Investigating the Effects of Gossypetin on Cardiovascular Function in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats
Abstract
:1. Introduction
2. Results
2.1. Lipid Profile Markers
2.2. MAP Levels
2.3. BMI and WC
2.4. eNOS Levels
2.5. Lipid Peroxidation, Antioxidant and Inflammatory Markers
3. Discussion
4. Materials and Methods
4.1. Chemicals and Drugs
4.2. Animals and Housing
4.3. Induction of Pre-Diabetes
4.4. Experimental Design and Treatment
4.5. Blood Collection and Tissue Harvesting
4.6. Biochemical Analysis
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ping, W.-X.; Hu, S.; Su, J.-Q.; Ouyang, S.-Y. Metabolic disorders in prediabetes: From mechanisms to therapeutic management. World J. Diabetes 2024, 15, 361. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Chandrasekera, P.C.; Barnard, N.D. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr. Diabetes 2014, 4, e135. [Google Scholar] [CrossRef] [PubMed]
- Meshram, I.I.; Nagalla, B.; Kodavanti, M.R.; Avula, L.; Veera, B.G.N. Overweight/obesity, pre-diabetes, diabetes and its association with hypertension and other factors among rural adults (≥18 years) in India. Indian Heart J. 2024, 76, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Rydén, L.; Standl, E.; Bartnik, M.; Van den Berghe, G.; Betteridge, J.; de Boer, M.-J.; Cosentino, F.; Jönsson, B.; Laakso, M.; Malmberg, K.; et al. Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: Executive summary: The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2007, 28, 88–136. [Google Scholar]
- Beulens, J.; Rutters, F.; Ryden, L.; Schnell, O.; Mellbin, L.; Hart, H.; Vos, R. Risk and management of pre-diabetes. Eur. J. Prev. Cardiol. 2019, 26 (Suppl. 2), 47–54. [Google Scholar] [CrossRef]
- Rooney, M.R.; Fang, M.; Ogurtsova, K.; Ozkan, B.; Echouffo-Tcheugui, J.B.; Boyko, E.J.; Magliano, D.J.; Selvin, E. Global Prevalence of Prediabetes. Diabetes Care 2023, 46, 1388–1394. [Google Scholar] [CrossRef]
- Gumede, N.; Ngubane, P.; Khathi, A. Assessing the risk factors for myocardial infarction in diet-induced prediabetes: Myocardial tissue changes. BMC Cardiovasc. Disord. 2022, 22, 350. [Google Scholar] [CrossRef]
- Brannick, B.; Wynn, A.; Dagogo-Jack, S. Prediabetes as a toxic environment for the initiation of microvascular and macrovascular complications. Exp. Biol. Med. 2016, 241, 1323–1331. [Google Scholar] [CrossRef]
- Brannick, B.; Dagogo-Jack, S. Prediabetes and Cardiovascular Disease: Pathophysiology and Interventions for Prevention and Risk Reduction. Endocrinol. Metab. Clin. N. Am. 2018, 47, 33–50. [Google Scholar] [CrossRef]
- Abshirini, M.; Mahaki, B.; Bagheri, F.; Siassi, F.; Koohdani, F.; Qorbani, M.; Yavari, P.; Sotoudeh, G. Dietary Fat Quality and Pre-diabetes: A Case-control Study. Int. J. Prev. Med. 2020, 11, 160. [Google Scholar]
- Grundy, S.M. Pre-Diabetes, Metabolic Syndrome, and Cardiovascular Risk. J. Am. Coll. Cardiol. 2012, 59, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.-M.; Huang, Y.-Q.; Zhang, X.-Y.; Tong, X.-Q.; Zheng, P.-F.; Shu, L. Association between dietary patterns and prediabetes risk in a middle-aged Chinese population. Nutr. J. 2020, 19, 77. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Sehrawat, A.; Mishra, J.; Sidhu, I.S.; Navik, U.; Khullar, N.; Kumar, S.; Bhatti, G.K.; Reddy, P.H. Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radic. Biol. Med. 2022, 184, 114–134. [Google Scholar] [CrossRef] [PubMed]
- Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J. 2016, 24, 547–553. [Google Scholar] [CrossRef]
- Luc, K.; Schramm-Luc, A.; Guzik, T.; Mikolajczyk, T. Oxidative stress and inflammatory markers in prediabetes and diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar]
- Weaver, J.R.; Odanga, J.J.; Breathwaite, E.K.; Treadwell, M.L.; Murchinson, A.C.; Walters, G.; Fuentes, D.P.; Lee, J.B. An increase in inflammation and islet dysfunction is a feature of prediabetes. Diabetes/Metab. Res. Rev. 2021, 37, e3405. [Google Scholar] [CrossRef]
