Prioritizing Computational Cocrystal Prediction Methods for Experimental Researchers: A Review to Find Efficient, Cost-Effective, and User-Friendly Approaches
Abstract
:1. Introduction
2. Overview of Cocrystal Formation Prediction Methods
2.1. Quantum Mechanical Methods
2.2. Molecular Docking and Molecular Dynamics
2.3. Crystal Structure Prediction and Lattice Energy Minimization
2.4. Semi-Empirical Methods
2.5. Machine Learning and Data-Driven Approaches
2.6. Database and Knowledge-Based Methods
3. Exploring Cocrystal Formation Predictions: Case Studies and Challenges
3.1. Case Studies for Theoretically Predicted Cocrystals
3.1.1. Unraveling Cocrystal Structures and Interactions: A Quantum Mechanical Perspective
3.1.2. Unveiling the Power of Molecular Dynamics Simulations in Cocrystal Research
3.1.3. Exploring Cocrystal Interactions with Molecular Docking
3.1.4. Advancing Cocrystal Prediction: A Focus on Crystal Structure Prediction
3.1.5. COSMO-RS: A Valuable Tool for Streamlining the Initial Stages of Cocrystal Development
3.1.6. The Role of Hansen Solubility Parameters in Cocrystal Prediction
3.1.7. Predicting Cocrystal Success: Leveraging Molecular Features
3.1.8. The Power of Machine Learning in Cocrystal Prediction
3.1.9. Navigating the Cocrystal Landscape: The Virtual Screening Approach
3.2. Challenges Faced in Cocrystal Prediction
4. Evaluation of the Methods and Regarding Tools Based on Three Selected Criteria
4.1. Evaluation Criteria
4.2. Evaluation of the Selected Methods and Tools
4.2.1. Quantum Mechanical Methods for Cocrystal Prediction: A Powerful Approach with Limitations
4.2.2. Molecular Docking: Accessible Powerhouse for Initial Cocrystal Screening
4.2.3. Molecular Modeling for Studying Dynamics Within a Known Cocrystal Structure
4.2.4. Crystal Structure Prediction: Solutions for Varying Skill Levels Catered to by Different Tools
4.2.5. COSMO-RS: A Powerful but Potentially Pricey Tool for Cocrystal Prediction
4.2.6. Hansen Solubility Parameters: Fast and Easy Screening for Initial Compatibility, Despite Limitations
4.2.7. Machine Learning for Cocrystal Prediction: A Promising but Evolving Field
4.2.8. Traditional QSAR Approaches: Complex Interaction Limit the Modeling Cocrystal Formation
4.2.9. Database and Knowledge-Based Methods: A User-Friendly and Efficient Starting Point for Cocrystal Discovery
5. Comparative Analysis and Recommendations for Experimental Researchers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, J.; Zhang, Y.; An, Q.; Li, Y.; Liu, L. Improving the Sublimation Stability of Ligustrazine with Gallic Acid by Forming Pharmaceutical Cocrystal Based on the Etter’s Rules. J. Solid. State Chem. 2024, 331, 124545. [Google Scholar] [CrossRef]
- Krishnamoorthi, S.; Kasinathan, G.N.; Paramasivam, G.; Rath, S.N.; Prakash, J. Selective Targeting of Lung Cancer Cells with Methylparaben-Tethered-Quinidine Cocrystals in 3D Spheroid Models. ACS Omega 2023, 8, 46628–46639. [Google Scholar] [CrossRef] [PubMed]
- Khudaida, S.H.; Yen, Y.-T.; Su, C.-S. Cocrystal Screening of Anticancer Drug P-Toluenesulfonamide and Preparation by Supercritical Antisolvent Process. J. Supercrit. Fluid. 2024, 204, 106106. [Google Scholar] [CrossRef]
- Alvani, A.; Shayanfar, A. Solution Stability of Pharmaceutical Cocrystals. Cryst. Growth Des. 2022, 22, 6323–6337. [Google Scholar] [CrossRef]
- Weng, J.; Wong, S.N.; Xu, X.; Xuan, B.; Wang, C.; Chen, R.; Sun, C.C.; Lakerveld, R.; Kwok, P.C.L.; Chow, S.F. Cocrystal Engineering of Itraconazole with Suberic Acid via Rotary Evaporation and Spray Drying. Cryst. Growth Des. 2019, 19, 2736–2745. [Google Scholar] [CrossRef]
- Prajina, O.K.; Muthiah, P.T.; Perdih, F. Crystal Structures of Salts and Cocrystal of 1,3,5-Triazine Derivatives with Thiophene Carboxylic Acid Derivatives: An Investigation on Supramolecular Interactions. SN Appl. Sci. 2019, 1, 1298. [Google Scholar] [CrossRef]
- Kastelic, J.; Lah, N.; Kikelj, D.; Leban, I. A 1:1 Cocrystal of Fluconazole with Salicylic Acid. Acta Crystallogr. C Cryst. Struct. Commun. 2011, 67, o370–o372. [Google Scholar] [CrossRef]
- Rehder, S.; Klukkert, M.; Löbmann, K.A.M.; Strachan, C.J.; Sakmann, A.; Gordon, K.; Rades, T.; Leopold, C.S. Investigation of the Formation Process of Two Piracetam Cocrystals during Grinding. Pharmaceutics 2011, 3, 706–722. [Google Scholar] [CrossRef]
- Jung, S.; Choi, I.; Kim, I. Liquid-Assisted Grinding to Prepare a Cocrystal of Adefovir Dipivoxil Thermodynamically Less Stable than Its Neat Phase. Crystals 2015, 5, 583–591. [Google Scholar] [CrossRef]
- Barmpalexis, P.; Karagianni, A.; Nikolakakis, I.; Kachrimanis, K. Preparation of Pharmaceutical Cocrystal Formulations via Melt Mixing Technique: A Thermodynamic Perspective. Eur. J. Pharm. Biopharm. 2018, 131, 130–140. [Google Scholar] [CrossRef]
- Essen, C.V.; Luedeker, D. In Silico Co-Crystal Design: Assessment of the Latest Advances. Drug Discov. Today 2023, 28, 103763. [Google Scholar] [CrossRef] [PubMed]
- Karamertzanis, P.G.; Kazantsev, A.V.; Issa, N.; Welch, G.W.A.; Adjiman, C.S.; Pantelides, C.C.; Price, S.L. Can the Formation of Pharmaceutical Cocrystals Be Computationally Predicted? 2. Crystal Structure Prediction. J. Chem. Theory Comput. 2009, 5, 1432–1448. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nanda, A. In-Silico Methods of Cocrystal Screening: A Review on Tools for Rational Design of Pharmaceutical Cocrystals. J. Drug Deliv. Sci. Technol. 2021, 63, 102527. [Google Scholar] [CrossRef]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef]
- Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 26 June 2024).
