Emerging Functions of Protein Tyrosine Phosphatases in Plants
Abstract
:1. Introduction
2. PTP Family in the Model Plant Arabidopsis thaliana
3. The Functions of PTPs in Plants
3.1. PTPs Regulate Plant Growth and Development
3.2. PTPs and Plant Hormones
3.2.1. PTPs and Auxin Response
3.2.2. PTPs and ABA Response
3.3. Regulating the Plant’s Response to Abiotic Stresses Through PTPs
3.3.1. PTPs Regulate the Salt Stress Response
3.3.2. Regulation of Osmotic Stress Response by PTPs
3.3.3. Regulation of Drought Stress Response in Plants by PTPs
3.3.4. PTPs Regulate UV-B Stress Response in Plants
3.3.5. Other Stress Responses Regulated by PTPs in Plants
3.3.6. How PTPs Are Regulated Under Abiotic Stress
3.4. Regulation of Plant Responses to Biotic Stress
3.4.1. PTPs and Bacteria Pathogens
3.4.2. PTPs and Fungal Pathogens
4. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Brautigan, D.L. Protein Ser/Thr phosphatases—The ugly ducklings of cell signalling. FEBS J. 2013, 280, 324–345. [Google Scholar] [CrossRef] [PubMed]
- Bheri, M.; Mahiwal, S.; Sanyal, S.K.; Pandey, G.K. Plant protein phosphatases: What do we know about their mechanism of action? FEBS J. 2021, 288, 756–785. [Google Scholar] [CrossRef] [PubMed]
- Schweighofer, A.; Meskiene, I. Phosphatases in plants. Methods Mol. Biol. 2015, 1306, 25–46. [Google Scholar]
- Luan, S. Protein phosphatases in plants. Annu. Rev. Plant Biol. 2003, 54, 63–92. [Google Scholar] [CrossRef]
- Ghelis, T. Signal processing by protein tyrosine phosphorylation in plants. Plant Signal. Behav. 2014, 6, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Pandey, G.K. Protein Phosphatases and Stress Management in Plants; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Jiang, L.; Chen, Y.; Luo, L.; Peck, S.C. Central Roles and Regulatory Mechanisms of Dual-Specificity MAPK Phosphatases in Developmental and Stress Signaling. Front. Plant Sci. 2018, 9, 1697. [Google Scholar] [CrossRef]
- Ayatollahi, Z.; Kazanaviciute, V.; Shubchynskyy, V.; Kvederaviciute, K.; Schwanninger, M.; Rozhon, W.; Stumpe, M.; Mauch, F.; Bartels, S.; Ulm, R.; et al. Dual control of MAPK activities by AP2C1 and MKP1 MAPK phosphatases regulates defence responses in Arabidopsis. J. Exp. Bot. 2022, 73, 2369–2384. [Google Scholar] [CrossRef]
- Bartels, S.; Anderson, J.C.; Gonzalez Besteiro, M.A.; Carreri, A.; Hirt, H.; Buchala, A.; Metraux, J.P.; Peck, S.C.; Ulm, R. MAP kinase phosphatase1 and protein tyrosine phosphatase1 are repressors of salicylic acid synthesis and SNC1-mediated responses in Arabidopsis. Plant Cell 2009, 21, 2884–2897. [Google Scholar] [CrossRef]
- Katou, S.; Kuroda, K.; Seo, S.; Yanagawa, Y.; Tsuge, T.; Yamazaki, M.; Miyao, A.; Hirochika, H.; Ohashi, Y. A calmodulin-binding mitogen-activated protein kinase phosphatase is induced by wounding and regulates the activities of stress-related mitogen-activated protein kinases in rice. Plant Cell Physiol. 2007, 48, 332–344. [Google Scholar] [CrossRef]
- Tamnanloo, F.; Damen, H.; Jangra, R.; Lee, J.S. MAP KINASE PHOSPHATASE1 controls cell fate transition during stomatal development. Plant Physiol. 2018, 178, 247–257. [Google Scholar] [CrossRef]
- Wang, H.; Ngwenyama, N.; Liu, Y.; Walker, J.C.; Zhang, S. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 2007, 19, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Jangra, R.; Damen, H.; Lee, J.S. MKP1 acts as a key modulator of stomatal development. Plant Signal. Behav. 2019, 14, 1604017. [Google Scholar] [CrossRef]
- Verma, D.; Bhagat, P.K.; Sinha, A.K. A dual-specificity phosphatase, MAP kinase phosphatase 1, positively regulates blue light-mediated seedling development in Arabidopsis. Planta 2021, 253, 131. [Google Scholar] [CrossRef]
