Aquaporins in Biliary Function: Pathophysiological Implications and Therapeutic Targeting
Abstract
:1. Introduction
2. The Role of AQPs in Bile Flow
2.1. Role of AQPs in the Hepatobiliary Tract
2.1.1. Liver
2.1.2. Bile Ducts
2.1.3. Gallbladder
3. The Role of AQPs in Hepatobiliary Diseases
3.1. Liver and Bile Ducts
3.2. Gallbladder
4. Targeting AQPs with Novel Modulators?
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boyer, J.L. Bile formation and secretion. Compr. Physiol. 2013, 3, 1035–1078. [Google Scholar] [CrossRef] [PubMed]
- Donovan, J.M.; Carey, M.C. Physical-chemical basis of gallstone formation. Gastroenterol. Clin. N. Am. 1991, 20, 47–66. [Google Scholar] [CrossRef]
- Wolkoff, A.W. Composition and circulation of the bile. In Gastrointestinal Anatomy and Physiology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 164–172. [Google Scholar] [CrossRef]
- Fleishman, J.S.; Kumar, S. Bile acid metabolism and signaling in health and disease: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A.; Garruti, G.; Lunardi Baccetto, R.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.; Portincasa, P. Bile Acid Physiology. Ann. Hepatol. 2017, 16, s4–s14. [Google Scholar] [CrossRef] [PubMed]
- Agre, P. Aquaporin water channels (Nobel lecture). Angew. Chem. Int. Ed. 2004, 43, 4278–4290. [Google Scholar] [CrossRef]
- Ishibashi, K.; Morishita, Y.; Tanaka, Y. The Evolutionary Aspects of Aquaporin Family. Adv. Exp. Med. Biol. 2017, 969, 35–50. [Google Scholar] [CrossRef]
- Ishibashi, K.; Tanaka, Y.; Morishita, Y. The role of mammalian superaquaporins inside the cell: An update. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183617. [Google Scholar] [CrossRef]
- Boron, W.F. Sharpey-Schafer lecture: Gas channels. Exp. Physiol. 2010, 95, 1107–1130. [Google Scholar] [CrossRef]
- Geng, X.; Shao, G.; Jiang, T.; Yang, B. Transport Characteristics of Aquaporins. In Aquaporins; Advances in Experimental Medicine and Biology; Springer Nature: Singapore, 2023; Volume 1398, pp. 53–64. [Google Scholar] [CrossRef]
- Calamita, G. Advances in Aquaporins. Cells 2023, 12, 303. [Google Scholar] [CrossRef]
- da Silva, I.V.; Rodrigues, J.S.; Rebelo, I.; Miranda, J.P.G.; Soveral, G. Revisiting the metabolic syndrome: The emerging role of aquaglyceroporins. Cell. Mol. Life Sci. 2018, 75, 1973–1988. [Google Scholar] [CrossRef]
- Maeda, N.; Funahashi, T.; Shimomura, I. Cardiovascular-metabolic impact of adiponectin and aquaporin. Endocr. J. 2013, 60, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Moeller, H.B.; Fuglsang, C.H.; Fenton, R.A. Renal aquaporins and water balance disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 277–288. [Google Scholar] [CrossRef] [PubMed]
- da Silva, I.V.; Soveral, G. Aquaporins in Obesity. Adv. Exp. Med. Biol. 2023, 1398, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Galli, M.; Hameed, A.; Żbikowski, A.; Zabielski, P. Aquaporins in insulin resistance and diabetes: More than channels! Redox Biol. 2021, 44, 102027. [Google Scholar] [CrossRef] [PubMed]
- Hirako, S.; Wakayama, Y.; Kim, H.; Iizuka, Y.; Wada, N.; Kaibara, N.; Okabe, M.; Arata, S.; Matsumoto, A. Association of Aquaporin 7 and 9 with Obesity and Fatty Liver in db/db Mice. Zool. Sci. 2023, 40, 455–462. [Google Scholar] [CrossRef]