- The Cambridge Structural Database | CCDC. Available online: https://www.ccdc.cam.ac.uk/solutions/software/csd/ (accessed on 26 June 2024).
- CSD Search—Access Structures. Available online: https://www.ccdc.cam.ac.uk/structures/ (accessed on 26 June 2024).
- Jensen, F. Introduction to Computational Chemistry, 3rd ed.; Wiley: Chichester, UK; Hoboken, NJ, USA; Oxford, UK, 2017; ISBN 978-1-118-82599-0. [Google Scholar]
- Alfuth, J.; Kazimierczuk, K.; Połoński, T.; Olszewska, T. Intermolecular Hydrogen Bonding Directed by Aryl–Perfluoroaryl π–π Stacking Interactions. Cryst. Growth Des. 2023, 23, 6830–6839. [Google Scholar] [CrossRef]
- Bu, F.-Z.; Yu, Y.-M.; Shen, Y.-L.; Wu, Z.-Y.; Li, Y.-T. Cocrystallization with Nutrient Ferulic Acid towards Reducing the Dissolubility Behaviors of Antifungal Drug 5-Fluorocytosine: An Integrated Theoretical and Experimental Case Research. J. Mol. Struct. 2023, 1275, 134601. [Google Scholar] [CrossRef]
- Bofill, L.; Prohens, R.; Barbas, R.; Frontera, A. DFT Analysis of Uncommon π···H-Bond Array Interaction in a New Pterostilbene/Theophylline Cocrystal. Cryst. Growth Des. 2020, 20, 6691–6698. [Google Scholar] [CrossRef]
- Fox, R.; Klug, J.; Thompson, D.; Reilly, A. Computational Predictions of Cocrystal Formation: A Benchmark Study of 28 Assemblies Comparing Five Methods from High-throughput to Advanced Models. J. Comput. Chem. 2024, 45, 2465–2475. [Google Scholar] [CrossRef]
- Ahmadi, S.; Ghanavati, M.A.; Rohani, S. Machine Learning-Guided Prediction of Cocrystals Using Point Cloud-Based Molecular Representation. Chem. Mater. 2024, 36, 1153–1161. [Google Scholar] [CrossRef]
- Van Mourik, T.; Bühl, M.; Gaigeot, M.-P. Density Functional Theory across Chemistry, Physics and Biology. Phil. Trans. R. Soc. A 2014, 372, 20120488. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Nanda, A. Similar but Not Same: Impact of Structurally Similar Coformers on Co-Crystallization with Telmisartan. J. Pharm. Innov. 2023, 18, 1954–1965. [Google Scholar] [CrossRef]
- Du, J.; Lai, F.; Váradi, L.; Williams, P.; Groundwater, P.; Platts, J.; Hibbs, D.; Overgaard, J. Monoclinic Paracetamol vs. Paracetamol-4,4′-Bipyridine Co-Crystal; What Is the Difference? A Charge Density Study. Crystals 2018, 8, 46. [Google Scholar] [CrossRef]
- Mazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M. Periodic DFT Calculations—Review of Applications in the Pharmaceutical Sciences. Pharmaceutics 2020, 12, 415. [Google Scholar] [CrossRef] [PubMed]
- Gaussian 16|Gaussian.Com. Available online: https://gaussian.com/gaussian16/ (accessed on 24 June 2024).
- Kovács, F.; Yan, H.; Li, H.; Kunsági-Máté, S. Temperature-Induced Change of Water Structure in Aqueous Solutions of Some Kosmotropic and Chaotropic Salts. Int. J. Mol. Sci. 2021, 22, 12896. [Google Scholar] [CrossRef]
- CASTEP. Available online: http://www.castep.org/ (accessed on 13 June 2024).
- VASP—Vienna Ab Initio Simulation Package. Available online: https://www.vasp.at/ (accessed on 12 June 2024).
- QuantumEspresso. Available online: https://www.quantum-espresso.org/ (accessed on 12 June 2024).
- Materials Studio. Available online: https://www.3ds.com/products/biovia/materials-studio (accessed on 13 June 2024).
- Schrödinger—Physics-Based Software Platform for Molecular Discovery & Design. Available online: https://www.schrodinger.com/ (accessed on 12 June 2024).
- Jaguar for Materials Science. Available online: https://www.schrodinger.com/platform/products/ms-jaguar/ (accessed on 24 June 2024).
- MacroModel for Materials Science. Available online: https://newsite.schrodinger.com/platform/products/macromodel/ (accessed on 24 June 2024).
- Octopus. Available online: https://octopus-code.org/documentation/14/ (accessed on 12 June 2024).
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery. Curr. Comput.-Aid. Drug 2011, 7, 146–157. [Google Scholar] [CrossRef]
- Wieczorek, G.; Niedzialek, D. Molecular Dynamics. In Encyclopedia of Life Sciences; Wiley: Hoboken, NJ, USA, 2020; pp. 1–18. ISBN 978-0-470-01617-6. [Google Scholar]
- Dhibar, M.; Chakraborty, S.; Basak, S.; Pattanayak, P.; Chatterjee, T.; Ghosh, B.; Raafat, M.; Abourehab, M.A.S. Critical Analysis and Optimization of Stoichiometric Ratio of Drug-Coformer on Cocrystal Design: Molecular Docking, In Vitro and In Vivo Assessment. Pharmaceuticals 2023, 16, 284. [Google Scholar] [CrossRef]
- Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for Molecular Docking: A Review. Biophys. Rev. 2017, 9, 91–102. [Google Scholar] [CrossRef]
- Chaudhari, K.R.; Savjani, J.K.; Savjani, K.T.; Shah, H. Improved Pharmaceutical Properties of Ritonavir through Co-Crystallization Approach with Liquid-Assisted Grinding Method. Drug Dev. Ind. Pharm. 2021, 47, 1633–1642. [Google Scholar] [CrossRef]
- AutoDock. Available online: https://autodock.scripps.edu/ (accessed on 24 June 2024).
- AutoDock Vina. Available online: https://vina.scripps.edu/ (accessed on 24 June 2024).
- CCDC GOLD. Available online: https://www.ccdc.cam.ac.uk/solutions/software/gold/ (accessed on 7 June 2024).
- CCDC Suites. Available online: https://www.ccdc.cam.ac.uk/suites/ (accessed on 7 June 2024).
- Glide for Life Science. Available online: https://www.schrodinger.com/platform/products/glide/ (accessed on 24 June 2024).
- UCSF DOCK. Available online: https://dock.compbio.ucsf.edu/ (accessed on 7 June 2024).