- Naoi, K.; Hashimoto, T. A semidominant mutation in an Arabidopsis mitogen-activated protein kinase phosphatase-like gene compromises cortical microtubule organization. Plant Cell 2004, 16, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Walia, A.; Lee, J.S.; Wasteneys, G.; Ellis, B. Arabidopsis mitogen-activated protein kinase MPK18 mediates cortical microtubule functions in plant cells. Plant J. 2009, 59, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Guittard-Crilat, E.; Maldiney, R.; Habricot, Y.; Miginiac, E.; Bouly, J.P.; Lebreton, S. The mitogen-activated protein kinase phosphatase PHS1 regulates flowering in Arabidopsis thaliana. Planta 2016, 243, 909–923. [Google Scholar] [CrossRef]
- Gupta, R.; Ting, J.T.L.; Sokolov, L.N.; Johnson, S.A.; Luan, S. A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 2002, 14, 2495–2507. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.; Zhou, L.Z.; Fox, E.; Pao, J.; Sun, W.; Zhou, C.; McCormick, S. Overexpression of Arabidopsis thaliana PTEN caused accumulation of autophagic bodies in pollen tubes by disrupting phosphatidylinositol 3-phosphate dynamics. Plant J. 2011, 68, 1081–1092. [Google Scholar] [CrossRef]
- Ning, K.; Li, X.; Yan, J.; Liu, J.; Gao, Z.; Tang, W.; Sun, Y. Heat stress inhibits pollen development by degrading mRNA capping enzyme ARCP1 and ARCP2. Plant Cell Environ. 2024. Advance online publication. [Google Scholar] [CrossRef]
- Mahlow, S.; Orzechowski, S.; Fettke, J. Starch phosphorylation: Insights and perspectives. Cell. Mol. Life Sci. 2016, 73, 2753–2764. [Google Scholar] [CrossRef]
- Santelia, D.; Kotting, O.; Seung, D.; Schubert, M.; Thalmann, M.; Bischof, S.; Meekins, D.A.; Lutz, A.; Patron, N.; Gentry, M.S.; et al. The phosphoglucan phosphatase like sex Four2 dephosphorylates starch at the C3-position in Arabidopsis. Plant Cell 2011, 23, 4096–4111. [Google Scholar] [CrossRef]
- Kotting, O.; Santelia, D.; Edner, C.; Eicke, S.; Marthaler, T.; Gentry, M.S.; Comparot-Moss, S.; Chen, J.; Smith, A.M.; Steup, M.; et al. STARCH-EXCESS4 is a laforin-like phosphoglucan phosphatase required for starch degradation in Arabidopsis thaliana. Plant Cell 2009, 21, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Meekins, D.A.; Raththagala, M.; Husodo, S.; White, C.J.; Guo, H.F.; Kotting, O.; Vander Kooi, C.W.; Gentry, M.S. Phosphoglucan-bound structure of starch phosphatase Starch Excess4 reveals the mechanism for C6 specificity. Proc. Natl. Acad. Sci. USA 2014, 111, 7272–7277. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.F.; Liu, Y.K.; Su, S.C.; Lai, C.C.; Wu, C.R.; Chao, T.J.; Yang, Y.H. Genetic engineering of transitory starch accumulation by knockdown of OsSEX4 in rice plants for enhanced bioethanol production. Biotechnol. Bioeng. 2020, 117, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Jiang, Q.-T.; Wei, L.; Yang, Q.; Zhang, X.-W.; Peng, Y.-Y.; Chen, G.-Y.; Wei, Y.-M.; Liu, C.; Zheng, Y.-L. Conserved structure and varied expression reveal key roles of phosphoglucan phosphatase gene starch excess 4 in barley. Planta 2014, 240, 1179–1190. [Google Scholar] [CrossRef]
- Wang, W.; Hostettler, C.E.; Damberger, F.F.; Kossmann, J.; Lloyd, J.R.; Zeeman, S.C. Modification of cassava root starch phosphorylation enhances starch functional properties. Front. Plant Sci. 2018, 9, 1562. [Google Scholar] [CrossRef]
- Samodien, E.; Jewell, J.F.; Loedolff, B.; Oberlander, K.; George, G.M.; Zeeman, S.C.; Damberger, F.F.; van der Vyver, C.; Kossmann, J.; Lloyd, J.R. Repression of Sex4 and Like Sex Four2 orthologs in potato increases tuber starch bound phosphate with concomitant alterations in starch physical properties. Front. Plant Sci. 2018, 9, 1044. [Google Scholar] [CrossRef]
- Comparot-Moss, S.; Kotting, O.; Stettler, M.; Edner, C.; Graf, A.; Weise, S.E.; Streb, S.; Lue, W.L.; MacLean, D.; Mahlow, S.; et al. A putative phosphatase, LSF1, is required for normal starch turnover in Arabidopsis leaves. Plant Physiol. 2010, 152, 685–697. [Google Scholar] [CrossRef] [PubMed]
- Schreier, T.B.; Umhang, M.; Lee, S.K.; Lue, W.L.; Shen, Z.; Silver, D.; Graf, A.; Muller, A.; Eicke, S.; Stadler-Waibel, M.; et al. LIKE SEX4 1 acts as a β-amylase-binding scaffold on starch granules during starch degradation. Plant Cell 2019, 31, 2169–2186. [Google Scholar] [CrossRef]