- Huo, X.; Yu, Z.; Zhao, F.; Chen, Y.; Chen, P.; Xing, L.; Qiao, Y.; Peng, Y.; Tian, M.; Zhou, M.; et al. Hepatocyte Aquaporin 8-mediated Water Transport Facilitates Bile Dilution and Prevents Gallstone Formation in Mice. J. Hepatol. 2024, online ahead of print. [CrossRef]
- Liu, J.; Jin, Y.; Wei, Q.; Hu, Y.; Liu, L.; Feng, Y.; Jin, Y.; Jiang, Y. The relationship between aquaporins and skin diseases. Eur. J. Dermatol. 2023, 33, 350–359. [Google Scholar] [CrossRef]
- Ala, M.; Mohammad Jafari, R.; Hajiabbasi, A.; Dehpour, A.R. Aquaporins and diseases pathogenesis: From trivial to undeniable involvements, a disease-based point of view. J. Cell. Physiol. 2021, 236, 6115–6135. [Google Scholar] [CrossRef]
- Delporte, C.; Soyfoo, M. Aquaporins: Unexpected actors in autoimmune diseases. Autoimmun. Rev. 2022, 21, 103131. [Google Scholar] [CrossRef]
- Yadav, E.; Yadav, N.; Hus, A.; Yadav, J.S. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir. Med. 2020, 174, 106193. [Google Scholar] [CrossRef]
- Ribatti, D.; Ranieri, G.; Annese, T.; Nico, B. Aquaporins in cancer. Biochim. Biophys. Acta 2014, 1840, 1550–1553. [Google Scholar] [CrossRef]
- Portincasa, P.; Calamita, G. Water channel proteins in bile formation and flow in health and disease: When immiscible becomes miscible. Mol. Asp. Med. 2012, 33, 651–664. [Google Scholar] [CrossRef] [PubMed]
- da Silva, I.V.; Garra, S.; Calamita, G.; Soveral, G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022, 12, 897. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K. A modular analysis of bile canalicular function and its implications for cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol. 2023, 325, G14–G22. [Google Scholar] [CrossRef] [PubMed]
- Sweed, N.; Kim, H.J.; Hultenby, K.; Barros, R.; Parini, P.; Sancisi, V.; Strandvik, B.; Gabbi, C. Liver X receptor beta regulates bile volume and the expression of aquaporins and cystic fibrosis transmembrane conductance regulator in the gallbladder. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G243–G251. [Google Scholar] [CrossRef]
- Mahmoud, F.; Mullen, A.; Sainsbury, C.; Rushworth, G.F.; Yasin, H.; Abutheraa, N.; Mueller, T.; Kurdi, A. Meta-analysis of factors associated with antidiabetic drug prescribing for type 2 diabetes mellitus. Eur. J. Clin. Investig. 2023, 53, e13997. [Google Scholar] [CrossRef]
- Stellaard, F.; Paumgartner, G. A new model to assess deoxycholic acid metabolism in health using stable isotope dilution technique. Eur. J. Clin. Investig. 1987, 17, 63–67. [Google Scholar] [CrossRef]
- Di Ciaula, A.; Bonfrate, L.; Khalil, M.; Portincasa, P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern. Emerg. Med. 2023, 18, 2181–2197. [Google Scholar] [CrossRef]
- Stellaard, F.; Lütjohann, D. Dynamics of the enterohepatic circulation of bile acids in healthy humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G55–G66. [Google Scholar] [CrossRef]
- Nielsen, S.; Smith, B.L.; Christensen, E.I.; Agre, P. Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc. Natl. Acad. Sci. USA 1993, 90, 7275–7279. [Google Scholar] [CrossRef]
- Morishita, Y.; Matsuzaki, T.; Hara-chikuma, M.; Andoo, A.; Shimono, M.; Matsuki, A.; Kobayashi, K.; Ikeda, M.; Yamamoto, T.; Verkman, A.; et al. Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol. Cell. Biol. 2005, 25, 7770–7779. [Google Scholar] [CrossRef]