- Kouderis, C.; Tsigoias, S.; Siafarika, P.; Kalampounias, A.G. The Effect of Alkali Iodide Salts in the Inclusion Process of Phenolphthalein in β-Cyclodextrin: A Spectroscopic and Theoretical Study. Molecules 2023, 28, 1147. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Dhinesh Kumar, M.; Kaniraja, G.; Karunakaran, C. Theoretical Investigations of Free Energy of Binding and Chiral Recognition Studies of (R)- and (S)-Noradrenaline towards β-Cyclodextrin. J. Mol. Graph. Model. 2023, 124, 108552. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.R.; Day, G.M. Evaluating the Energetic Driving Force for Cocrystal Formation. Cryst. Growth Des. 2018, 18, 892–904. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Vogt-Maranto, L.; Wiscons, R.; Matzger, A.J.; Tuckerman, M.E. Generating Cocrystal Polymorphs with Information Entropy Driven by Molecular Dynamics-Based Enhanced Sampling. J. Phys. Chem. Lett. 2020, 11, 9751–9758. [Google Scholar] [CrossRef] [PubMed]
- Desmond|Schrödinger Life Science. Available online: https://www.schrodinger.com/platform/products/desmond/ (accessed on 30 October 2024).
- GROMACS. Available online: https://www.gromacs.org/ (accessed on 12 June 2024).
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Cerutti, D.S.; Cisneros, G.A.; Cruzeiro, V.W.D.; Forouzesh, N.; Giese, T.J.; Götz, A.W.; Gohlke, H.; et al. AmberTools. J. Chem. Inf. Model. 2023, 63, 6183–6191. [Google Scholar] [CrossRef]
- LAMMPS. Available online: https://www.lammps.org/#gsc.tab=0 (accessed on 12 June 2024).
- Desiraju, G.R. Cryptic Crystallography. Nat. Mater. 2002, 1, 77–79. [Google Scholar] [CrossRef]
- Abramov, Y.A.; Iuzzolino, L.; Jin, Y.; York, G.; Chen, C.-H.; Shultz, C.S.; Yang, Z.; Chang, C.; Shi, B.; Zhou, T.; et al. Cocrystal Synthesis through Crystal Structure Prediction. Mol. Pharm. 2023, 20, 3380–3392. [Google Scholar] [CrossRef]
- DMACRYS Basic Technology Programme—Control and Prediction of the Organic Solid State. Available online: http://www.chem.ucl.ac.uk/cposs/dmacrys/index.html (accessed on 12 June 2024).
- CALYPSO—An Efficient Structure Prediction Method and Computer Software. Available online: http://www.calypso.cn/home/ (accessed on 24 June 2024).
- Bonyadi, M.R.; Michalewicz, Z. Particle Swarm Optimization for Single Objective Continuous Space Problems: A Review. Evol. Comput. 2017, 25, 1–54. [Google Scholar] [CrossRef]
- GULP. Available online: https://gulp.curtin.edu.au/gulp/ (accessed on 12 June 2024).
- Kühne, T.D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V.V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R.Z.; Schütt, O.; Schiffmann, F.; et al. CP2K: An Electronic Structure and Molecular Dynamics Software Package—Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020, 152, 194103. [Google Scholar] [CrossRef]
- XtalOpt—Zurek Lab. Available online: http://xtalopt.github.io/ (accessed on 13 June 2024).
- Slurm Workload Manager—Overview. Available online: https://slurm.schedmd.com/overview.html (accessed on 24 June 2024).
- OpenPBS Open Source Project. Available online: https://www.openpbs.org/ (accessed on 24 June 2024).
- IBM Spectrum LSF 10.1.0. Available online: https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=install-upgrade-migrate (accessed on 24 June 2024).
- AIRSS. Available online: https://www.mtg.msm.cam.ac.uk/Codes/AIRSS (accessed on 13 June 2024).
- USPEX. Available online: https://uspex-team.org/en (accessed on 13 June 2024).
- STM4—The Molecular Visualization Toolkit. Available online: http://mariovalle.name/STM4/ (accessed on 24 June 2024).
- PyXtal—PyXtal 0.6.8 Documentation. Available online: https://pyxtal.readthedocs.io/en/latest/# (accessed on 13 June 2024).
- Pymatgen. Available online: https://pymatgen.org/ (accessed on 26 June 2024).
- Atomic Simulation Environment. Available online: https://wiki.fysik.dtu.dk/ase/ (accessed on 26 June 2024).
- The UPACK Program Package. Available online: http://www.crystal.chem.uu.nl/~vaneyck/upack.html (accessed on 7 June 2024).
- GRACE. Available online: https://www.avmatsim.eu/products (accessed on 13 June 2024).
- CrystalMaker Software: Crystal & Molecular Structures Modelling and Diffraction. Available online: https://crystalmaker.com/ (accessed on 26 June 2024).
- CrystalExplorer|CrystalExplorer. Available online: https://crystalexplorer.net/ (accessed on 18 July 2024).
- CCDC Blind Test. Available online: https://www.ccdc.cam.ac.uk/community/ccdc-for-the-community/partnerships-and-initiatives/csp-blind-test/ (accessed on 26 June 2024).
- Klamt, A. The COSMO and COSMO-RS Solvation Models. WIREs Comput. Mol. Sci. 2018, 8, e1338. [Google Scholar] [CrossRef]
- Loschen, C.; Klamt, A. Solubility Prediction, Solvate and Cocrystal Screening as Tools for Rational Crystal Engineering. J. Pharm. Pharmacol. 2015, 67, 803–811. [Google Scholar] [CrossRef]
- Abramov, Y.A.; Loschen, C.; Klamt, A. Rational Coformer or Solvent Selection for Pharmaceutical Cocrystallization or Desolvation. J. Pharm. Sci. 2012, 101, 3687–3697. [Google Scholar] [CrossRef] [PubMed]
- BIOVIA COSMO-RS. Available online: https://www.3ds.com/products/biovia/cosmo-rs (accessed on 7 June 2024).
- COSMOquick. Available online: https://www.3ds.com/products/biovia/cosmo-rs/cosmoquick (accessed on 24 June 2024).
- COSMOtherm. Available online: https://www.3ds.com/products/biovia/cosmo-rs/cosmotherm (accessed on 24 June 2024).
- Loschen, C.; Klamt, A. COSMO Quick: A Novel Interface for Fast σ-Profile Composition and Its Application to COSMO-RS Solvent Screening Using Multiple Reference Solvents. Ind. Eng. Chem. Res. 2012, 51, 14303–14308. [Google Scholar] [CrossRef]
- Amsterdam Modeling Suite: Easy & Powerful Computational Chemistry. Available online: https://www.scm.com/amsterdam-modeling-suite/ (accessed on 24 June 2024).
- COSMO-RS: Predict Activity Coefficients, logP, VLE from DFT Data. Available online: https://www.scm.com/product/cosmo-rs/ (accessed on 7 June 2024).