- Neves, J.S.; Newman, C.; Bostrom, J.A.; Buysschaert, M.; Newman, J.D.; Medina, J.L.; Goldberg, I.J.; Bergman, M. Management of dyslipidemia and atherosclerotic cardiovascular risk in prediabetes. Diabetes Res. Clin. Pr. 2022, 190, 109980. [Google Scholar] [CrossRef]
- Kanat, M.; DeFronzo, R.A.; Abdul-Ghani, M.A. Treatment of prediabetes. World J. Diabetes 2015, 6, 1207. [Google Scholar] [CrossRef]
- Rezaei, M.; Valiee, S.; Tahan, M.; Ebtekar, F.; Ghanei Gheshlagh, R. Barriers of medication adherence in patients with type-2 diabetes: A pilot qualitative study. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 589–599. [Google Scholar] [CrossRef]
- Aaby, A.; Friis, K.; Christensen, B.; Rowlands, G.; Maindal, H.T. Health literacy is associated with health behaviour and self-reported health: A large population-based study in individuals with cardiovascular disease. Eur. J. Prev. Cardiol. 2017, 24, 1880–1888. [Google Scholar] [CrossRef]
- Silva, P.; Araújo, R.; Lopes, F.; Ray, S. Nutrition and Food Literacy: Framing the Challenges to Health Communication. Nutrients 2023, 15, 4708. [Google Scholar] [CrossRef] [PubMed]
- Cusquisibán-Alcantara, Y.; Toledo-Garrido, C.; Calizaya-Milla, Y.E.; Carranza-Cubas, S.P.; Saintila, J. Impact of a Nutrition Education Intervention on Knowledge, Healthy Eating Index, and Biochemical Profile in a Rural Community in Peru. J. Multidiscip. Healthc. 2024, 17, 1111–1125. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.; Peyyety, V.; Rodriguez Gonzalez, A.; Chivate, R.; Qin, X.; Zupa, M.F.; Ragavan, M.I.; Vajravelu, M.E. Prediabetes Prevalence by Adverse Social Determinants of Health in Adolescents. JAMA Netw. Open 2024, 7, e2416088. [Google Scholar] [CrossRef] [PubMed]
- Ablah, E.; Dong, F.; Cupertino, A.; Konda, K.; Johnston, J.; Collins, T. Prevalence of diabetes and pre-diabetes in Kansas. Ethn. Dis. 2013, 23, 415–420. [Google Scholar] [PubMed]
- Aldossari, K.K.; Aldiab, A.; Al-Zahrani, J.M.; Al-Ghamdi, S.H.; Abdelrazik, M.; Batais, M.A.; Javad, S.; Nooruddin, S.; Razzak, H.A.; El-Metwally, A. Prevalence of prediabetes, diabetes, and its associated risk factors among males in Saudi Arabia: A population-based survey. J. Diabetes Res. 2018, 2018, 2194604. [Google Scholar] [CrossRef]
- Ghaddar, R.; Hudson, E.A.; Jeans, M.R.; Vandyousefi, S.; Landry, M.J.; Davis, J.N. Ethnicity/race, parent educational attainment, and obesity associated with prediabetes in children. Nutr. Diabetes 2023, 13, 15. [Google Scholar] [CrossRef]
- Hill-Briggs, F.; Adler, N.E.; Berkowitz, S.A.; Chin, M.H.; Gary-Webb, T.L.; Navas-Acien, A.; Thornton, P.L.; Haire-Joshu, D. Social determinants of health and diabetes: A scientific review. Diabetes Care 2021, 44, 258. [Google Scholar] [CrossRef]
- Solini, A.; Tricò, D. Clinical efficacy and cost-effectiveness of metformin in different patient populations: A narrative review of real-world evidence. Diabetes Obes. Metab. 2024, 26, 20–30. [Google Scholar] [CrossRef]
- Skoglund, G.; Nilsson, B.B.; Olsen, C.F.; Bergland, A.; Hilde, G. Facilitators and barriers for lifestyle change in people with prediabetes: A meta-synthesis of qualitative studies. BMC Public Health 2022, 22, 553. [Google Scholar] [CrossRef]
- Perreault, L.; Færch, K. Approaching pre-diabetes. J. Diabetes Its Complicat. 2014, 28, 226–233. [Google Scholar] [CrossRef]
- Gamede, M.; Mabuza, L.; Ngubane, P.; Khathi, A. Plant-derived oleanolic acid (OA) ameliorates risk factors of cardiovascular diseases in a diet-induced pre-diabetic rat model: Effects on selected cardiovascular risk factors. Molecules 2019, 24, 340. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N. Prediabetes diagnosis and treatment: A review. World J. Diabetes 2015, 6, 296. [Google Scholar] [CrossRef] [PubMed]
- Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules 2019, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Ciumărnean, L.; Milaciu, M.V.; Runcan, O.; Vesa, Ș.C.; Răchișan, A.L.; Negrean, V.; Perné, M.-G.; Donca, V.I.; Alexescu, T.-G.; Para, I. The effects of flavonoids in cardiovascular diseases. Molecules 2020, 25, 4320. [Google Scholar] [CrossRef]
