Ginsenoside Rg1 Prevents and Treats Acute Pulmonary Injury Induced by High-Altitude Hypoxia
Abstract
:1. Introduction
2. Results
2.1. Rg1 Target-Pathway and High Altitude-Induced ALI Target Network Analysis
2.2. Rg1 Alleviated the Physiological Stress Response Induced by High-Altitude Hypoxia
2.3. Rg1 Alleviated the Inflammatory Response Induced by High-Altitude Hypoxia
2.4. Rg1 Decreased Blood Viscosity in Hypoxic Rats
2.5. Rg1 Reduced the Pathological Damage of Lung Tissue in Hypoxic Rats
2.6. Rg1 Ameliorated the Structural Abnormalities of Alveolar Epithelial Cells in Hypoxic Rats
2.7. Establishment of a Cell Hypoxia Model and Preliminary Detection of Rg1 Efficacy
2.8. Rg1 Reduced ROS Release and Ca2+ Influx in Hypoxic Cells
2.9. Rg1 Improved Mitochondrial Respiration Under Hypoxic Conditions
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals and Grouping
4.3. Network Pharmacology
4.4. Blood Gas Analyses
4.5. Peripheral Blood Cell Counts and Hemorheology Examination
4.6. Coagulation Profile Testing
4.7. Inflammatory Response Assessments
4.8. Calculation of Lung Index
4.9. Histopathological Analysis
4.10. Construction of Hypoxia Cell Model
4.11. Detection of Cellular ROS Release and Ca2+ Influx
4.12. Detection of Cellular Mitochondrial Respiratory Capacity
4.13. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALI | Acute lung injury |
AMS | Acute mountain sickness |
APTT | Activated partial thromboplastin time |
BALF | Bronchoalveolar lavage fluid |
BB | Buffer base |
BE | Base excess |
SpO2 | Blood oxygen saturation |
HCO3− | Bicarbonate |
BP | Biological processes |
CC | Cellular components |
CCN1 | Cellular communication network factor 1 |
CCK8 | Cell counting kit-8 |
ECs | Endothelial cells |
ELISA | Enzyme-linked immunosorbent assay |
FIB | Fibrinogen |
GO | Gene Ontology |
HAPE | High-altitude pulmonary edema |
HBSS | Hank’s balanced salt solution |
HCT | Hematocrit |
H&E | Hematoxylin and Eosin |
HGB | Hemoglobin |
HPH | Hypoxic pulmonary hypertension |
HPMEC | Human pulmonary microvascular endothelial cells |
HIF | Hypoxia-inducible factors |
IL | Interleukin |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
LSS | Laminar shear stress |
LYMPH | Lymphocytes |
MFs | Molecular functions |
MONOs | Monocytes |
MPV | Mean platelet volume |
NEUTs | Neutrophils |
OCR | Oxygen consumption rate |
OMIM | Online Mendelian Inheritance in Man |
OSS | Oscillatory shear stress |
PaCO2 | Partial pressure of arterial carbon dioxide |
PaO2 | Partial pressure of arterial oxygen |
PDE5 | Phosphodiesterase type 5 |
PDW | Platelet distribution width |
PGKB | PharmGKB |
PI3K | Phosphoinositide 3-kinase |
P-LCR | Platelet–larger cell ratio |
AKT | Protein kinase B |
PPI | Protein–protein interaction |
PT | Prothrombin time |
RBCs | Red blood cells |
ROS | Reactive oxygen species |
SD | Sprague Dawley |
SP-D | Surfactant protein-D |
SPF | Specific pathogen-free |
TEM | Transmission electron microscopy |
TT | Thrombin time |
TTD | Therapeutic Target Database |
TCM | Traditional Chinese medicines |
TCMSP | Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform |
TNF | Tumor necrosis factor |
WBCs | White blood cells |
References
- Tremblay, J.C.; Ainslie, P.N. Global and country-level estimates of human population at high altitude. Proc. Natl. Acad. Sci. USA 2021, 118, e21024631. [Google Scholar] [CrossRef] [PubMed]
- Richalet, J.P.; Larmignat, P.; Poitrine, E.; Letournel, M.; Canouï-Poitrine, F. Physiological risk factors for severe high-altitude illness: A prospective cohort study. Am. J. Respir. Crit. Care Med. 2012, 185, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Bärtsch, P.; Swenson, E.R. Clinical practice: Acute high-altitude illnesses. N. Engl. J. Med. 2013, 368, 2294–2302. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.R.; Bärtsch, P.; Basnyat, B.; Berger, M.M.; Hackett, P.; Luks, A.M.; Richalet, J.-P.; Zafren, K.; Kayser, B. Strengthening Altitude Knowledge: A Delphi Study to Define Minimum Knowledge of Altitude Illness for Laypersons Traveling to High Altitude. High. Alt. Med. Biol. 2022, 23, 330–337. [Google Scholar] [CrossRef]