- ADF: Accurate & Efficient DFT, with Great GUI & Expert Support. Available online: https://www.scm.com/product/adf/ (accessed on 24 June 2024).
- COSMO-RS: Fast Sigma Profile Estimations and New UNIFAC Implementation. Available online: https://www.scm.com/news/cosmo-rs-fast-sigma-profile-estimations-and-new-unifac-implementation/ (accessed on 24 June 2024).
- Gerlach, T.; Müller, S.; de Castilla, A.G.; Smirnova, I. An Open Source COSMO-RS Implementation and Parameterization Supporting the Efficient Implementation of Multiple Segment Descriptors. Fluid Phase Equilibr. 2022, 560, 113472. [Google Scholar] [CrossRef]
- Hansen, C. The Three Dimensional Solubility Parameter and Solvent Diffusion Coefficient and Their Importance in Surface Coating Formulation; Danish Technical Press: Copenhagen, Denmark, 1967. [Google Scholar]
- Salem, A.; Nagy, S.; Pál, S.; Széchenyi, A. Reliability of the Hansen Solubility Parameters as Co-Crystal Formation Prediction Tool. Int. J. Pharm. 2019, 558, 319–327. [Google Scholar] [CrossRef] [PubMed]
- HSPiP | Hansen Solubility Parameters in Practice. Available online: https://www.hansen-solubility.com/HSPiP/ (accessed on 24 June 2024).
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Support Vector Machines—Scikit-Learn Documentation. Available online: https://scikit-learn.org/1.5/modules/svm.html (accessed on 26 June 2024).
- Ho, T.K. The Random Subspace Method for Constructing Decision Forests. IEEE T Pattern Anal. 1998, 20, 832–844. [Google Scholar] [CrossRef]
- Scikit-Learn: Machine Learning in Python—Scikit-Learn 1.5.0 Documentation. Available online: https://scikit-learn.org/stable/ (accessed on 7 June 2024).
- TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 7 June 2024).
- PyTorch. Available online: https://pytorch.org/ (accessed on 7 June 2024).
- Weka 3—Data Mining with Open Source Machine Learning Software in Java. Available online: https://ml.cms.waikato.ac.nz/weka (accessed on 26 June 2024).
- Weka Wiki. Available online: https://waikato.github.io/weka-wiki/ (accessed on 26 June 2024).
- Yamashita, T.; Kanehira, S.; Sato, N.; Kino, H.; Terayama, K.; Sawahata, H.; Sato, T.; Utsuno, F.; Tsuda, K.; Miyake, T.; et al. CrySPY: A Crystal Structure Prediction Tool Accelerated by Machine Learning. STAM Methods 2021, 1, 87–97. [Google Scholar] [CrossRef]
- OpenMX Website. Available online: https://www.openmx-square.org/ (accessed on 26 June 2024).
- Nbsato/Soiap. Available online: https://github.com/nbsato/soiap (accessed on 26 June 2024).
- Roy, K.; Kar, S.; Das, R.N. A Primer on QSAR/QSPR Modeling: Fundamental Concepts, 1st ed.; SpringerBriefs in Molecular Science; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-17281-1. [Google Scholar]
- KNIME Analytics Platform. Available online: https://www.knime.com/knime-analytics-platform (accessed on 7 June 2024).
- KNIME Hub. Available online: https://www.knime.com/knime-hub (accessed on 26 June 2024).
- QSAR Toolbox. Available online: https://qsartoolbox.org/ (accessed on 7 June 2024).
- Molajafari, F.; Li, T.; Abbasichaleshtori, M.; Zaker Damghan, M.H.; Cozzolino, A.F.; Fandrick, D.R.; Howe, J.D. Computational Screening for Prediction of Co-Crystals: Method Comparison and Experimental Validation. CrystEngComm 2024, 26, 1620–1636. [Google Scholar] [CrossRef]
- CCDC ConQuest. Available online: https://www.ccdc.cam.ac.uk/ (accessed on 24 June 2024).
- CCDC Mercury. Available online: https://www.ccdc.cam.ac.uk/solutions/software/mercury/ (accessed on 26 June 2024).
- CCDC CSD Python API. Available online: https://www.ccdc.cam.ac.uk/solutions/software/csd-python/ (accessed on 26 June 2024).
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From Visualization to Analysis, Design and Prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- DrugBank|Powering Health Insights with Structured Drug Data. Available online: https://www.drugbank.com/ (accessed on 7 June 2024).
- ChemSpider | Search and Share Chemistry. Available online: http://www.chemspider.com/ (accessed on 26 June 2024).
- Crystallography Open Database. Available online: http://www.crystallography.net/cod/ (accessed on 7 June 2024).
- Abdulla, L.M.; Peach, A.A.; Holmes, S.T.; Dowdell, Z.T.; Watanabe, L.K.; Iacobelli, E.M.; Hirsh, D.A.; Rawson, J.M.; Schurko, R.W. Synthesis and Characterization of Xylazine Hydrochloride Polymorphs, Hydrates, and Cocrystals: A 35 Cl Solid-State NMR and DFT Study. Cryst. Growth Des. 2023, 23, 3412–3426. [Google Scholar] [CrossRef]
- Xie, Y.; Yuan, P.; Heng, T.; Du, L.; An, Q.; Zhang, B.; Zhang, L.; Yang, D.; Du, G.; Lu, Y. Insight into the Formation of Cocrystal and Salt of Tenoxicam from the Isomer and Conformation. Pharmaceutics 2022, 14, 1968. [Google Scholar] [CrossRef] [PubMed]
- Vener, M.V.; Makhrov, D.E.; Voronin, A.P.; Shalafan, D.R. Molecular Dynamics Simulation of Association Processes in Aqueous Solutions of Maleate Salts of Drug-like Compounds: The Role of Counterion. Int. J. Mol. Sci. 2022, 23, 6302. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; Chen, S.; Jin, S.; Zhang, Z.; Zhang, Y.; Li, L. Molecular Dynamic Simulations on TKX-50/HMX Cocrystal. RSC Adv. 2017, 7, 6795–6799. [Google Scholar] [CrossRef]
- Yue, H.; Wang, J. Molecular Dynamics Simulations of a Hexanitrohexaazaisowurtzitane/4-Amino-3,7-dinitro- [1,2,4]Triazolo [5,1-c] [1,2,4]Triazine Cocrystal. ChemistrySelect 2023, 8, e202300671. [Google Scholar] [CrossRef]