- Adegbola, P.; Aderibigbe, I.; Hammed, W.; Omotayo, T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: A review. Am. J. Cardiovasc. Dis. 2017, 7, 19. [Google Scholar]
- Bondonno, N.P.; Bondonno, C.P.; Hodgson, J.M.; Ward, N.C.; Croft, K.D. The efficacy of quercetin in cardiovascular health. Curr. Nutr. Rep. 2015, 4, 290–303. [Google Scholar] [CrossRef]
- Caro-Ordieres, T.; Marín-Royo, G.; Opazo-Ríos, L.; Jiménez-Castilla, L.; Moreno, J.A.; Gómez-Guerrero, C.; Egido, J. The coming age of flavonoids in the treatment of diabetic complications. J. Clin. Med. 2020, 9, 346. [Google Scholar] [CrossRef]
- Larson, A.J.; Symons, J.D.; Jalili, T. Therapeutic Potential of Quercetin to Decrease Blood Pressure: Review of Efficacy and Mechanisms. Adv. Nutr. 2012, 3, 39–46. [Google Scholar] [CrossRef]
- Papakyriakopoulou, P.; Velidakis, N.; Khattab, E.; Valsami, G.; Korakianitis, I.; Kadoglou, N.P. Potential Pharmaceutical Applications of Quercetin in Cardiovascular Diseases. Pharmaceuticals 2022, 15, 1019. [Google Scholar] [CrossRef]
- Jo, K.W.; Lee, D.; Cha, D.G.; Oh, E.; Choi, Y.H.; Kim, S.; Park, E.S.; Kim, J.K.; Kim, K.-T. Gossypetin ameliorates 5xFAD spatial learning and memory through enhanced phagocytosis against Aβ. Alzheimer’s Res. Ther. 2022, 14, 158. [Google Scholar] [CrossRef]
- Khan, A.; Manna, K.; Bose, C.; Sinha, M.; Das, D.K.; Kesh, S.B.; Chakrabarty, A.; Banerji, A.; Dey, S. Gossypetin, a naturally occurring hexahydroxy flavone, ameliorates gamma radiation-mediated DNA damage. Int. J. Radiat. Biol. 2013, 89, 965–975. [Google Scholar] [CrossRef] [PubMed]
- François-Haugrin, F.; Monan, M.; Nossin, E.; Smith-Ravin, J.; Marcelin, O. Antioxidant activity of an isomer of gossypitrin (gossypetin-3’-O-glucoside) isolated in the petals of Talipariti elatum Sw. and determination of total phenolic content of the total flower. J. Pharmacogn. Phytochem. 2016, 5, 200–208. [Google Scholar]
- Dutta, M.S.; Mahapatra, P.; Ghosh, A.; Basu, S. Estimation of the reducing power and electrochemical behavior of few flavonoids and polyhydroxybenzophenones substantiated by bond dissociation energy: A comparative analysis. Mol. Divers. 2022, 26, 1101–1113. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Tsai, C.-W.; Wang, C.-P.; Lin, H.-H. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation. Toxicol. Appl. Pharmacol. 2013, 272, 313–324. [Google Scholar] [CrossRef]
- Naidoo, K.; Khathi, A. Effects of Gossypetin on Glucose Homeostasis in Diet-Induced Pre-Diabetic Rats. Molecules 2024, 29, 4410. [Google Scholar] [CrossRef]
- Nix, A.; Paull, C.; Colgrave, M. Flavonoid Profile of the Cotton Plant, Gossypium hirsutum: A Review. Plants 2017, 6, 43. [Google Scholar] [CrossRef]
- Small, L.; Brandon, A.E.; Turner, N.; Cooney, G.J. Modeling insulin resistance in rodents by alterations in diet: What have high-fat and high-calorie diets revealed? Am. J. Physiol.-Endocrinol. Metab. 2018, 314, E251–E265. [Google Scholar] [CrossRef]
- Agarwal, S.K. Impact of Diet on Cardiovascular Diseases: Hypertension and Stroke. Asian J. Cardiol. Res. 2021, 5, 1–13. [Google Scholar]
- Sheng, Z.; Cao, J.-Y.; Pang, Y.-C.; Xu, H.-C.; Chen, J.-W.; Yuan, J.-H.; Wang, R.; Zhang, C.-S.; Wang, L.-X.; Dong, J. Effects of lifestyle modification and anti-diabetic medicine on prediabetes progress: A systematic review and meta-analysis. Front. Endocrinol. 2019, 10, 455. [Google Scholar] [CrossRef]
- Yau, J.W.; Thor, S.M.; Ramadas, A. Nutritional Strategies in Prediabetes: A Scoping Review of Recent Evidence. Nutrients 2020, 12, 2990. [Google Scholar] [CrossRef]
- Seidu, B.S.; Osman, H.; Seidu, S. Lifestyle or pharmacotherapy in cardio-metabolic disease prevention. Ther. Adv. Cardiovasc. Dis. 2023, 17, 17539447231177175. [Google Scholar] [CrossRef] [PubMed]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef] [PubMed]
- Harborne, J.B. Gossypetin and herbacetin as taxonomic markers in higher plants. Phytochemistry 1969, 8, 177–183. [Google Scholar] [CrossRef]
- Huang, K.; Liu, Z.; Kim, M.-O.; Kim, K.-R. Anticancer effects of gossypetin from Hibiscus sabdariffa in oral squamous cell carcinoma. J. Appl. Oral Sci. 2023, 31, e20230243. [Google Scholar] [CrossRef]
- Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic effects of plant flavonoids. BioMed Res. Int. 2014, 2014, 480258. [Google Scholar] [CrossRef]
- Ismailov, A.; Karimdzhanov, A.; Islambekov, S.Y.; Rakhimkhanov, Z. Flavonoids of the cotton plant and plants close to it. Chem. Nat. Compd. 1994, 30, 1–14. [Google Scholar] [CrossRef]
- Khalid, M.N.; Rasheed, Z.; Amjad, I.; Qasim, M.; Khan, M. An in-depth review of flavonoid profile in cotton (Gossypium hirsutum L.). Indian J. Pure Appl. Biosci 2021, 9, 202–216. [Google Scholar] [CrossRef]
- Hapsari, B.W.; Setyaningsih, W. Methodologies in the analysis of phenolic compounds in roselle (Hibiscus sabdariffa L.): Composition, biological activity, and beneficial effects on human health. Horticulturae 2021, 7, 35. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Amer, N.M.; Abdallah, H.M.; Saleh, M.S. A comprehensive tool in recycling plant-waste of Gossypium barbadense L agricultural and industrial waste extracts containing gossy pin and gossypol: Hepatoprotective, anti-inflammatory and antioxidant effects. Plant Methods 2024, 20, 54. [Google Scholar] [CrossRef]
- Xing, A.; Wang, X.; Nazir, M.F.; Zhang, X.; Wang, X.; Yang, R.; Chen, B.; Fu, G.; Wang, J.; Ge, H.; et al. Transcriptomic and metabolomic profiling of flavonoid biosynthesis provides novel insights into petals coloration in Asian cotton (Gossypium arboreum L.). BMC Plant Biol. 2022, 22, 416. [Google Scholar] [CrossRef]
- Shoker, R.M.H. Analysis of the Pharmacological and Phytochemical constituents of the phenolic extracts of Hibiscus sabdariffa L. dried calyces plant by HPLC Techniques. J. Wasit Sci. Med. 2017, 10, 68–77. [Google Scholar] [CrossRef]
- Jafarian, S.; Mortazavi, A.; Kenari, R.S.; Rad, A.E. Total phenolic content & antioxidant activity of roselle (Hibiscus sabdariffa L.) calyces extracts. J. Appl. Sci. Agric. 2014, 9, 165–169. [Google Scholar]
- Sirag, N.; Elhadi, M.; Algaili, A.M.; Hassan, H.M.; Ohaj, M. Determination of total phenolic content and antioxidant activity of roselle (Hibiscus sabdariffa L.) calyx ethanolic extract. Stand. Res. J. Pharm. Pharmacol. 2014, 1, 034–039. [Google Scholar]
- Mounnissamy, V.; Gopal, V.; Gunasegaran, R.; Saraswathy, A. Antiinflammatory activity of gossypetin isolated from Hibiscus sabdariffa. Indian J. Heterocycl. Chem. 2002, 12, 85–86. [Google Scholar]
- Feingold, K.R. Introduction to Lipids and Lipoproteins. Endotext [Internet]; 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK305896/ (accessed on 7 September 2024).
- Trajkovska, K.T.; Topuzovska, S. High-density lipoprotein metabolism and reverse cholesterol transport: Strategies for raising HDL cholesterol. Anatol. J. Cardiol. 2017, 18, 149. [Google Scholar] [CrossRef]
- Association, A.D. Standards of Medical Care for Patients With Diabetes Mellitus. Diabetes Care 2002, 25 (Suppl. 1), s33–s49. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Freeman, M.W.; Swenson, S. Patient education: High cholesterol and lipids (Beyond the Basics). UpToDate Retrieved March 2021, 29, 2023. [Google Scholar]
- Kolovou, G.D.; Watts, G.F.; Mikhailidis, D.P.; Pérez-Martínez, P.; Mora, S.; Bilianou, H.; Panotopoulos, G.; Katsiki, N.; Ooi, T.C.; Lopez-Miranda, J. Postprandial hypertriglyceridaemia revisited in the era of non-fasting lipid profile testing: A 2019 expert panel statement, narrative review. Curr. Vasc. Pharmacol. 2019, 17, 515–537. [Google Scholar] [CrossRef]
- Bhowmik, B.; Siddiquee, T.; Mujumder, A.; Afsana, F.; Ahmed, T.; Mdala, I.A.; Do, V.; Moreira, N.C.; Khan, A.K.A.; Hussain, A.; et al. Serum Lipid Profile and Its Association with Diabetes and Prediabetes in a Rural Bangladeshi Population. Int. J. Environ. Res. Public Health 2018, 15, 1944. [Google Scholar] [CrossRef]
- Jasim, O.H.; Mahmood, M.M.; Ad’hiah, A.H. Significance of Lipid Profile Parameters in Predicting Pre-Diabetes. Arch. Razi Inst. 2022, 77, 277–284. [Google Scholar]