- Nemoto, K.; Takemori, N.; Seki, M.; Shinozaki, K.; Sawasaki, T. Members of the plant CRK superfamily are capable of trans- and autophosphorylation of tyrosine residues. J. Biol. Chem. 2015, 290, 16665–16677. [Google Scholar] [CrossRef]
- Dautel, R.; Wu, X.N.; Heunemann, M.; Schulze, W.X.; Harter, K. The sensor histidine kinases AHK2 and AHK3 proceed into multiple serine/threonine/tyrosine phosphorylation pathways in Arabidopsis thaliana. Mol. Plant 2016, 9, 182–186. [Google Scholar] [CrossRef]
- Nemoto, K.; Ramadan, A.; Arimura, G.I.; Imai, K.; Tomii, K.; Shinozaki, K.; Sawasaki, T. Tyrosine phosphorylation of the GARU E3 ubiquitin ligase promotes gibberellin signalling by preventing GID1 degradation. Nat. Commun. 2017, 8, 1004. [Google Scholar] [CrossRef]
- Oh, M.H.; Wang, X.; Kota, U.; Goshe, M.B.; Clouse, S.D.; Huber, S.C. Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 658–663. [Google Scholar] [CrossRef]
- Song, W.; Hu, L.; Ma, Z.; Yang, L.; Li, J. Importance of Tyrosine Phosphorylation in hormone-regulated plant growth and development. Int. J. Mol. Sci. 2022, 23, 6603. [Google Scholar] [CrossRef]
- Yu, Z.P.; Zhang, F.; Friml, J.; Ding, Z.J. Auxin signaling: Research advances over the past 30 years. J. Integr. Plant Biol. 2022, 64, 371–392. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Gotoh, Y.; Nishida, E.; Yamaguchi-Shinozaki, K.; Hayashida, N.; Iwasaki, T.; Kamada, H.; Shinozaki, K. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 1994, 5, 111–122. [Google Scholar] [CrossRef]
- Monroe-Augustus, M.; Zolman, B.K.; Bartel, B. IBR5, a dual-specificity phosphatase-like protein modulating auxin and abscisic acid responsiveness in Arabidopsis. Plant Cell 2003, 15, 2979–2991. [Google Scholar] [CrossRef]
- Strader, L.C.; Monroe-Augustus, M.; Bartel, B. The IBR5 phosphatase promotes Arabidopsis auxin responses through a novel mechanism distinct from TIR1-mediated repressor degradation. BMC Plant Biol. 2008, 8, 41. [Google Scholar] [CrossRef]
- Lee, J.S.; Wang, S.; Sritubtim, S.; Chen, J.G.; Ellis, B.E. Arabidopsis mitogen-activated protein kinase MPK12 interacts with the MAPK phosphatase IBR5 and regulates auxin signaling. Plant J. 2009, 57, 975–985. [Google Scholar] [CrossRef]
- Chen, K.; Li, G.J.; Bressan, R.A.; Song, C.P.; Zhu, J.K.; Zhao, Y. Abscisic acid dynamics, signaling, and functions in plants. J. Integr. Plant Biol. 2020, 62, 25–54. [Google Scholar] [CrossRef]
- Knetsch, M.; Wang, M.; Snaar-Jagalska, B.E.; Heimovaara-Dijkstra, S. Abscisic acid induces Mitogen-Activated Protein Kinase activation in barley aleurone protoplasts. Plant Cell 1996, 8, 1061–1067. [Google Scholar] [CrossRef]
- MacRobbie, E.A. Evidence for a role for protein tyrosine phosphatase in the control of ion release from the guard cell vacuole in stomatal closure. Proc. Natl. Acad. Sci. USA 2002, 99, 11963–11968. [Google Scholar] [CrossRef]
- Ghelis, T.; Bolbach, G.; Clodic, G.; Habricot, Y.; Miginiac, E.; Sotta, B.; Jeannette, E. Protein tyrosine kinases and protein tyrosine phosphatases are involved in abscisic acid-dependent processes in Arabidopsis seeds and suspension cells. Plant Physiol. 2008, 148, 1668–1680. [Google Scholar] [CrossRef]
- Quettier, A.L.; Bertrand, C.; Habricot, Y.; Miginiac, E.; Agnes, C.; Jeannette, E.; Maldiney, R. The phs1-3 mutation in a putative dual-specificity protein tyrosine phosphatase gene provokes hypersensitive responses to abscisic acid in Arabidopsis thaliana. Plant J. 2006, 47, 711–719. [Google Scholar] [CrossRef]
- Alonso-Ramirez, A.; Rodriguez, D.; Reyes, D.; Jimenez, J.A.; Nicolas, G.; Nicolas, C. Functional analysis in Arabidopsis of FsPTP1, a tyrosine phosphatase from beechnuts, reveals its role as a negative regulator of ABA signaling and seed dormancy and suggests its involvement in ethylene signaling modulation. Planta 2011, 234, 589–597. [Google Scholar] [CrossRef]