- Barua, H.; Gunnam, A.; Yadav, B.; Nangia, A.; Shastri, N.R. An Ab Initio Molecular Dynamics Method for Cocrystal Prediction: Validation of the Approach. CrystEngComm 2019, 21, 7233–7248. [Google Scholar] [CrossRef]
- Khan, S.; Rahman, M.; Marwani, H.M.; Althomali, R.H.; Rahman, M.M. Bicomponent Polymorphs of Salicylic Acid, Their Antibacterial Potentials, Intermolecular Interactions, DFT and Docking Studies. Z. Für. Phys. Chem. 2024, 238, 291–311. [Google Scholar] [CrossRef]
- Abou-Taleb, H.A.; Shoman, M.E.; Makram, T.S.; Abdel-Aleem, J.A.; Abdelkader, H. Exploration of the Safety and Solubilization, Dissolution, Analgesic Effects of Common Basic Excipients on the NSAID Drug Ketoprofen. Pharmaceutics 2023, 15, 713. [Google Scholar] [CrossRef]
- Sun, G.; Jin, Y.; Li, S.; Yang, Z.; Shi, B.; Chang, C.; Abramov, Y.A. Virtual Coformer Screening by Crystal Structure Predictions: Crucial Role of Crystallinity in Pharmaceutical Cocrystallization. J. Phys. Chem. Lett. 2020, 11, 8832–8838. [Google Scholar] [CrossRef] [PubMed]
- Baraboshkin, N.M.; Zelenov, V.P.; Minyaev, M.E.; Pivina, T.S. Quest: Structure and Properties of BTF–Nitrobenzene Cocrystals with Different Ratios of Components. CrystEngComm 2022, 24, 235–250. [Google Scholar] [CrossRef]
- Evtushenko, D.N.; Arkhipov, S.G.; Fateev, A.V.; Izaak, T.I.; Egorova, L.A.; Skorik, N.A.; Vodyankina, O.V.; Boldyreva, E.V. A Cocrystal of L-Ascorbic Acid with Picolinic Acid: The Role of O—H...O, N—H...O and C—H...O Hydrogen Bonds and L-Ascorbic Acid Conformation in Structure Stabilization. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 967–978. [Google Scholar] [CrossRef]
- Shunnar, A.F.; Dhokale, B.; Karothu, D.P.; Bowskill, D.H.; Sugden, I.J.; Hernandez, H.H.; Naumov, P.; Mohamed, S. Efficient Screening for Ternary Molecular Ionic Cocrystals Using a Complementary Mechanosynthesis and Computational Structure Prediction Approach. Chem. A Eur. J. 2020, 26, 4752–4765. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Liu, D.; Xuan, C.; Lu, Q.; Yang, H.; Xiao, L.; Wang, S.; Jiang, W.; Hao, G. Theoretical Simulation Research on the Hygroscopicity, Stability, Sensitivity, and Mechanical Properties of the Cocrystals of Ammonium Nitrate with Typical High Energetic Molecules. Mater. Today Commun. 2024, 38, 107688. [Google Scholar] [CrossRef]
- Braun, D.E.; Hald, P.; Kahlenberg, V.; Griesser, U.J. Expanding the Solid Form Landscape of Bipyridines. Cryst. Growth Des. 2021, 21, 7201–7217. [Google Scholar] [CrossRef] [PubMed]
- Sugden, I.J.; Braun, D.E.; Bowskill, D.H.; Adjiman, C.S.; Pantelides, C.C. Efficient Screening of Coformers for Active Pharmaceutical Ingredient Cocrystallization. Cryst. Growth Des. 2022, 22, 4513–4527. [Google Scholar] [CrossRef]
- Bidault, X.; Chaudhuri, S. How Accurate Can Crystal Structure Predictions Be for High-Energy Molecular Crystals? Molecules 2023, 28, 4471. [Google Scholar] [CrossRef]
- Alhadid, A.; Jandl, C.; Mokrushina, L.; Minceva, M. Cocrystal Formation in l-Menthol/Phenol Eutectic System: Experimental Study and Thermodynamic Modeling. Cryst. Growth Des. 2022, 22, 3973–3980. [Google Scholar] [CrossRef]
- Guidetti, M.; Hilfiker, R.; Kuentz, M.; Bauer-Brandl, A.; Blatter, F. Exploring the Cocrystal Landscape of Posaconazole by Combining High-Throughput Screening Experimentation with Computational Chemistry. Cryst. Growth Des. 2023, 23, 842–852. [Google Scholar] [CrossRef]
- Li, C.; Wu, D.; Li, J.; Ji, X.; Qi, L.; Sun, Q.; Wang, A.; Xie, C.; Gong, J.; Chen, W. Multicomponent Crystals of Clotrimazole: A Combined Theoretical and Experimental Study. CrystEngComm 2021, 23, 6977–6993. [Google Scholar] [CrossRef]
- Li, C.; Zhang, C.; Yan, Y.; Liang, W.; Xu, J.; Chen, W. Multicomponent Crystals of Clozapine with Improved Solubility: A Combined Theoretical and Experimental Strategy on Coformer Screening and Structure–Property. Cryst. Growth Des. 2023, 23, 7295–7315. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, D.; Zhang, M.; Yu, F.; Bao, Y.; Xie, C.; Hou, B.; Jing, D.; Zhang, C.; Chen, W. Theoretical and Experimental Study of Pharmaceutical Salts: A Case of Trimethoprim. CrystEngComm 2024, 26, 3808–3822. [Google Scholar] [CrossRef]
- Chennuru, R.; Devarapalli, R.; Rengaraj, P.; Srinivas, P.L.; Dey, S.; Reddy, C.M. Improving Solubility of Poorly Soluble Abiraterone Acetate by Cocrystal Design Aided by In Silico Screening. Cryst. Growth Des. 2020, 20, 5018–5030. [Google Scholar] [CrossRef]
- De Almeida, A.C.; Ferreira, P.O.; Porto, M.V.; Canotilho, J.; De Castro, R.A.E.; Caires, F.J.; Da Silva Eusébio, M.E. Novel Nimesulide Multicomponent Solid Forms: Screening, Synthesis, Thermoanalytical Study and Characterization. J. Therm. Anal. Calorim. 2024. open access. [Google Scholar] [CrossRef]
- Mohammady, M.; Hadidi, M.; Iman Ghetmiri, S.; Yousefi, G. Design of Ultra-Fine Carvedilol Nanococrystals: Development of a Safe and Stable Injectable Formulation. Eur. J. Pharm. Biopharm. 2021, 168, 139–151. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, Y.; Xie, F.; Tang, J.; Zhang, R.; Yang, H.; Jiang, Y.; Liu, S. Minoxidil Multi-Component Crystals with Aromatic Carboxylic Acids: Theoretical Calculation and Structural Analysis. Cryst. Growth Des. 2022, 22, 3941–3953. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, B.; Yao, Q.; Hou, B.; Zhou, L.; Xie, C.; Gong, J.; Hao, H.; Chen, W. Evaluation on Cocrystal Screening Methods and Synthesis of Multicomponent Crystals: A Case Study. Cryst. Growth Des. 2021, 21, 4531–4546. [Google Scholar] [CrossRef]
