± 3817 | 8.8 × 10−2 ± 1.2 × 10−2 |
1254 | 23,079 ± 7747 | 4.8 × 10−2 ± 4.4 × 10−3 |
1258 | 27,394 ± 5473 | 8.4 × 10−2 ± 5.3 × 10−3 |
12520 | 44,305 ± 1932 | 9.5 × 10−2 ± 6.1 × 10−3 |
1954 | 35,314 ± 12,235 | 8.1 × 10−2 ± 2.6 × 10−3 |
1958 | 27,432 ± 2341 | 8.6 × 10−2 ± 2.0 × 10−2 |
19520 | 36,906 ± 3142 | 8.5 × 10−2 ± 1.7 × 10−2 |
Sample ID | G′ (Pa) | G″ (Pa) | Cross-Over Strain (%) | Dissipated Energy Density (N/m2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SAOS 1 I | LAOS II | SAOS 2 I | SAOS 1 I | LAOS II | SAOS 2 I | CO 1 | CO 2 | DED 1 I | DED 2 I | |
274 | 3237 ± 3501 | 47 ± 0 | 2843± 2776 | 209 ± 220 | 254 ± 180 | 220 ± 216 | 8.5 ± 6.6 | 5.9 ± 5.2 | 1.9 × 10−4 ± 1.3 × 10−4 | 1.6 × 10−4 ± 1.4 × 10−4 |
278 | 16,353 ± 5489 | 36 ± 26 | 10,091 ± 1878 | 1729 ± 1264 | 419 ± 137 | 865 ± 450 | 2.7 ± 1.9 | 1.8 ± 1.5 | 1.4 × 10−3 ± 9.8 × 10−4 | 6.7 × 10−4 ± 3.7 × 10−4 |
2720 | 29,778 ± 3912 | 21 ± 7 | 20,024 ± 13,105 | 2303 ± 792 | 483 ± 180 | 1679 ± 1384 | 1 ± 0.0 | 0.8 ± 0.3 | 1.1 × 10−1 ± 1.6 × 10−1 | 1.0 × 10−1 ± 1.4 × 10−1 |
474 | 5370 ± 483 | 138 ± 19 | 3845 ± 1408 | 367 ± 4 | 559 ± 162 | 245 ± 135 | 7.7 ± 0.3 | 8.2 ± 0.9 | 2.4 × 10−4 ± 6.9 × 10−5 | 1.9 × 10−4 ± 1.0 × 10−4 |
478 | 15,643 ± 4769 | 53 ± 30 | 10,390 ± 1906 | 1005 ± 536 | 607 ± 146 | 511 ± 226 | 3.3 ± 1.5 | 2 ± 1.2 | 7.9 × 10−4 ± 4.3 × 10−4 | 4.0 × 10−4 ± 1.8 × 10−4 |
4720 | 21,524 ± 2930 | 54 ± 36 | 19,302 ± 4795 | 1651 ± 87 | 623 ± 145 | 1701 ± 45 | 1.7 ± 0.6 | 1.2 ± 0.4 | 1.3 × 10−3 ± 7.8 × 10−5 | 1.3 × 10−3 ± 2.1 × 10−5 |
614 | 7215 ± 3892 | 135 ± 18 | 7343 ± 3758 | 417 ± 234 | 692 ± 313 | 433 ± 306 | 7 ± 2.1 | 6.9 ± 2.3 | 3.4 × 10−4 ± 2.2 × 10−4 | 3.4 × 10−4 ± 2.3 × 10−4 |
618 | 22,177 ± 10,118 | 173 ± 162 | 23,496 ± 14,249 | 1392 ± 415 | 1289 ± 880 | 1353 ± 894 | 1.9 ± 0.1 | 1.5 ± 0.1 | 6.6 × 10−2 ± 9.2 × 10−2 | 7.7 × 10−2 ± 1.1 × 10−1 |
6120 | 52,991 ± 3745 | 103 ± 10 | 47,588 ± 1881 | 4703 ± 979 | 1101 ± 18 | 5295 ± 1953 | 0.9 ± 0.0 | 0.6 ± 0.0 | 2.2 × 10−1 ± 3.0 × 10−1 | 2.5 × 10−1 ± 3.5 × 10−1 |
1254 | 23,051 ± 7733 | 141 ± 20 | 21,557 ± 6610 | 1133 ± 476 | 1100 ± 37 | 1025 ± 451 | 1.9 ± 0.4 | 1.5 ± 0.5 | 9.2 × 10−4 ± 4.0 × 10−4 | 7.9 × 10−4 ± 3.3 × 10−4 |
1258 | 27,300 ± 5465 | 230 ± 163 | 27,030 ± 3651 | 2270 ± 313 | 1431 ± 547 | 2128 ± 489 | 1.9 ± 1.1 | 1.6 ± 0.7 | 1.8 × 10−3 ± 2.8 × 10−4 | 1.6 × 10−3 ± 3.7 × 10−4 |
12520 | 44,107 ± 1898 | 105 ± 7 | 43,424 ± 1171 | 4174 ± 450 | 1135 ± 32 | 4087 ± 242 | 0.8 ± 0.0 | 0.7 ± 0.0 | 3.3 × 10−3 ± 2.8 × 10−4 | 3.1 × 10−3 ± 1.5 × 10−4 |
1954 | 35,199 ± 12,188 | 122 ± 18 | 35,055 ± 11,615 | 2853 ± 1074 | 960 ± 94 | 2408 ± 837 | 1.3 ± 0.6 | 1 ± 0.5 | 2.3 × 10−3 ± 8.6 × 10−4 | 1.8 × 10−3 ± 5.7 × 10−4 |