- Jayaweera, T.; Siriwardana, C.; Dharmasiri, S.; Quint, M.; Gray, W.M.; Dharmasiri, N. Alternative splicing of Arabidopsis IBR5 pre-mRNA generates two IBR5 isoforms with distinct and overlapping functions. PLoS ONE 2014, 9, e102301. [Google Scholar] [CrossRef]
- Li, Y.; Feng, D.; Zhang, D.; Su, J.; Zhang, Y.; Li, Z.; Mu, P.; Liu, B.; Wang, H.; Wang, J. Rice MAPK phosphatase IBR5 negatively regulates drought stress tolerance in transgenic Nicotiana tabacum. Plant Sci. 2012, 188–189, 10–18. [Google Scholar] [CrossRef]
- Du, Y.; Xie, S.; Wang, Y.; Ma, Y.; Jia, B.; Liu, X.; Rong, J.; Li, R.; Zhu, X.; Song, C.P.; et al. Low molecular weight protein phosphatase APH mediates tyrosine dephosphorylation and ABA response in Arabidopsis. Stress Biol. 2022, 2, 23. [Google Scholar] [CrossRef]
- Zaidi, I.; Ebel, C.; Touzri, M.; Herzog, E.; Evrard, J.L.; Schmit, A.C.; Masmoudi, K.; Hanin, M. TMKP1 is a novel wheat stress responsive MAP Kinase phosphatase localized in the nucleus. Plant Mol. Biol. 2010, 73, 325–338. [Google Scholar] [CrossRef]
- Park, H.C.; Song, E.H.; Nguyen, X.C.; Lee, K.; Kim, K.E.; Kim, H.S.; Lee, S.M.; Kim, S.H.; Bae, D.W.; Yun, D.J.; et al. Arabidopsis MAP kinase phosphatase 1 is phosphorylated and activated by its substrate AtMPK6. Plant Cell Rep. 2011, 30, 1523–1531. [Google Scholar] [CrossRef]
- Ghorbel, M.; Zaidi, I.; Ebel, C.; Hanin, M. Differential regulation of the durum wheat MAPK phosphatase 1 by calmodulin, bivalent cations and possibly mitogen activated protein kinase 3. Plant Physiol. Biochem. 2019, 135, 242–252. [Google Scholar] [CrossRef]
- Lee, K.; Song, E.H.; Kim, H.S.; Yoo, J.H.; Han, H.J.; Jung, M.S.; Lee, S.M.; Kim, K.E.; Kim, M.C.; Cho, M.J.; et al. Regulation of MAPK Phosphatase 1 (AtMKP1) by calmodulin in Arabidopsis. J. Biol. Chem. 2008, 283, 23581–23588. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, Q.; Sun, Y.; Li, Y. Histone H2B monoubiquitination regulates salt stress-induced microtubule depolymerization in Arabidopsis. Plant Cell Environ. 2017, 40, 1512–1530. [Google Scholar] [CrossRef]
- Zaidi, I.; Ebel, C.; Belgaroui, N.; Ghorbel, M.; Amara, I.; Hanin, M. The wheat MAP kinase phosphatase 1 alleviates salt stress and increases antioxidant activities in Arabidopsis. J. Plant Physiol. 2016, 193, 12–21. [Google Scholar] [CrossRef]
- Ulm, R.; Ichimura, K.; Mizoguchi, T.; Peck, S.C.; Zhu, T.; Wang, X.; Shinozaki, K.; Paszkowski, J. Distinct regulation of salinity and genotoxic stress responses by Arabidopsis MAP kinase phosphatase 1. EMBO J. 2002, 21, 6483–6493. [Google Scholar] [CrossRef]
- Fujita, S.; Pytela, J.; Hotta, T.; Kato, T.; Hamada, T.; Akamatsu, R.; Ishida, Y.; Kutsuna, N.; Hasezawa, S.; Nomura, Y.; et al. An atypical tubulin kinase mediates stress-induced microtubule depolymerization in Arabidopsis. Curr. Biol. 2013, 23, 1969–1978. [Google Scholar] [CrossRef]
- Xu, Q.; Fu, H.H.; Gupta, R.; Luan, S. Molecular characterization of a tyrosine-specific protein phosphatase encoded by a stress-responsive gene in Arabidopsis. Plant Cell 1998, 10, 849–857. [Google Scholar] [CrossRef]
- Nicolas-Frances, V.; Rossi, J.; Rosnoblet, C.; Pichereaux, C.; Hichami, S.; Astier, J.; Klinguer, A.; Wendehenne, D.; Besson-Bard, A. S-Nitrosation of Arabidopsis thaliana Protein Tyrosine Phosphatase 1 prevents its irreversible oxidation by hydrogen peroxide. Front. Plant Sci. 2022, 13, 807249. [Google Scholar] [CrossRef]
- Gupta, R.; Luan, S. Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol. 2003, 132, 1149–1152. [Google Scholar] [CrossRef]
- Lu, Y.; Su, W.; Bao, Y.; Wang, S.; He, F.; Wang, D.; Yu, X.; Yin, W.; Liu, C.; Xia, X. Poplar PdPTP1 gene negatively regulates salt tolerance by affecting ion and ROS homeostasis in Populus. Int. J. Mol. Sci. 2020, 21, 1065. [Google Scholar] [CrossRef]