- Gregoire, F.; Lucidi, V.; Zerrad-Saadi, A.; Virreira, M.; Bolaky, N.; Delforge, V.; Lemmers, A.; Donckier, V.; Deviere, J.; Demetter, P.; et al. Analysis of aquaporin expression in liver with a focus on hepatocytes. Histochem. Cell Biol. 2015, 144, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Calamita, G.; Delporte, C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023, 12, 2170. [Google Scholar] [CrossRef] [PubMed]
- Calamita, G.; Ferri, D.; Bazzini, C.; Mazzone, A.; Botta, G.; Liquori, G.E.; Paulmichl, M.; Portincasa, P.; Meyer, G.; Svelto, M. Expression and subcellular localization of the AQP8 and AQP1 water channels in the mouse gall-bladder epithelium. Biol. Cell Under Auspices Eur. Cell Biol. Organ. 2005, 97, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Ferri, D.; Mazzone, A.; Liquori, G.E.; Cassano, G.; Svelto, M.; Calamita, G. Ontogeny, distribution, and possible functional implications of an unusual aquaporin, AQP8, in mouse liver. Hepatology 2003, 38, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Larocca, M.C.; Soria, L.R.; Espelt, M.V.; Lehmann, G.L.; Marinelli, R.A. Knockdown of hepatocyte aquaporin-8 by RNA interference induces defective bile canalicular water transport. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G93–G100. [Google Scholar] [CrossRef]
- Huebert, R.C.; Splinter, P.L.; Garcia, F.; Marinelli, R.A.; LaRusso, N.F. Expression and localization of aquaporin water channels in rat hepatocytes. Evidence for a role in canalicular bile secretion. J. Biol. Chem. 2002, 277, 22710–22717. [Google Scholar] [CrossRef]
- Calamita, G.; Gena, P.; Meleleo, D.; Ferri, D.; Svelto, M. Water permeability of rat liver mitochondria: A biophysical study. Biochim. Biophys. Acta 2006, 1758, 1018–1024. [Google Scholar] [CrossRef]
- Soria, L.R.; Fanelli, E.; Altamura, N.; Svelto, M.; Marinelli, R.A.; Calamita, G. Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem. Biophys. Res. Commun. 2010, 393, 217–221. [Google Scholar] [CrossRef]
- Capiglioni, A.M.; Muller, G.L.; Marrone, J.; Alvarez, M.L.; Marinelli, R.A. Enhanced ammonia detoxification to urea in hepatocytes transduced with human aquaporin-8 gene. Biotechnol. Bioeng. 2021, 118, 4331–4337. [Google Scholar] [CrossRef]
- Capiglioni, A.M.; Capitani, M.C.; Marrone, J.; Marinelli, R.A. Adenoviral Transfer of Human Aquaporin-8 Gene to Mouse Liver Improves Ammonia-Derived Ureagenesis. Cells 2023, 12, 1535. [Google Scholar] [CrossRef]
- Marchissio, M.J.; Frances, D.E.; Carnovale, C.E.; Marinelli, R.A. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol. Appl. Pharmacol. 2012, 264, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, R.A.; Marchissio, M.J. Mitochondrial aquaporin-8: A functional peroxiporin? Antioxid. Redox Signal. 2013, 19, 896. [Google Scholar] [CrossRef] [PubMed]
- Danielli, M.; Capiglioni, A.M.; Marrone, J.; Calamita, G.; Marinelli, R.A. Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells. IUBMB Life 2017, 69, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Danielli, M.; Marrone, J.; Capiglioni, A.M.; Marinelli, R.A. Mitochondrial aquaporin-8 is involved in SREBP-controlled hepatocyte cholesterol biosynthesis. Free Radic. Biol. Med. 2019, 131, 370–375. [Google Scholar] [CrossRef]