- Fang, L.; Ma, Y.; Xiao, Y.; Li, Z.; Gao, Z.; Wu, S.; Rohani, S.; Gong, J. Theoretical and Structural Understanding of the Different Factors Influencing the Formation of Multicomponent Crystals of 2,4-Dichlorophenoxyacetic Acid with N-Heterocyclic Compounds. Cryst. Growth Des. 2022, 22, 1707–1719. [Google Scholar] [CrossRef]
- Chapman, C.J.; Groven, L.J. Evaluation of Solvate and Co-Crystal Screening Methods for CL-20 Containing Energetic Materials. J. Energ. Mater. 2022, 40, 258–272. [Google Scholar] [CrossRef]
- Alhadid, A.; Jandl, C.; Mokrushina, L.; Minceva, M. Nonideality and Cocrystal Formation in L-Menthol/Xylenol Eutectic Systems. J. Mol. Liq. 2022, 367, 120582. [Google Scholar] [CrossRef]
- Cysewski, P.; Walczak, P.; Ziółkowska, D.; Grela, I.; Przybyłek, M. Experimental and Theoretical Studies on the Sulfamethazine-Urea and Sulfamethizole-Urea Solid-Liquid Equilibria. J. Drug Deliv. Sci. Technol. 2021, 61, 102186. [Google Scholar] [CrossRef]
- Li, J.; Li, C.; Ji, X.; Sun, Q.; Li, Z.; Liu, H.; Zhou, L.; Jing, D.; Gong, J.; Chen, W. Combined Virtual and Experimental Screening of Multicomponent Crystals of 2,4-Dichlorophenoxyacetic Acid. New J. Chem. 2022, 46, 8708–8719. [Google Scholar] [CrossRef]
- Wu, D.; Li, J.; Xiao, Y.; Ji, X.; Li, C.; Zhang, B.; Hou, B.; Zhou, L.; Xie, C.; Gong, J.; et al. New Salts and Cocrystals of Pymetrozine with Improvements on Solubility and Humidity Stability: Experimental and Theoretical Study. Cryst. Growth Des. 2021, 21, 2371–2388. [Google Scholar] [CrossRef]
- Hao, Y.; Hung, Y.C.; Shimoyama, Y. Investigating Spatial Charge Descriptors for Prediction of Cocrystal Formation Using Machine Learning Algorithms. Cryst. Growth Des. 2022, 22, 6608–6615. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, X.; Wang, S.; Chang, C.; Zeng, Q.; Song, Z.; Jin, Y.; Zeng, Q.; Sun, G.; Ruan, S.; et al. Virtual Coformer Screening by a Combined Machine Learning and Physics-Based Approach. CrystEngComm 2021, 23, 6039–6044. [Google Scholar] [CrossRef]
- Deng, Y.; Deng, W.; Huang, W.; Zheng, Z.; Zhang, R.; Liu, S.; Jiang, Y. Norfloxacin Co-Amorphous Salt Systems: Effects of Molecular Descriptors on the Formation and Physical Stability of Co-Amorphous Systems. Chem. Eng. Sci. 2022, 253, 117549. [Google Scholar] [CrossRef]
- Kshirsagar, S.M.; Chatale, B.C.; Amin, P.D. Comparative Evaluation of Ibuprofen Co-Crystals Prepared by Solvent Evaporation and Hot Melt Extrusion Technology. J. Drug Deliv. Sci. Technol. 2022, 67, 103003. [Google Scholar] [CrossRef]
- Salem, A.; Hagymási, A.; Vörös-Horváth, B.; Šafarik, T.; Balić, T.; Szabó, P.; Gősi, F.; Nagy, S.; Pál, S.; Kunsági-Máté, S.; et al. Solvent Dependent 4-Aminosalicylic Acid-Sulfamethazine Co-Crystal Polymorph Control. Eur. J. Pharm. Sci. 2021, 156, 105599. [Google Scholar] [CrossRef]
- Thimmasetty, J.; Ghosh, T.; Nayak, N.S.; Raheem, A. Oral Bioavailability Enhancement of Paliperidone by the Use of Cocrystalization and Precipitation Inhibition. J. Pharm. Innov. 2021, 16, 160–169. [Google Scholar] [CrossRef]
- Przybyłek, M.; Cysewski, P. Distinguishing Cocrystals from Simple Eutectic Mixtures: Phenolic Acids as Potential Pharmaceutical Coformers. Cryst. Growth Des. 2018, 18, 3524–3534. [Google Scholar] [CrossRef]
- Fábián, L. Cambridge Structural Database Analysis of Molecular Complementarity in Cocrystals. Cryst. Growth Des. 2009, 9, 1436–1443. [Google Scholar] [CrossRef]
- Ahmadi, S.; Mondal, P.K.; Wu, Y.; Gong, W.; Mirmehrabi, M.; Rohani, S. Virtual Multicomponent Crystal Screening: Hydrogen Bonding Revisited. Cryst. Growth Des. 2021, 21, 5862–5872. [Google Scholar] [CrossRef]
- Devogelaer, J.; Meekes, H.; Tinnemans, P.; Vlieg, E.; De Gelder, R. Co-crystal Prediction by Artificial Neural Networks**. Angew. Chem. Int. Ed. 2020, 59, 21711–21718. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yang, Z.; Zhu, B.; Mei, X.; Luo, X. Machine-Learning-Guided Cocrystal Prediction Based on Large Data Base. Cryst. Growth Des. 2020, 20, 6610–6621. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Kang, Y.; Li, Z. Cocrystal Prediction Based on Deep Forest Model—A Case Study of Febuxostat. Crystals 2024, 14, 313. [Google Scholar] [CrossRef]
- Mswahili, M.E.; Lee, M.-J.; Martin, G.L.; Kim, J.; Kim, P.; Choi, G.J.; Jeong, Y.-S. Cocrystal Prediction Using Machine Learning Models and Descriptors. Appl. Sci. 2021, 11, 1323. [Google Scholar] [CrossRef]
- Yue, H.; Wang, J. Machine Learning Prediction of Flavonoid Cocrystal Formation Combined with Experimental Validation. Ind. Eng. Chem. Res. 2023, 62, 20767–20776. [Google Scholar] [CrossRef]
- Li, C.; Li, Z.; Liu, X.; Xu, J.; Zhang, C. Machine Learning Approach to Predict Hansen Solubility Parameters of Cocrystal Coformers via Integrating Group Contribution and COSMO-RS. J. Mol. Liq. 2024, 408, 125319. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.; Yuan, P.; An, Q.; Su, B.; Yu, M.; Chen, T.; Hu, K.; Zhang, L.; Lu, Y.; et al. Cocrystal Virtual Screening Based on the XGBoost Machine Learning Model. Chin. Chem. Lett. 2023, 34, 107964. [Google Scholar] [CrossRef]
- Guo, J.; Sun, M.; Zhao, X.; Shi, C.; Su, H.; Guo, Y.; Pu, X. General Graph Neural Network-Based Model To Accurately Predict Cocrystal Density and Insight from Data Quality and Feature Representation. J. Chem. Inf. Model. 2023, 63, 1143–1156. [Google Scholar] [CrossRef]