- Xin, J.; Li, C.; Ning, K.; Qin, Y.; Shang, J.X.; Sun, Y. AtPFA-DSP3, an atypical dual-specificity protein tyrosine phosphatase, affects salt stress response by modulating MPK3 and MPK6 activity. Plant Cell Environ. 2021, 44, 1534–1548. [Google Scholar] [CrossRef]
- Xin, J.; Guo, S.; Zhang, X.; Tian, J.; Sun, Y.; Shang, J.X. AtPFA-DSP5 interacts with MPK3/MPK6 and negatively regulates plant salt responses. Plant Signal. Behav. 2021, 16, 2000808. [Google Scholar] [CrossRef]
- Mu, C.; Zhou, L.; Shan, L.; Li, F.; Li, Z. Phosphatase GhDsPTP3a interacts with annexin protein GhANN8b to reversely regulate salt tolerance in cotton (Gossypium spp.). New Phytol. 2019, 223, 1856–1872. [Google Scholar] [CrossRef]
- Gupta, R.; Huang, Y.; Kieber, J.; Luan, S. Identification of a dual-specificity protein phosphatase that inactivates a MAP kinase from Arabidopsis. Plant J. 1998, 16, 581–589. [Google Scholar] [CrossRef]
- Yoo, J.H.; Cheong, M.S.; Park, C.Y.; Moon, B.C.; Kim, M.C.; Kang, Y.H.; Park, H.C.; Choi, M.S.; Lee, J.H.; Jung, W.Y.; et al. Regulation of the dual specificity protein phosphatase, DsPTP1, through interactions with calmodulin. J. Biol. Chem. 2004, 279, 848–858. [Google Scholar] [CrossRef]
- Liu, R.; Liu, Y.; Ye, N.; Zhu, G.; Chen, M.; Jia, L.; Xia, Y.; Shi, L.; Jia, W.; Zhang, J. AtDsPTP1 acts as a negative regulator in osmotic stress signalling during Arabidopsis seed germination and seedling establishment. J. Exp. Bot. 2015, 66, 1339–1353. [Google Scholar] [CrossRef]
- Liu, B.; Fan, J.; Zhang, Y.; Mu, P.; Wang, P.; Su, J.; Lai, H.; Li, S.; Feng, D.; Wang, J.; et al. OsPFA-DSP1, a rice protein tyrosine phosphatase, negatively regulates drought stress responses in transgenic tobacco and rice plants. Plant Cell Rep. 2012, 31, 1021–1032. [Google Scholar] [CrossRef]
- Nagpal, A.; Ndamukong, I.; Hassan, A.; Avramova, Z.; Baluska, F. Subcellular localizations of Arabidopsis myotubularins MTM1 and MTM2 suggest possible functions in vesicular trafficking between ER and cis-Golgi. J. Plant Physiol. 2016, 200, 45–52. [Google Scholar] [CrossRef]
- Nagpal, A.; Hassan, A.; Ndamukong, I.; Avramova, Z.; Baluska, F. Myotubularins, PtdIns5P, and ROS in ABA-mediated stomatal movements in dehydrated Arabidopsis seedlings. Funct. Plant Biol. 2018, 45, 259–266. [Google Scholar] [CrossRef]
- Gonzalez Besteiro, M.A.; Bartels, S.; Albert, A.; Ulm, R. Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. Plant J. 2011, 68, 727–737. [Google Scholar] [CrossRef]
- Gonzalez Besteiro, M.A.; Ulm, R. Phosphorylation and stabilization of Arabidopsis MAP kinase phosphatase 1 in response to UV-B stress. J. Biol. Chem. 2013, 288, 480–486. [Google Scholar] [CrossRef]
- Lee, J.S.; Ellis, B.E. Arabidopsis MAPK phosphatase 2 (MKP2) positively regulates oxidative stress tolerance and inactivates the MPK3 and MPK6 MAPKs. J. Biol. Chem. 2007, 282, 25020–25029. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yang, H.; Bao, F.; Ao, K.; Zhang, X.; Zhang, Y.; Yang, S. IBR5 modulates temperature-dependent, R protein CHS3-mediated defense responses in Arabidopsis. PLoS Genet. 2015, 11, e1005584. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Shi, H.; Yang, Y.; Feng, X.; Chen, X.; Xiao, F.; Lin, H.; Guo, Y. Insights into plant salt stress signaling and tolerance. J. Genet. Genom. 2024, 51, 16–34. [Google Scholar] [CrossRef]
- Zaidi, I.; González, A.; Touzri, M.; Alvarez, M.C.; Ramos, J.; Masmoudi, K.; Ariño, J.; Hanin, M. The wheat MAP kinase phosphatase 1 confers higher lithium tolerance in yeast. FEMS Yeast Res. 2012, 12, 774–784. [Google Scholar] [CrossRef]
- Yu, B.; Chao, D.Y.; Zhao, Y. How plants sense and respond to osmotic stress. J. Integr. Plant Biol. 2024, 66, 394–423. [Google Scholar] [CrossRef]
- Gonzalez, E.M. Drought stress tolerance in plants. Int. J. Mol. Sci. 2023, 24, 6562. [Google Scholar] [CrossRef]
- Ding, Y.; Ndamukong, I.; Zhao, Y.; Xia, Y.; Riethoven, J.J.; Jones, D.R.; Divecha, N.; Avramova, Z. Divergent functions of the myotubularin (MTM) homologs AtMTM1 and AtMTM2 in Arabidopsis thaliana: Evolution of the plant MTM family. Plant J. 2012, 70, 866–878. [Google Scholar] [CrossRef]