- Danielli, M.; Capiglioni, A.M.; Marrone, J.; Marinelli, R.A. Further evidence for the involvement of mitochondrial aquaporin-8 in hepatocyte lipid synthesis. Biochimie 2021, 188, 16–19. [Google Scholar] [CrossRef]
- Xiang, M.; Qian, X.; Han, L.; Wang, H.; Wang, J.; Liu, W.; Gu, Y.; Yao, S.; Yang, J.; Zhang, Y.; et al. Aquaporin-8 ameliorates hepatic steatosis through farnesoid X receptor in obese mice. iScience 2023, 26, 106561. [Google Scholar] [CrossRef]
- Vilchis-Landeros, M.; Guinzberg, R.; Riveros-Rosas, H.; Villalobos-Molina, R.; Pina, E. Aquaporin 8 is involved in H2O2-mediated differential regulation of metabolic signaling by α1- and β-adrenoceptors in hepatocytes. FEBS Lett. 2020, 594, 1564–1576. [Google Scholar] [CrossRef]
- Gradilone, S.A.; Carreras, F.I.; Lehmann, G.L.; Marinelli, R.A. Phosphoinositide 3-kinase is involved in the glucagon-induced translocation of aquaporin-8 to hepatocyte plasma membrane. Biol. Cell. 2005, 97, 831–836. [Google Scholar] [CrossRef]
- Garcia, F.; Kierbel, A.; Larocca, M.C.; Gradilone, S.A.; Splinter, P.; LaRusso, N.F.; Marinelli, R.A. The water channel aquaporin-8 is mainly intracellular in rat hepatocytes, and its plasma membrane insertion is stimulated by cyclic AMP. J. Biol. Chem. 2001, 276, 12147–12152. [Google Scholar] [CrossRef]
- Gradilone, S.A.; Garcia, F.; Huebert, R.C.; Tietz, P.S.; Larocca, M.C.; Kierbel, A.; Carreras, F.I.; Larusso, N.F.; Marinelli, R.A. Glucagon induces the plasma membrane insertion of functional aquaporin-8 water channels in isolated rat hepatocytes. Hepatology 2003, 37, 1435–1441. [Google Scholar] [CrossRef]
- Soria, L.R.; Gradilone, S.A.; Larocca, M.C.; Marinelli, R.A. Glucagon induces the gene expression of aquaporin-8 but not that of aquaporin-9 water channels in the rat hepatocyte. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009, 296, R1274–R1281. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Song, Y.; Zhao, D.; Verkman, A.S. Phenotype analysis of aquaporin-8 null mice. Am. J. Physiol. Cell Physiol. 2005, 288, C1161–C1170. [Google Scholar] [CrossRef] [PubMed]
- Carreras, F.I.; Lehmann, G.L.; Ferri, D.; Tioni, M.F.; Calamita, G.; Marinelli, R.A. Defective hepatocyte aquaporin-8 expression and reduced canalicular membrane water permeability in estrogen-induced cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G905–G912. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Imasato, M.; Yamazaki, Y.; Tanaka, H.; Watanabe, M.; Eguchi, H.; Nagano, H.; Hikita, H.; Tatsumi, T.; Takehara, T.; et al. Claudin 2 deficiency reduces bile flow and increases susceptibility to cholesterol gallstone disease in mice. Gastroenterology 2014, 147, 1134–1145.e10. [Google Scholar] [CrossRef]
- Geistlinger, K.; Schmidt, J.D.R.; Beitz, E. Lactic Acid Permeability of Aquaporin-9 Enables Cytoplasmic Lactate Accumulation via an Ion Trap. Life 2022, 12, 120. [Google Scholar] [CrossRef]
- Zeuthen, T.; Alsterfjord, M.; Beitz, E.; MacAulay, N. Osmotic water transport in aquaporins: Evidence for a stochastic mechanism. J. Physiol. 2013, 591, 5017–5029. [Google Scholar] [CrossRef]