- Sarkar, N.; Gonnella, N.C.; Krawiec, M.; Xin, D.; Aakeröy, C.B. Evaluating the Predictive Abilities of Protocols Based on Hydrogen-Bond Propensity, Molecular Complementarity, and Hydrogen-Bond Energy for Cocrystal Screening. Cryst. Growth Des. 2020, 20, 7320–7327. [Google Scholar] [CrossRef]
- O’Sullivan, A.; Spoletti, E.; Ross, S.A.; Lusi, M.; Douroumis, D.; Ryan, K.M.; Padrela, L. Screening, Synthesis, and Characterization of a More Rapidly Dissolving Celecoxib Crystal Form. ACS Omega 2024, 9, 29710–29722. [Google Scholar] [CrossRef]
- Wang, L.; Yan, Y.; Zhang, X.; Zhou, X. Novel Pharmaceutical Cocrystal of Lenalidomide with Nicotinamide: Structural Design, Evaluation, and Thermal Phase Transition Study. Int. J. Pharm. 2022, 613, 121394. [Google Scholar] [CrossRef] [PubMed]
- Khalaji, M.; Potrzebowski, M.J.; Dudek, M.K. Virtual Cocrystal Screening Methods as Tools to Understand the Formation of Pharmaceutical Cocrystals—A Case Study of Linezolid, a Wide-Range Antibacterial Drug. Cryst. Growth Des. 2021, 21, 2301–2314. [Google Scholar] [CrossRef]
- Kopczyńska, K.; Kingsbury, C.J.; Pidcock, E.; Moldovan, A.A.; Madura, I.D. A Case of Unusual Cocrystal Polymorphs of Caffeine and Phenylboronic Acid: Cambridge Structural Database Tools in Action. Cryst. Growth Des. 2024, 24, 5159–5170. [Google Scholar] [CrossRef]
- Cappuccino, C.; Cusack, D.; Flanagan, J.; Harrison, C.; Holohan, C.; Lestari, M.; Walsh, G.; Lusi, M. How Many Cocrystals Are We Missing? Assessing Two Crystal Engineering Approaches to Pharmaceutical Cocrystal Screening. Cryst. Growth Des. 2022, 22, 1390–1397. [Google Scholar] [CrossRef]
- De Vries, T.E.; Vlieg, E.; De Gelder, R. Unravelling the Structure of the CSD Cocrystal Network Using a Fast Near-Optimal Bipartisation Algorithm for Large Networks. CrystEngComm 2024, 26, 192–202. [Google Scholar] [CrossRef]
- Springuel, G.; Robeyns, K.; Norberg, B.; Wouters, J.; Leyssens, T. Cocrystal Formation between Chiral Compounds: How Cocrystals Differ from Salts. Cryst. Growth Des. 2014, 14, 3996–4004. [Google Scholar] [CrossRef]
- Bennett, A.J.; Matzger, A.J. Progress in Predicting Ionic Cocrystal Formation: The Case of Ammonium Nitrate. Chem. A Eur. J. 2023, 29, e202300076. [Google Scholar] [CrossRef]
- Shaikh, T.R.; Shelke, N.; Tothadi, S. Multicomponent Solvate Crystals of 3,5-Dinitrobenzoic Acid and Acetamide and CSD Analysis of Solvates. ACS Omega 2023, 8, 24644–24653. [Google Scholar] [CrossRef]
- Sarjeant, A.; Abourahma, H.; Thomas, S.; Cook, C.; Yin, Z. On the Road to Cocrystal Prediction: A Screening Study for the Validation of In Silico Methods. Cryst. Growth Des. 2024, 24, 5486–5493. [Google Scholar] [CrossRef]
- Challener, C. Predictive Modeling for Formulation Development: Coformers, Cocrystals, Complexes. Pharm. Tech. 2023, 47, 16–19. [Google Scholar]
- Grecu, T.; Hunter, C.A.; Gardiner, E.J.; McCabe, J.F. Validation of a Computational Cocrystal Prediction Tool: Comparison of Virtual and Experimental Cocrystal Screening Results. Cryst. Growth Des. 2014, 14, 165–171. [Google Scholar] [CrossRef]
- Nikhar, R.; Szalewicz, K. Reliable Crystal Structure Predictions from First Principles. Nat. Commun. 2022, 13, 3095. [Google Scholar] [CrossRef] [PubMed]
- Gagnière, E.; Mangin, D.; Puel, F.; Rivoire, A.; Monnier, O.; Garcia, E.; Klein, J.P. Formation of Co-Crystals: Kinetic and Thermodynamic Aspects. J. Cryst. Growth 2009, 311, 2689–2695. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, Y.; Kan, H.; Cheng, L.; Luo, L.; Su, Q.; Gao, J.; Gao, Y.; Zhang, J. Thermodynamic and Kinetic Investigation on the Crucial Factors Affecting Adefovir Dipivoxil-Saccharin Cocrystallization. Pharm. Res. 2014, 31, 1766–1778. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Q.; Ji, W.; An, Q.; Song, J.; Xing, C.; Yang, D.; Zhang, L.; Lu, Y.; Du, G. Cocrystals of Praziquantel with Phenolic Acids: Discovery, Characterization, and Evaluation. Molecules 2022, 27, 2022. [Google Scholar] [CrossRef]
- Wong, S.N.; Fu, M.; Li, S.; Kwok, W.T.C.; Chow, S.; Low, K.-H.; Chow, S.F. Discovery of New Cocrystals beyond Serendipity: Lessons Learned from Successes and Failures. CrystEngComm 2024, 26, 1505–1526. [Google Scholar] [CrossRef]
- Hassija, V.; Chamola, V.; Mahapatra, A.; Singal, A.; Goel, D.; Huang, K.; Scardapane, S.; Spinelli, I.; Mahmud, M.; Hussain, A. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence. Cogn. Comput. 2024, 16, 45–74. [Google Scholar] [CrossRef]
- Karimi-Jafari, M.; Padrela, L.; Walker, G.M.; Croker, D.M. Creating Cocrystals: A Review of Pharmaceutical Cocrystal Preparation Routes and Applications. Cryst. Growth Des. 2018, 18, 6370–6387. [Google Scholar] [CrossRef]
- Haskins, M.M.; Zaworotko, M.J. Screening and Preparation of Cocrystals: A Comparative Study of Mechanochemistry vs Slurry Methods. Cryst. Growth Des. 2021, 21, 4141–4150. [Google Scholar] [CrossRef]
- Lu, M.; Rao, S.; Yue, H.; Han, J.; Wang, J. Recent Advances in the Application of Machine Learning to Crystal Behavior and Crystallization Process Control. Cryst. Growth Des. 2024, 24, 5374–5396. [Google Scholar] [CrossRef]
- Sakhiya, D.C.; Borkhataria, C.H. A Review on Advancement of Cocrystallization Approach and a Brief on Screening, Formulation and Characterization of the Same. Heliyon 2024, 10, e29057. [Google Scholar] [CrossRef] [PubMed]
- Aitipamula, S.; Bolla, G. Optimizing Drug Development: Harnessing the Sustainability of Pharmaceutical Cocrystals. Mol. Pharm. 2024, 21, 3121–3143. [Google Scholar] [CrossRef] [PubMed]
- AutoDockTools. Available online: https://ccsb.scripps.edu/mgltools/ (accessed on 24 June 2024).