- Chen, Z.; Dong, Y.; Huang, X. Plant responses to UV-B radiation: Signaling, acclimation and stress tolerance. Stress Biol. 2022, 2, 51. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.-F.; Lin, C.-W.; Kao, T.-W.; Huang, D.-D.; Huang, H.-J. PaPTP1, a gene encoding protein tyrosine phosphatase from orchid, Phalaenopsis amabilis, is regulated during floral development and induced by wounding. Plant Mol. Biol. Rep. 2010, 29, 106–116. [Google Scholar] [CrossRef]
- Katou, S.; Karita, E.; Yamakawa, H.; Seo, S.; Mitsuhara, I.; Kuchitsu, K.; Ohashi, Y. Catalytic activation of the plant MAPK phosphatase NtMKP1 by its physiological substrate salicylic acid-induced protein kinase but not by calmodulins. J. Biol. Chem. 2005, 280, 39569–39581. [Google Scholar] [CrossRef]
- Ghorbel, M.; Cotelle, V.; Ebel, C.; Zaidi, I.; Ormancey, M.; Galaud, J.P.; Hanin, M. Regulation of the wheat MAP kinase phosphatase 1 by 14-3-3 proteins. Plant Sci. 2017, 257, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Haensch, R.; Alfarraj, S.; Rennenberg, H. Strategies of plants to overcome abiotic and biotic stresses. Biol. Rev. Camb. Philos. Soc. 2024, 99, 1524–1536. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Su, J.; Shu, S.; Zhang, Y.; Ao, Y.; Liu, B.; Feng, D.; Wang, J.; Wang, H. Two homologous putative protein tyrosine phosphatases, OsPFA-DSP2 and AtPFA-DSP4, negatively regulate the pathogen response in transgenic plants. PLoS ONE 2012, 7, e34995. [Google Scholar] [CrossRef]
- Lumbreras, V.; Vilela, B.; Irar, S.; Sole, M.; Capellades, M.; Valls, M.; Coca, M.; Pages, M. MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J. 2010, 63, 1017–1030. [Google Scholar] [CrossRef]
- Anderson, J.C.; Bartels, S.; Besteiro, M.A.G.; Shahollari, B.; Ulm, R.; Peck, S.C. Arabidopsis MAP Kinase Phosphatase 1 (AtMKP1) negatively regulates MPK6-mediated PAMP responses and resistance against bacteria. Plant J. 2011, 67, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Wang, M.; Chen, Y.; Nomura, K.; Hui, S.; Gui, J.; Zhang, X.; Wu, Y.; Liu, J.; Li, Q. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants. Sci. Adv. 2022, 8, eabg8723. [Google Scholar] [CrossRef]
- Kumiko, O.; Yuta, A.; Shinpei, K.; Shigemi, S.; Kei, K.; Atsushi, M.; Kazuyuki, K.; Ichiro, M. Tobacco MAP kinase phosphatase (NtMKP1) negatively regulates wound response and induced resistance against necrotrophic pathogens and lepidopteran herbivores. Mol. Plant Microbe Interact. 2013, 26, 668–675. [Google Scholar]
- Liu, S.; Zhang, F.; Su, J.; Fang, A.; Tian, B.; Yu, Y.; Bi, C.; Ma, D.; Xiao, S.; Yang, Y. CRISPR-targeted mutagenesis of mitogen-activated protein kinase phosphatase 1 improves both immunity and yield in wheat. Plant Biotechnol. J. 2024, 22, 1929–1941. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Abrahamian, P.; Carvalho, R.; Choudhary, M.; Paret, M.L.; Vallad, G.E.; Jones, J.B. Future of bacterial disease management in crop production. Annu. Rev. Phytopathol. 2022, 60, 259–282. [Google Scholar] [CrossRef]
- Lanna, R. An overview of plant resistance to plant-pathogenic bacteria. Trop Plant Pathol. 2023, 48, 243–259. [Google Scholar] [CrossRef]
- Collinge, D.B.; Jensen, B.; Jørgensen, H.J. Fungal endophytes in plants and their relationship to plant disease. Curr. Opin. Microbiol. 2022, 69, 102177. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Cheng, Y. Advances in fungal elicitor-triggered plant immunity. Int. J. Mol. Sci. 2022, 23, 12003. [Google Scholar] [CrossRef] [PubMed]
Abiotic Stresses | Gene Names | Species | Substrates | Functions | Target of Regulation | Refs. |
---|---|---|---|---|---|---|
Salt stress | MKP1 | Triticum aestivum | TaMPK3/TaMPK6 | The germination rate and antioxidant enzyme activity in TaMKP1 overexpression in plants increased compared to the wild type under salt. | TaMKP3 can enhance the protein phosphatase activity of TaMKP1. | [50,51,52] |