- Elkjaer, M.; Vajda, Z.; Nejsum, L.N.; Kwon, T.; Jensen, U.B.; Amiry-Moghaddam, M.; Frokiaer, J.; Nielsen, S. Immunolocalization of AQP9 in liver, epididymis, testis, spleen, and brain. Biochem. Biophys. Res. Commun. 2000, 276, 1118–1128. [Google Scholar] [CrossRef]
- Calamita, G.; Gena, P.; Ferri, D.; Rosito, A.; Rojek, A.; Nielsen, S.; Marinelli, R.A.; Fruhbeck, G.; Svelto, M. Biophysical assessment of aquaporin-9 as principal facilitative pathway in mouse liver import of glucogenetic glycerol. Biol. Cell. 2012, 104, 342–351. [Google Scholar] [CrossRef]
- Florio, M.; Engfors, A.; Gena, P.; Larsson, J.; Massaro, A.; Timpka, S.; Reimer, M.K.; Kjellbom, P.; Beitz, E.; Johanson, U.; et al. Characterization of the Aquaporin-9 Inhibitor RG100204 In Vitro and in db/db Mice. Cells 2022, 11, 3118. [Google Scholar] [CrossRef]
- Rodriguez, A.; Catalan, V.; Gomez-Ambrosi, J.; Garcia-Navarro, S.; Rotellar, F.; Valenti, V.; Silva, C.; Gil, M.J.; Salvador, J.; Burrell, M.A.; et al. Insulin- and leptin-mediated control of aquaglyceroporins in human adipocytes and hepatocytes is mediated via the PI3K/Akt/mTOR signaling cascade. J. Clin. Endocrinol. Metab. 2011, 96, E586–E597. [Google Scholar] [CrossRef]
- Calamita, G.; Ferri, D.; Gena, P.; Carreras, F.I.; Liquori, G.E.; Portincasa, P.; Marinelli, R.A.; Svelto, M. Altered expression and distribution of aquaporin-9 in the liver of rat with obstructive extrahepatic cholestasis. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G682–G690. [Google Scholar] [CrossRef] [PubMed]
- Jelen, S.; Gena, P.; Lebeck, J.; Rojek, A.; Praetorius, J.; Frokiaer, J.; Fenton, R.A.; Nielsen, S.; Calamita, G.; Rutzler, M. Aquaporin-9 and urea transporter-A gene deletions affect urea transmembrane passage in murine hepatocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G1279–G1287. [Google Scholar] [CrossRef] [PubMed]
- Kuriyama, H.; Shimomura, I.; Kishida, K.; Kondo, H.; Furuyama, N.; Nishizawa, H.; Maeda, N.; Matsuda, M.; Nagaretani, H.; Kihara, S.; et al. Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 2002, 51, 2915–2921. [Google Scholar] [CrossRef] [PubMed]
- Carbrey, J.M.; Gorelick-Feldman, D.A.; Kozono, D.; Praetorius, J.; Nielsen, S.; Agre, P. Aquaglyceroporin AQP9: Solute permeation and metabolic control of expression in liver. Proc. Natl. Acad. Sci. USA 2003, 100, 2945–2950. [Google Scholar] [CrossRef] [PubMed]
- Calamita, G.; Delporte, C.; Marinelli, R. Hepatobiliary, Salivary Glands and Pancreatic Aquaporins in Health and Disease. In Aquaporins in Health and Disease; CRC Press: Boca Raton, FL, USA, 2016; pp. 183–205. [Google Scholar]
- Rojek, A.M.; Skowronski, M.T.; Fuchtbauer, E.M.; Fuchtbauer, A.C.; Fenton, R.A.; Agre, P.; Frokiaer, J.; Nielsen, S. Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc. Natl. Acad. Sci. USA 2007, 104, 3609–3614. [Google Scholar] [CrossRef]
- Gena, P.; Mastrodonato, M.; Portincasa, P.; Fanelli, E.; Mentino, D.; Rodriguez, A.; Marinelli, R.A.; Brenner, C.; Fruhbeck, G.; Svelto, M.; et al. Liver glycerol permeability and aquaporin-9 are dysregulated in a murine model of Non-Alcoholic Fatty Liver Disease. PLoS ONE 2013, 8, e78139. [Google Scholar] [CrossRef]
- Rodriguez, A.; Gena, P.; Mendez-Gimenez, L.; Rosito, A.; Valenti, V.; Rotellar, F.; Sola, I.; Moncada, R.; Silva, C.; Svelto, M.; et al. Reduced hepatic aquaporin-9 and glycerol permeability are related to insulin resistance in non-alcoholic fatty liver disease. Int. J. Obes. 2014, 38, 1213–1220. [Google Scholar] [CrossRef]