- Mallet, R.T.; Burtscher, J.; Pialoux, V.; Pasha, Q.; Ahmad, Y.; Millet, G.P.; Burtscher, M. Molecular Mechanisms of High-Altitude Acclimatization. Int. J. Mol. Sci. 2023, 24, 1698. [Google Scholar] [CrossRef]
- Gatterer, H.; Villafuerte, F.C.; Ulrich, S.; Bhandari, S.S.; Keyes, L.E.; Burtscher, M. Altitude illnesses. Nat. Rev. Dis. Primers 2024, 10, 43. [Google Scholar] [CrossRef]
- Pena, E.; El Alam, S.; Siques, P.; Brito, J. Oxidative Stress and Diseases Associated with High-Altitude Exposure. Antioxidants 2022, 11, 267. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Y.; Gao, R.; Chen, J.; Chen, Y.; Li, M.; Gao, Y. Potential therapeutic effects of traditional Chinese medicine in acute mountain sickness: Pathogenesis, mechanisms and future directions. Front. Pharmacol. 2024, 15, 1393209. [Google Scholar] [CrossRef]
- Gao, Y.; Li, J.; Wang, J.; Li, X.; Li, J.; Chu, S.; Li, L.; Chen, N.; Zhang, L. Ginsenoside Rg1 prevent and treat inflammatory diseases: A review. Int. Immunopharmacol. 2020, 87, 106805. [Google Scholar] [CrossRef]
- Tang, B.L.; Liu, Y.; Zhang, J.L.; Lu, M.L.; Wang, H.X. Ginsenoside Rg1 ameliorates hypoxia-induced pulmonary arterial hypertension by inhibiting endothelial-to-mesenchymal transition and inflammation by regulating CCN1. Biomed. Pharmacother. 2023, 164, 114920. [Google Scholar] [CrossRef]
- Li, N.; Cheng, Y.; Jin, T.; Cao, L.; Zha, J.; Zhu, X.; He, Q. Kaempferol and ginsenoside Rg1 ameliorate acute hypobaric hypoxia induced lung injury based on network pharmacology analysis. Toxicol. Appl. Pharmacol. 2023, 480, 116742. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Zhong, W.; Wang, L.; Zhang, Q.; Ma, X.; Wang, Y.; Wang, S.; He, C.; Wei, Q.; Fu, C. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed. Pharmacother. 2023, 158, 114198. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Beebe, T.; Cui, J.; Rouhanizadeh, M.; Ai, L.; Wang, P.; Gundersen, M.; Takabe, W.; Hsiai, T.K. Pulsatile shear stress increased mitochondrial membrane potential: Implication of Mn-SOD. Biochem. Biophys. Res. Commun. 2009, 388, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.H.; Chang, H.C.; Ting, P.C.; Wang, D.L. Laminar shear stress promotes mitochondrial homeostasis in endothelial cells. J. Cell Physiol. 2018, 233, 5058–5069. [Google Scholar] [CrossRef] [PubMed]
- Takabe, W.; Jen, N.; Ai, L.; Hamilton, R.; Wang, S.; Holmes, K.; Dharbandi, F.; Khalsa, B.; Bressler, S.; Barr, M.L.; et al. Oscillatory shear stress induces mitochondrial superoxide production: Implication of NADPH oxidase and c-Jun NH2-terminal kinase signaling. Antioxid. Redox Signal. 2011, 15, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.-H.; Chen, P.-C.; Hsu, H.-Y.; Liu, J.-C.; Ho, Y.-S.; Lin, Y.J.; Kuo, C.-W.; Kuo, W.-S.; Kao, H.-F.; Wang, S.-D.; et al. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol. Immunol. 2023, 20, 38–50. [Google Scholar] [CrossRef]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- Sommer, N.; Strielkov, I.; Pak, O.; Weissmann, N. Oxygen sensing and signal transduction in hypoxic pulmonary vasoconstriction. Eur. Respir. J. 2016, 47, 288–303. [Google Scholar] [CrossRef]
- Im, D.S. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng. Biomolecules 2020, 10, 444. [Google Scholar] [CrossRef]
- Pascual, J.; Turner, N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol. 2019, 30, 1051–1060. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, L.; Zhao, X.; Rong, J. The therapeutic potential of exosomes in lung cancer. Cell. Oncol. 2023, 46, 1181–1212. [Google Scholar] [CrossRef] [PubMed]
- Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T.J.; Ridger, V.; Roddie, H.; Evans, P.C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Shi, X.; Sheng, K.; Han, G.; Li, W.; Zhao, Q.; Jiang, B.; Feng, J.; Li, J.; Gu, Y. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review). Mol. Med. Rep. 2019, 19, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Sydykov, A.; Mamazhakypov, A.; Maripov, A.; Kosanovic, D.; Weissmann, N.; Ghofrani, H.A.; Sarybaev, A.S.; Schermuly, R.T. Pulmonary Hypertension in Acute and Chronic High Altitude Maladaptation Disorders. Int. J. Environ. Res. Public Health 2021, 18, 1692. [Google Scholar] [CrossRef] [PubMed]
- Saguil, A.; Fargo, M.V. Acute Respiratory Distress Syndrome: Diagnosis and Management. Am. Fam. Physician 2020, 101, 730–738. [Google Scholar]
- Lee, P.; Chandel, N.S.; Simon, M.C. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat. Rev. Mol. Cell Biol. 2020, 21, 268–283. [Google Scholar] [CrossRef]
- Alexy, T.; Detterich, J.; Connes, P.; Toth, K.; Nader, E.; Kenyeres, P.; Arriola-Montenegro, J.; Ulker, P.; Simmonds, M.J. Physical Properties of Blood and their Relationship to Clinical Conditions. Front. Physiol. 2022, 13, 906768. [Google Scholar] [CrossRef]
- Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D.; et al. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Front. Physiol. 2019, 10, 1329. [Google Scholar] [CrossRef]
- Di, X.; Gao, X.; Peng, L.; Ai, J.; Jin, X.; Qi, S.; Li, H.; Wang, K.; Luo, D. Cellular mechanotransduction in health and diseases: From molecular mechanism to therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 282. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Z.; Yan, J.-Y.; Ge, Y.-X.; Gao, Y. Inflammation and coagulation abnormalities via the activation of the HMGB1-RAGE/NF-κB and F2/Rho pathways in lung injury induced by acute hypoxia. Int. J. Mol. Med. 2023, 52, 67. [Google Scholar] [CrossRef]
- Van Loo, G.; Bertrand, M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023, 23, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Choy, E.H.; De Benedetti, F.; Takeuchi, T.; Hashizume, M.; John, M.R.; Kishimoto, T. Translating IL-6 biology into effective treatments. Nat. Rev. Rheumatol. 2020, 16, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Miethe, S.; Potaczek, D.P.; Bazan-Socha, S.; Bachl, M.; Schaefer, L.; Wygrecka, M.; Garn, H. The emerging role of extracellular vesicles as communicators between adipose tissue and pathologic lungs with a special focus on asthma. Am. J. Physiol. Cell Physiol. 2023, 324, C1119–C1125. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res 2023, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019, 47, W357–W364. [Google Scholar] [CrossRef]
- Knox, C.; Wilson, M.; Klinger, M.; Franklin, M.; Oler, E.; Wilson, A.; Pon, A.; Cox, J.; Chin, N.E.; Strawbridge, A.; et al. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024, 52, D1265–D1275. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Lian, X.; Li, F.; Wang, C.; Zhu, F.; Qiu, Y.; Chen, Y. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res 2022, 50, D1398–D1407. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
- Huang Da, W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, Z.; Huang, M.; Yan, J.; Gao, R.; Cui, J.; Gao, Y.; Ma, Z. Ginsenoside Rg1 Prevents and Treats Acute Pulmonary Injury Induced by High-Altitude Hypoxia. Int. J. Mol. Sci. 2024, 25, 12051. https://doi.org/10.3390/ijms252212051
Chen J, Zhang Z, Huang M, Yan J, Gao R, Cui J, Gao Y, Ma Z. Ginsenoside Rg1 Prevents and Treats Acute Pulmonary Injury Induced by High-Altitude Hypoxia. International Journal of Molecular Sciences. 2024; 25(22):12051. https://doi.org/10.3390/ijms252212051
Chicago/Turabian StyleChen, Junru, Zhuo Zhang, Mingyue Huang, Jiayi Yan, Rong Gao, Jialu Cui, Yue Gao, and Zengchun Ma. 2024. "Ginsenoside Rg1 Prevents and Treats Acute Pulmonary Injury Induced by High-Altitude Hypoxia" International Journal of Molecular Sciences 25, no. 22: 12051. https://doi.org/10.3390/ijms252212051
APA StyleChen, J., Zhang, Z., Huang, M., Yan, J., Gao, R., Cui, J., Gao, Y., & Ma, Z. (2024). Ginsenoside Rg1 Prevents and Treats Acute Pulmonary Injury Induced by High-Altitude Hypoxia. International Journal of Molecular Sciences, 25(22), 12051. https://doi.org/10.3390/ijms252212051