Arabidopsis thaliana | AtMPK3/6 | The germination and seedling survival rates of the mkp1 deletion mutant increased compared with the wild type under salt. MKP1 affects microtubule depolymerization during salt stress. Weaker depolymerization of cortical MTs induced by salt in mkp1 mutant than the wild type. | Salt induces MKP1 expression level. AtMPK6 can phosphorylate MKP1 and enhance its protein phosphatase activity. CaM can increase the phosphatase activity of AtMKP1. | [51,53,54,55,56] | ||
PHS1 | Arabidopsis thaliana | AtMPK18 | PHS1 mediates the depolymerization of microtubules under salt or osmotic stress by influencing the phosphorylation level of α-tubulin. | Salt increases the PHS1 transcription level. | [16,54,57] | |
IBR5 | Arabidopsis thaliana | / | The ibr5 mutant was less sensitive to salt stress and inhibited cotyledon greening in seedlings. | Salt induces IBR5 transcription level. | [47] | |
PTP1 | Arabidopsis thaliana | / | / | Salt induces PTP1 expression level. AtPTP1 protein activity is directly inhibited by H2O2 and nitric oxide exogenous treatments. | [58,59,60] | |
Populus deltoides | PdMPK3/6 | Na+, H2O2, and O2·− levels were significantly accumulated, and the levels of K+ and activity of antioxidant enzymes were decreased in PdPTP1 overexpression plants compared to wild type under salt. | Salt induces PdPTP1 expression level. | [61] | ||
PFA-DSPs | Arabidopsis thaliana | AtMPK3/6 | The dsp3 and dsp5 single mutant exhibited enhanced salt tolerance, higher seed germination, chlorophyll content, survival rate, and lower ion leakage and ROS levels than the wild type. | Salt induces DSP3 protein degradation. | [62,63] | |
GhDsPTP3a | Gossypium hirsutum | GhANN8b | The GhDsPTP3a-silenced mutant exhibited a higher survival rate, primary root length, and less Na+ accumulation. | Salt triggers the expression of GhDsPTP3a. | [64] | |
Osmotic stress | IBR5 | Arabidopsis thaliana | / | The ibr5 mutant, less sensitive to osmotic stress, inhibited cotyledon greening in seedlings. | Osmotic stress suppresses IBR5 expression level. | [47] |
DsPTP1 | Arabidopsis thaliana | AtMPK4 | The dsptp1 mutant exhibits increased seed germination rates, longer primary roots, increased proline accumulation, decreased MDA content, reduced ion leakage rates, and downregulated expression of ABA synthesis gene NCED3 and upregulated ABA catabolism gene CYP707A4 than the wild type under osmotic stress. | DsPTP1 is enhanced by osmotic stress. CaM inhibits the phosphatase activity of DsPTP1. | [54,65,66,67] | |
Drought stress | IBR5 | Oryza sativa | SIPK/WIPK | Overexpression of OsIBR5 in tobacco plants resulted in hypersensitivity to drought stress. The fresh weight of shoots and roots and the survival rate were lower. In contrast, the relative conductivity, stomata conductance, and leaf transpiration rate were higher in transgenic plants than in wild-type plants. | OsIBR5 is induced by drought. | [48] |
PFA-DSPs | Oryza sativa | / | Ectopic overexpression of OsPFA-DSP1 in tobacco transgenic plants showed increased sensitivity to drought stress. | Drought increases OsPFA-DSP1 expression level. | [68] | |
GhDsPTP3a | Gossypium hirsutum | GhANN8b | Ectopic-expressing GhDsPTP3a in Arabidopsis increased sensitivity to drought stress, with more water loss than the wild type. | Salt triggers the expression of GhDsPTP3a. | [64] | |
AtMTM1/ AtMTM2 | Arabidopsis thaliana | / | AtMTM1 suppresses ROS accumulation and inhibits stomatal closure, while AtMTM2 promotes stomatal closure by facilitating ROS accumulation under drought. | Drought induces AtMTM1 transcription levels. | [69,70] | |
UV stress | MKP1 | Arabidopsis thaliana | AtMPK3/6 | The mkp1 mutant showed hypersensitivity to UV-B, with more leaf bleaching and dark pigmentation than the wild type. The MKP1-interacting proteins MPK3 and MPK6 are hyper-activated in mkp1 through UV B stress. | UV-B promotes MKP1 phosphorylation and protein stability. | [71,72] |