- Heng, T.; Yang, D.; Wang, R.; Zhang, L.; Lu, Y.; Du, G. Progress in Research on Artificial Intelligence Applied to Polymorphism and Cocrystal Prediction. ACS Omega 2021, 6, 15543–15550. [Google Scholar] [CrossRef] [PubMed]
- Birolo, R.; Bravetti, F.; Alladio, E.; Priola, E.; Bianchini, G.; Novelli, R.; Aramini, A.; Gobetto, R.; Chierotti, M.R. Speeding Up the Cocrystallization Process: Machine Learning-Combined Methods for the Prediction of Multicomponent Systems. Cryst. Growth Des. 2023, 23, 7898–7911. [Google Scholar] [CrossRef]
Method | Program/Tools | Ease of Use | Learning Curve | Accuracy and Reliability | Time Required | Initial Cost | Hardware Requirements |
---|---|---|---|---|---|---|---|
Quantum Mechanical Methods | Gaussian VASP Quantum ESPRESSO Schrödinger suite (Jaguar and MacroModel) Octopus | Requires significant expertise in quantum mechanics and computational chemistry. | Steep learning curve; extensive training needed. | Highly accurate and reliable for electronic structure calculations. | Computationally expensive and time-consuming calculations. | Cost varies; free open-source options are available, but commercial software can be expensive | Requires access to powerful computers or high-performance computing clusters. |
Molecular Docking | AutoDock GOLD DOCK | Reasonably accessible with good training | Moderate learning curve; basic understanding of molecular interactions required | Effective for initial screening and predicting binding affinities/poses | Varies depending on system size and complexity; generally faster than QM methods | Variable; free and commercial options available | Modestly powerful computers; GPUs can improve speed (optional) |
Molecular Dynamics | GROMACS AMBER LAMMPS | Moderately complex | Steep learning curve; requires understanding of molecular mechanics and scripting | Highly accurate | Highly time-consuming for exhaustive cocrystal exploration | Several free options are available | Requires powerful computers or high-performance computing clusters |
Crystal Structure Prediction | CALYPSO XtalOpt PyXtal UPACK GULP CrystalMaker CrystalExplorer | Moderately complex and complex (requires scripting) | Moderate or steep | Varies | Varies (depends on system complexity and desired accuracy and can be time-consuming) | Variable; free and commercial options available | Powerful computer recommended |
COSMO-RS | BIOVIA COSMO-RS (COSMOquick, COSMOtherm) COSMO-RS-ADF-openCOSMO-RS | Variable; user-friendly (menus/interfaces); Moderate to high (depending on experience in QM calculations) | From moderate training (some background helpful) to a step learning curve | Potentially high for thermodynamic properties and solubility prediction | Can be efficient for screening and routine calculations, less time-consuming than full simulations | Variable; commercial options, open-source alternative | Variable; moderate computational resources; high; requires access to powerful computers |
Hansen Solubility Parameters | HSPiP | User-friendly (menus/interfaces) | Moderate training | Accuracy depends on the data quality and limitations of the HSP method | Efficient for screening | HSP method (free), HSPiP (commercial software) | Minimal; HSPiP requires Windows PC |
Machine Learning | scikit-learn TensorFlow PyTorch WEKA CrySPY | Depending on the specific tools, “black-box “, Experience in programming required | Steep | Depending on the quality and quantity of training data | Building models is time-consuming; the use of pre-trained models is more efficient | The most tools are free and open-source | Moderate computational resources |
Quantitative Structure-Activity Relationship | KNIME Analytics Platform QSAR Toolbox | Moderate-high | Moderate-High (basic understanding of QSAR and depends on the desired level of expertise) | Low in cocrystal prediction | Can be time-consuming. | Free options and free core versions | Moderate computational resources, but varies depending on the complexity of the QSAR model and the chosen tools |
Database and Knowledge-Based Methods | CCDC software suite (ConQuest, Mercury, CSD Python API) COD ZINC Database PubChem ChemSpider DrugBank | Varies depending on the specific tool. CCDC software requires some training, while ZINC and PubChem offer user-friendly interfaces. | The learning curve varies. CCDC software requires more understanding of crystallography and search criteria, while ZINC and PubChem are more intuitive. | Depends on search criteria, methods, and database quality | Efficient for screening, time depends on the screening strategy and tools | Variable; most options are free, but CCDC software is commercially available | Minimal (web browser) or standard computers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemli, B.; Pál, S.; Salem, A.; Széchenyi, A. Prioritizing Computational Cocrystal Prediction Methods for Experimental Researchers: A Review to Find Efficient, Cost-Effective, and User-Friendly Approaches. Int. J. Mol. Sci. 2024, 25, 12045. https://doi.org/10.3390/ijms252212045
Lemli B, Pál S, Salem A, Széchenyi A. Prioritizing Computational Cocrystal Prediction Methods for Experimental Researchers: A Review to Find Efficient, Cost-Effective, and User-Friendly Approaches. International Journal of Molecular Sciences. 2024; 25(22):12045. https://doi.org/10.3390/ijms252212045
Chicago/Turabian StyleLemli, Beáta, Szilárd Pál, Ala’ Salem, and Aleksandar Széchenyi. 2024. "Prioritizing Computational Cocrystal Prediction Methods for Experimental Researchers: A Review to Find Efficient, Cost-Effective, and User-Friendly Approaches" International Journal of Molecular Sciences 25, no. 22: 12045. https://doi.org/10.3390/ijms252212045
APA StyleLemli, B., Pál, S., Salem, A., & Széchenyi, A. (2024). Prioritizing Computational Cocrystal Prediction Methods for Experimental Researchers: A Review to Find Efficient, Cost-Effective, and User-Friendly Approaches. International Journal of Molecular Sciences, 25(22), 12045. https://doi.org/10.3390/ijms252212045