- Zhu, X.; Yang, Z.; He, Z.; Hu, J.; Yin, T.; Bai, H.; Li, R.; Cai, L.; Guo, H.; Li, M. Factors correlated with targeted prevention for prediabetes classified by impaired fasting glucose, impaired glucose tolerance, and elevated HbA1c: A population-based longitudinal study. Front. Endocrinol. 2022, 13, 965890. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.M.; Srinivasan, S.R.; Xu, J.-H.; Chen, W.; Berenson, G.S. Changes in risk variables of metabolic syndrome since childhood in pre-diabetic and type 2 diabetic subjects: The Bogalusa Heart Study. Diabetes Care 2008, 31, 2044–2049. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Homko, C.; Barrero, C.A.; Stein, T.P.; Chen, X.; Cheung, P.; Fecchio, C.; Koller, S.; Merali, S. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Sci. Transl. Med. 2015, 7, 304re7. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, J. The hidden dangers of fast and processed food. Am. J. Lifestyle Med. 2018, 12, 375–381. [Google Scholar] [CrossRef]
- Azevedo-Martins, A.K.; Santos, M.P.; Abayomi, J.; Ferreira, N.J.R.; Evangelista, F.S. The impact of excessive fructose intake on adipose tissue and the development of childhood obesity. Nutrients 2024, 16, 939. [Google Scholar] [CrossRef]
- Marí, M.; Morales, A.; Colell, A.; García-Ruiz, C.; Fernandez-Checa, J.C. Oxidative stress in nonalcoholic fatty liver disease. In Studies on Hepatic Disorders; Humana Press: Cham, Switzerland, 2015; pp. 279–308. [Google Scholar]
- Levitan, I.; Volkov, S.; Subbaiah, P.V. Oxidized LDL: Diversity, patterns of recognition, and pathophysiology. Antioxid. Redox Signal. 2010, 13, 39–75. [Google Scholar] [CrossRef]
- Yang, H.; Mohamed, A.S.S.; Zhou, S.-h. Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis. 2012, 11, 85. [Google Scholar] [CrossRef]
- Luvuno, M.; Khathi, A.; Mabandla, M.V. Diet-induced prediabetes: Effects of exercise treatment on risk factors for cardiovascular complications. Nutr. Metab. 2021, 18, 45. [Google Scholar] [CrossRef]
- Mulvihill, E.E.; Huff, M.W. Protection from Metabolic Dysregulation, Obesity, and Atherosclerosis by Citrus Flavonoids: Activation of Hepatic PGC1α-Mediated Fatty Acid Oxidation. PPAR Res. 2012, 2012, 857142. [Google Scholar] [CrossRef]
- Rufino, A.T.; Costa, V.M.; Carvalho, F.; Fernandes, E. Flavonoids as antiobesity agents: A review. Med. Res. Rev. 2021, 41, 556–585. [Google Scholar] [CrossRef]
- Duan, R.; Guan, X.; Huang, K.; Zhang, Y.; Li, S.; Xia, J.A.; Shen, M. Flavonoids from whole-grain oat alleviated high-fat diet-induced hyperlipidemia via regulating bile acid metabolism and gut microbiota in mice. J. Agric. Food Chem. 2021, 69, 7629–7640. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-H. In vitro and in vivo atheroprotective effects of gossypetin against endothelial cell injury by induction of autophagy. Chem. Res. Toxicol. 2015, 28, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jia, D.; Wu, X.; Shi, K.; Ren, C.; Dou, Y.; Guo, M.; Wang, J.; Ma, M.; Wu, Z. A novel metformin derivative showed improvement of lipid metabolism in obese rats with type 2 diabetes. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1382–1392. [Google Scholar] [CrossRef] [PubMed]
- Yasmin, T.; Rahman, M.M.; Khan, F.; Kabir, F.; Nahar, K.; Lasker, S.; Islam, M.D.; Hossain, M.M.; Hasan, R.; Rana, S. Metformin treatment reverses high fat diet-induced non-alcoholic fatty liver diseases and dyslipidemia by stimulating multiple antioxidant and anti-inflammatory pathways. Biochem. Biophys. Rep. 2021, 28, 101168. [Google Scholar] [CrossRef]
- Dampney, R.A. Central neural control of the cardiovascular system: Current perspectives. Adv. Physiol. Educ. 2016, 40, 283–296. [Google Scholar] [CrossRef]
- Taggart, P.; Critchley, H.; van Duijvendoden, S.; Lambiase, P.D. Significance of neuro-cardiac control mechanisms governed by higher regions of the brain. Auton. Neurosci. 2016, 199, 54–65. [Google Scholar] [CrossRef]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef]
- Jia, G.; DeMarco, V.G.; Sowers, J.R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat. Rev. Endocrinol. 2016, 12, 144–153. [Google Scholar] [CrossRef]
- Vanessa Fiorentino, T.; Prioletta, A.; Zuo, P.; Folli, F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr. Pharm. Des. 2013, 19, 5695–5703. [Google Scholar] [CrossRef]