Oxidative stress | MKP2 | Arabidopsis thaliana | AtMPK3/6 | The MKP2-suppressed plants resulted in tissue collapse across the leaf blade under ozone treatment, and ozone-induced ion leakage is higher in the mkp2 mutant than in the wild type. | AtMPK6 can phosphorylate MKP2 and enhance its protein phosphatase activity. | [73] |
IBR5 | Arabidopsis thaliana | / | The ibr5 mutant seedlings showed hypersensitivity to oxidative stress induced by methyl viologen. | / | [47] | |
Oryza sativa | SIPK/WIPK | Overexpression of OsIBR5 in tobacco plants results in hypersensitivity to oxidative stress. The relative chlorophyll content is lower in the OsIBR5 transgenic plants than in wild-type plants. | OsIBR5 is induced by oxidative stress. | [48] | ||
Cold | IBR5 | Arabidopsis thaliana | / | ibr5-7 mutation suppresses the chilling-induced defense responses of chs3-1. | / | [74] |
Wounding response | MKP1 | Oryza sativa | OsMPK3/6 | Wounding damage rapidly induces OsMPK3 and OsMPK6 activity in wild-type and osmkp1 mutants, with a more pronounced induction observed in the osmkp1 mutants. | Wounding induces OsMKP1 expression level. | [10] |
Biotic Stress | Gene | Species | Substrates | Major Effects | Refs. |
---|---|---|---|---|---|
Bacteria | PFA-DSP4 | Arabidopsis thaliana | / | Overexpressing AtPFA-DSP4 plants reduce H2O2 accumulation and decrease photosynthesis compared to wild type under Pseudomonas syringae treatment. | [85] |
MKP2 | Arabidopsis thaliana | MPK3/6 | The loss function of MKP2 plants exhibit enhanced resistance to Ralstonia solanacearum compared to the wild type. | [86] | |
MKP1 | Arabidopsis thaliana | MPK6 | MKP1 negatively regulates MPK6-mediated pathogen-associated molecular patterns response, modulating SA biosynthesis and resistance against bacteria. | [87] | |
MPK3/6 | MKP1 negatively regulates the MPK3/6-mediated phosphorylation of the transcription factor MYB4, suppressing vascular lignification by inhibiting lignin biosynthesis and reducing vascular resistance to Xanthomonas oryzae pv. oryzaea. | [88] | |||
Nicotiana tabacum | WIPK/SIPK | NtMKP1 inhibits the biosynthesis of jasmonic acid or ethylene by inactivating two types of MAPKs, WIPK and SIPK, thus reducing plant resistance to Botrytis cinerea. | [89] | ||
IBR5 | Arabidopsis thaliana | / | The ibr5 mutants are more susceptible to avirulent bacterial pathogens DC3000 (avrRpm1) and DC3000 (avrRps4) than the wild type. | [74] | |
Fungal | OsPFA-DSP2 | Oryza sativa | / | OsPFA-DSP2 overexpression plants inhibited H2O2 accumulation and the expression of PR genes, which led to the proliferation of the fungal pathogen Magnaporthe grisea. | [85] |
TaMKP1 | Triticum aestivum | TaMPK3/4/6 | TaMKP1 negatively regulates wheat defense responses to stripe rust and powdery mildew by dephosphorylating TaMPK3/4/6 to inhibit their kinase activity. | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, J.; Li, C.; Liu, X.; Shi, X.; Sun, Y.; Shang, J.-X. Emerging Functions of Protein Tyrosine Phosphatases in Plants. Int. J. Mol. Sci. 2024, 25, 12050. https://doi.org/10.3390/ijms252212050
Xin J, Li C, Liu X, Shi X, Sun Y, Shang J-X. Emerging Functions of Protein Tyrosine Phosphatases in Plants. International Journal of Molecular Sciences. 2024; 25(22):12050. https://doi.org/10.3390/ijms252212050
Chicago/Turabian StyleXin, Jing, Chuanling Li, Xiaoqian Liu, Xueke Shi, Yu Sun, and Jian-Xiu Shang. 2024. "Emerging Functions of Protein Tyrosine Phosphatases in Plants" International Journal of Molecular Sciences 25, no. 22: 12050. https://doi.org/10.3390/ijms252212050
APA StyleXin, J., Li, C., Liu, X., Shi, X., Sun, Y., & Shang, J. -X. (2024). Emerging Functions of Protein Tyrosine Phosphatases in Plants. International Journal of Molecular Sciences, 25(22), 12050. https://doi.org/10.3390/ijms252212050