1958 | 27,326 ± 2285 | 122 ± 15 | 27,949 ± 2142 | 2371 ± 753 | 1038 ± 88 | 2388 ± 742 | 1.7 ± 0.6 | 1.5 ± 0.2 | 1.9 × 10−3 ± 8.6 × 10−4 | 1.8 × 10−3 ± 5.4 × 10−4 |
19520 | 36,773 ± 3183 | 47 ± 17 | 34,876 ± 3244 | 3103 ± 350 | 697 ± 207 | 3738 ± 1209 | 1 ± 0.1 | 0.9 ± 0.1 | 1.4 × 10−1 ± 1.9 × 10−1 | 1.7 × 10−1 ± 2.4 × 10−1 |
Sample ID | Compliance I (J, Pa) | Recoverable Compliance II (JR, Pa) | Recovered Compliance (JRE, Pa) |
---|---|---|---|
274 | 1156 ± 776 | 3118 ± 1242 | 35% ± 11% |
278 | 3328 ± 3599 | 6392 ± 81 | 52% ± 56% |
2720 | 5813 ± 1410 | 10,757 ± 4058 | 56% ± 8% |
474 | 1548 ± 1911 | 2952 ± 1421 | 42% ± 45% |
478 | 7008 ± 4834 | 12,445 ± 5356 | 53% ± 16% |
4720 | 5542 ± 712 | 14,688 ± 4769 | 39% ± 8% |
614 | 4141 ± 2678 | 5411 ± 2954 | 74% ± 9% |
618 | 6400 ± 1890 | 10,348 ± 4463 | 64% ± 9% |
6120 | 11,088 ± 3557 | 25,136 ± 2401 | 44% ± 10% |
1254 | 13,882 ± 4802 | 16,212 ± 5323 | 85% ± 2% |
1258 | 11,827 ± 1086 | 15,358 ± 2306 | 77% ± 5% |
12520 | 10,016 ± 5773 | 15,747 ± 8329 | 63% ± 4% |
1954 | 6369 ± 2264 | 14,059 ± 9213 | 51% ± 17% |
1958 | 4078 ± 913 | 14,249 ± 10,622 | 43% ± 38% |
19520 | 13,789 ± 4009 | 23,045 ± 3482 | 59% ± 8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pepi, S.; Talarico, L.; Leone, G.; Bonechi, C.; Consumi, M.; Boldrini, A.; Lauro, A.; Magnani, A.; Rossi, C. Effect of Mild Conditions on PVA-Based Theta Gel Preparation: Thermal and Rheological Characterization. Int. J. Mol. Sci. 2024, 25, 12039. https://doi.org/10.3390/ijms252212039
Pepi S, Talarico L, Leone G, Bonechi C, Consumi M, Boldrini A, Lauro A, Magnani A, Rossi C. Effect of Mild Conditions on PVA-Based Theta Gel Preparation: Thermal and Rheological Characterization. International Journal of Molecular Sciences. 2024; 25(22):12039. https://doi.org/10.3390/ijms252212039
Chicago/Turabian StylePepi, Simone, Luigi Talarico, Gemma Leone, Claudia Bonechi, Marco Consumi, Amedeo Boldrini, Alessia Lauro, Agnese Magnani, and Claudio Rossi. 2024. "Effect of Mild Conditions on PVA-Based Theta Gel Preparation: Thermal and Rheological Characterization" International Journal of Molecular Sciences 25, no. 22: 12039. https://doi.org/10.3390/ijms252212039
APA StylePepi, S., Talarico, L., Leone, G., Bonechi, C., Consumi, M., Boldrini, A., Lauro, A., Magnani, A., & Rossi, C. (2024). Effect of Mild Conditions on PVA-Based Theta Gel Preparation: Thermal and Rheological Characterization. International Journal of Molecular Sciences, 25(22), 12039. https://doi.org/10.3390/ijms252212039