- Mkhize, B.C.; Mosili, P.; Ngubane, P.S.; Sibiya, N.H.; Khathi, A. Diet-induced prediabetes: Effects on the activity of the renin–angiotensin–aldosterone system in selected organs. J. Diabetes Investig. 2022, 13, 768–780. [Google Scholar] [CrossRef]
- David, A.V.A.; Arulmoli, R.; Parasuraman, S. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016, 10, 84. [Google Scholar]
- Ozgen, S.; Kilinc, O.K.; Selamoğlu, Z. Antioxidant activity of quercetin: A mechanistic review. Turk. J. Agric.-Food Sci. Technol. 2016, 4, 1134–1138. [Google Scholar] [CrossRef]
- Oh, E.; Lee, J.; Cho, S.; Kim, S.W.; Won, K.; Shin, W.S.; Gwak, S.H.; Ha, J.; Jeon, S.Y.; Park, J.-H. Gossypetin Prevents the Progression of Nonalcoholic Steatohepatitis by Regulating Oxidative Stress and AMP-Activated Protein Kinase. Mol. Pharmacol. 2023, 104, 214–229. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, M.; Blundell, J.E. Energy balance, body composition, sedentariness and appetite regulation: Pathways to obesity. Clin. Sci. 2016, 130, 1615–1628. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Jabłonowska-Lietz, B.; Wrzosek, M.; Włodarczyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Pol. Heart J. Kardiol. Pol. 2017, 75, 1185–1191. [Google Scholar] [CrossRef]
- Amato, M.C.; Giordano, C. Visceral adiposity index: An indicator of adipose tissue dysfunction. Int. J. Endocrinol. 2014, 2014, 730827. [Google Scholar] [CrossRef]
- Lam, B.C.C.; Koh, G.C.H.; Chen, C.; Wong, M.T.K.; Fallows, S.J. Comparison of body mass index (BMI), body adiposity index (BAI), waist circumference (WC), waist-to-hip ratio (WHR) and waist-to-height ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS ONE 2015, 10, e0122985. [Google Scholar] [CrossRef]
- Akinnuga, A.M.; Siboto, A.; Khumalo, B.; Sibiya, N.H.; Ngubane, P.; Khathi, A. Evaluation of the effects of bredemolic acid on selected markers of glucose homeostasis in diet-induced prediabetic rats. Arch. Physiol. Biochem. 2022, 128, 306–312. [Google Scholar] [CrossRef]
- Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; R Isenovic, E. Link between metabolic syndrome and insulin resistance. Curr. Vasc. Pharmacol. 2017, 15, 30–39. [Google Scholar] [CrossRef]
- Han, J.C.; Weiss, R. Obesity, metabolic syndrome and disorders of energy balance. In Sperling Pediatric Endocrinology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 939–1003. [Google Scholar]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef] [PubMed]
- Yousef, H.; Khandoker, A.H.; Feng, S.F.; Helf, C.; Jelinek, H.F. Inflammation, oxidative stress and mitochondrial dysfunction in the progression of type II diabetes mellitus with coexisting hypertension. Front. Endocrinol. 2023, 14, 1173402. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.J.; Mythili, S. Study on total antioxidant status in relation to oxidative stress in type 2 diabetes mellitus. J. Clin. Diagn. Res. JCDR 2014, 8, 108. [Google Scholar] [CrossRef] [PubMed]
- Tangvarasittichai, S. Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J. Diabetes 2015, 6, 456. [Google Scholar] [CrossRef]
- Jadoon, S.; Malik, A. A review article on the formation, mechanism and biochemistry of MDA and MDA as a biomarker of oxidative stress. Int. J. Adv. Res 2017, 5, 811–818. [Google Scholar] [CrossRef]
- Korac, B.; Kalezic, A.; Pekovic-Vaughan, V.; Korac, A.; Jankovic, A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol. 2021, 42, 101887. [Google Scholar] [CrossRef]
- Puthanveedu, V.; Muraleedharan, K. Study on structural detailing of gossypetin and its medicinal application in UV filtering, radical scavenging, and metal chelation open up through NCI, TD-DFT, QTAIM, ELF, and LOL analysis. Comput. Theor. Chem. 2023, 1225, 114126. [Google Scholar] [CrossRef]
- Proença, C.; Rufino, A.T.; Santos, I.; Albuquerque, H.M.; Silva, A.M.; Fernandes, E.; Ferreira de Oliveira, J.M.P. Gossypetin is a novel modulator of inflammatory cytokine production and a suppressor of osteosarcoma cell growth. Antioxidants 2023, 12, 1744. [Google Scholar] [CrossRef]
- Diniz Vilela, D.; Gomes Peixoto, L.; Teixeira, R.R.; Belele Baptista, N.; Carvalho Caixeta, D.; Vieira de Souza, A.; Machado, H.L.; Pereira, M.N.; Sabino-Silva, R.; Espindola, F.S. The role of metformin in controlling oxidative stress in muscle of diabetic rats. Oxidative Med. Cell. Longev. 2016, 2016, 6978625. [Google Scholar] [CrossRef]
- Wu, S.-B.; Wu, Y.-T.; Wu, T.-P.; Wei, Y.-H. Role of AMPK-mediated adaptive responses in human cells with mitochondrial dysfunction to oxidative stress. Biochim. Biophys. Acta BBA-Gen. Subj. 2014, 1840, 1331–1344. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Shaw, L.C.; Grant, M.B. Inflammation in the pathogenesis of microvascular complications in diabetes. Front. Endocrinol. 2012, 3, 170. [Google Scholar] [CrossRef] [PubMed]
- Henein, M.Y.; Vancheri, S.; Longo, G.; Vancheri, F. The role of inflammation in cardiovascular disease. Int. J. Mol. Sci. 2022, 23, 12906. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, V.; Schmitt, V.H.; Zeller, T.; Panova-Noeva, M.; Schulz, A.; Laubert-Reh, D.; Juenger, C.; Schnabel, R.B.; Abt, T.G.; Laskowski, R. Profile of the immune and inflammatory response in individuals with prediabetes and type 2 diabetes. Diabetes Care 2015, 38, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef]
- Barone, E.; Di Domenico, F.; Perluigi, M.; Butterfield, D.A. The interplay among oxidative stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in type 2 diabetes and Alzheimer disease. Free Radic. Biol. Med. 2021, 176, 16–33. [Google Scholar] [CrossRef]
- Marinkovic, D.; Dragović, T.; Stanojevic, I.; Djuric, P.; Dejanovic, B.; Rakocevic, J.; Kikovic, S.; Malovic, D.; Stevanovic, I.; Ristic, P.; et al. Low-grade inflammation and inflammatory mediators in individuals with prediabetes. Vojnosanit. Pregl. 2024, 81, 56. [Google Scholar] [CrossRef]
- Bjornstad, P.; Schäfer, M.; Truong, U.; Cree-Green, M.; Pyle, L.; Baumgartner, A.; Garcia Reyes, Y.; Maniatis, A.; Nayak, S.; Wadwa, R.P. Metformin improves insulin sensitivity and vascular health in youth with type 1 diabetes mellitus: Randomized controlled trial. Circulation 2018, 138, 2895–2907. [Google Scholar] [CrossRef]
- Bosi, E. Metformin–the gold standard in type 2 diabetes: What does the evidence tell us? Diabetes Obes. Metab. 2009, 11, 3–8. [Google Scholar] [CrossRef]
- Kang, L.; Yi, J.; Lau, C.-W.; He, L.; Chen, Q.; Xu, S.; Li, J.; Xia, Y.; Zhang, Y.; Huang, Y. AMPK-Dependent YAP Inhibition Mediates the Protective Effect of Metformin against Obesity-Associated Endothelial Dysfunction and Inflammation. Antioxidants 2023, 12, 1681. [Google Scholar] [CrossRef]
- Luvuno, M.; Mabandla, M.; Khathi, A. Voluntary ingestion of a high-fat high-carbohydrate diet: A model for prediabetes. Ponte Int. Sci. Res. J. 2018, 74, 119–143. [Google Scholar] [CrossRef]
- Association, A.D. 2. Classification and diagnosis of diabetes: Standards of care in diabetes—2023. Diabetes Care 2023, 46, S19–S40. [Google Scholar]
- Samant, N.P.; Gupta, G.L. Gossypetin-based therapeutics for cognitive dysfunction in chronic unpredictable stress-exposed mice. Metab. Brain Dis. 2022, 37, 1527–1539. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Anwar, H.; Ain, Q.U.; Ahmed, H.; Iqbal, S.; Ijaz, M.U. Therapeutic effect of gossypetin against paraquat-induced testicular damage in male rats: A histological and biochemical study. Environ. Sci. Pollut. Res. 2023, 30, 62237–62248. [Google Scholar] [CrossRef] [PubMed]
- Gamede, M.; Mabuza, L.; Ngubane, P.; Khathi, A. Plant-derived oleanolic acid ameliorates markers associated with non-alcoholic fatty liver disease in a diet-induced pre-diabetes rat model. Diabetes Metab. Syndr. Obes. 2019, 12, 1953–1962. [Google Scholar] [CrossRef]
- Siboto, A.; Akinnuga, A.M.; Khumalo, B.N.; Ismail, M.B.; Booysen, I.N.; Sibiya, N.H.; Ngubane, P.S.; Khathi, A. The effects of a [3+1] oxo-free rhenium (V) compound with uracil-derived ligands on selected parameters of glucose homeostasis in diet-induced pre-diabetic rats. Obes. Med. 2020, 19, 100258. [Google Scholar] [CrossRef]
- Meng, X.-M.; Ma, X.-X.; Tian, Y.-L.; Jiang, Q.; Wang, L.-L.; Shi, R.; Ding, L.; Pang, S.-G. Metformin improves the glucose and lipid metabolism via influencing the level of serum total bile acids in rats with streptozotocin-induced type 2 diabetes mellitus. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 2232–2237. [Google Scholar]
- Fan, N.; Du, L.; Guo, T.; Liu, M.; Chen, X. Pharmacokinetic Interaction Between Imatinib and Metformin in Rats. Eur. J. Drug Metab. Pharmacokinet. 2024, 49, 171–179. [Google Scholar] [CrossRef]
- Bailey, C.J. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes. Metab. 2024, 26, 3–19. [Google Scholar] [CrossRef]
- Khanna, A.K.; Kinoshita, T.; Natarajan, A.; Schwager, E.; Linn, D.D.; Dong, J.; Ghosh, E.; Vicario, F.; Maheshwari, K. Association of systolic, diastolic, mean, and pulse pressure with morbidity and mortality in septic ICU patients: A nationwide observational study. Ann. Intensive Care 2023, 13, 9. [Google Scholar] [CrossRef]
- Lee, J.; Jang, S.; Jeong, H.; Ryu, O.H. Validation of the Friedewald formula for estimating low density lipoprotein cholesterol: The Korea National Health and Nutrition Examination Survey, 2009 to 2011. Korean J. Intern. Med. 2020, 35, 150–159. [Google Scholar] [CrossRef]
- Luvuno, M.; Khathi, A.; Mabandla, M.V. The effects of exercise treatment on learning and memory ability, and cognitive performance in diet-induced prediabetes animals. Sci. Rep. 2020, 10, 15048. [Google Scholar] [CrossRef]
Parameters | Experimental Groups | |||||
---|---|---|---|---|---|---|
NPD | PD | GTIN + ND | GTIN + HFHC | MET + ND | MET + HFHC | |
TG (mmol/L) | 1.03 ± 0.077 | 2.27 ± 0.22 * | 0.91 ± 0.04 # | 1.18 ± 0.050 # | 1.05 ± 0.071 # | 1.19 ± 0.013 # |
TC (mmol/L) | 2.65 ± 0.12 | 4.36 ± 0.05 * | 2.80 ± 0.058 #^ | 3.08 ± 0.091 # | 2.84 ± 0.045 # | 3.25 ± 0.076 # |
HDL (mmol/L) | 1.38 ± 0.084 | 0.70 ± 0.12 * | 1.52 ± 0.093 # | 1.41 ± 0.066 # | 1.56 ± 0.11 # | 1.22 ± 0.10 # |
LDL (mmol/L) | 0.74 ± 0.14 | 2.79 ± 0.14 * | 0.72 ± 0.10 #^ | 1.06 ± 0.07 # | 0.69 ± 0.094 # | 1.30 ± 0.066 # |
VLDL (mmol/L) | 0.53 ± 0.024 | 0.87 ± 0.011 * | 0.56 ± 0.012 #^ | 0.62 ± 0.018 # | 0.56 ± 0.0065 # | 0.64 ± 0.012 # |
Parameters | Experimental Groups | |||||
---|---|---|---|---|---|---|
NPD | PD | GTIN + ND | GTIN + HFHC | MET + ND | MET + HFHC | |
MDA (nmol/g protein) | 3.95 ± 0.59 | 7.73 ± 0.18 * | 4.42 ± 0.47 #^ | 5.38 ± 0.23 # | 4.97 ± 0.28 # | 6.68 ± 0.24 # |
T-SOD Activity (U/mgprot) | 19.88 ± 0.89 | 6.88 ± 0.83 * | 17.65 ± 0.59 #^ | 13.74 ± 0.30 # | 16.98 ± 0.73 # | 9.80 ± 0.68 |
GPx Activity (U/mgprot) | 941.00 ± 27.93 | 415.10 ± 9.69 * | 932.60 ± 40.95 #^ | 837.3 ± 20.84 # | 842.10 ± 16.60 # | 463.00 ± 49.69 |
IL-6 (pg/mL) | 20.22 ± 3.55 | 54.98 ± 3.56 * | 18.79 ± 1.10 #^ | 22.60 ± 0.65 # | 22.80 ± 0.99 # | 25.76 ± 0.89 # |
TNF-α (pg/mL) | 14.96 ± 0.31 | 31.77 ± 0.51 * | 13.09 ± 0.31 #^ | 21.15 ± 3.03 # | 13.77 ± 0.61 # | 25.83 ± 0.81 # |
hs-CRP (pg/mL) | 4.98 ± 0.58 | 15.91 ± 0.18 * | 5.12 ± 0.71 #^ | 6.58 ± 0.074 #^ | 6.03 ± 0.18 # | 7.74 ± 0.11 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naidoo, K.; Khathi, A. Investigating the Effects of Gossypetin on Cardiovascular Function in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats. Int. J. Mol. Sci. 2024, 25, 12105. https://doi.org/10.3390/ijms252212105
Naidoo K, Khathi A. Investigating the Effects of Gossypetin on Cardiovascular Function in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats. International Journal of Molecular Sciences. 2024; 25(22):12105. https://doi.org/10.3390/ijms252212105
Chicago/Turabian StyleNaidoo, Karishma, and Andile Khathi. 2024. "Investigating the Effects of Gossypetin on Cardiovascular Function in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats" International Journal of Molecular Sciences 25, no. 22: 12105. https://doi.org/10.3390/ijms252212105
APA StyleNaidoo, K., & Khathi, A. (2024). Investigating the Effects of Gossypetin on Cardiovascular Function in Diet-Induced Pre-Diabetic Male Sprague Dawley Rats. International Journal of Molecular Sciences, 25(22), 12105. https://doi.org/10.3390/ijms252212105