- Rodriguez, A.; Ezquerro, S.; Mendez-Gimenez, L.; Becerril, S.; Fruhbeck, G. Revisiting the adipocyte: A model for integration of cytokine signaling in the regulation of energy metabolism. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E691–E714. [Google Scholar] [CrossRef]
- Trasande, L.; Cronk, C.; Durkin, M.; Weiss, M.; Schoeller, D.A.; Gall, E.A.; Hewitt, J.B.; Carrel, A.L.; Landrigan, P.J.; Gillman, M.W. Environment and obesity in the National Children’s Study. Environ. Health Perspect. 2009, 117, 159–166. [Google Scholar] [CrossRef]
- Elnegaard, J.J.; Iena, F.M.; Herold, J.; Lebeck, J. Sex-specific effect of AQP9 deficiency on hepatic triglyceride metabolism in mice with diet-induced obesity. J. Physiol. 2024, 602, 3131–3149. [Google Scholar] [CrossRef]
- Madeira, A.; Moura, T.F.; Soveral, G. Aquaglyceroporins: Implications in adipose biology and obesity. Cell. Mol. Life Sci. 2015, 72, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Baldini, F.; Portincasa, P.; Grasselli, E.; Damonte, G.; Salis, A.; Bonomo, M.; Florio, M.; Serale, N.; Voci, A.; Gena, P.; et al. Aquaporin-9 is involved in the lipid-lowering activity of the nutraceutical silybin on hepatocytes through modulation of autophagy and lipid droplets composition. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158586. [Google Scholar] [CrossRef] [PubMed]
- Tesse, A.; Gena, P.; Rutzler, M.; Calamita, G. Ablation of Aquaporin-9 Ameliorates the Systemic Inflammatory Response of LPS-Induced Endotoxic Shock in Mouse. Cells 2021, 10, 435. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, X.; Wang, Z.; Rutzler, M.; Lu, Q.; Xu, H.; Andersson, R.; Dai, Y.; Shen, Z.; Calamita, G.; et al. Inhibition of aquaporin-9 ameliorates severe acute pancreatitis and associated lung injury by NLRP3 and Nrf2/HO-1 pathways. Int. Immunopharmacol. 2024, 137, 112450. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.; O’Riordan, C.E.; Verra, C.; Aimaretti, E.; Alves, G.F.; Dreisch, K.; Evenas, J.; Gena, P.; Tesse, A.; Rutzler, M.; et al. RG100204, A Novel Aquaporin-9 Inhibitor, Reduces Septic Cardiomyopathy and Multiple Organ Failure in Murine Sepsis. Front. Immunol. 2022, 13, 900906. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhang, J.; Ding, H.; Wang, Z.; Fang, J.; Fang, X.; Li, M.; Li, R.; Meng, J.; Liu, H.; et al. Integrated multiomics analysis reveals changes in liver physiological function in Aqp9 gene knockout mice. Int. J. Biol. Macromol. 2023, 245, 125459. [Google Scholar] [CrossRef]
- Morishita, T.; Tsutsui, M.; Shimokawa, H.; Sabanai, K.; Tasaki, H.; Suda, O.; Nakata, S.; Tanimoto, A.; Wang, K.Y.; Ueta, Y.; et al. Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc. Natl. Acad. Sci. USA 2005, 102, 10616–10621. [Google Scholar] [CrossRef]
- Sorrentino, I.; Galli, M.; Medrano-Fernandez, I.; Sitia, R. Transfer of H2O2 from Mitochondria to the endoplasmic reticulum via Aquaporin-11. Redox Biol. 2022, 55, 102410. [Google Scholar] [CrossRef]
- Masyuk, T.; LaRusso, N. Polycystic liver disease: New insights into disease pathogenesis. Hepatology 2006, 43, 906–908. [Google Scholar] [CrossRef]
- Splinter, P.L.; Masyuk, A.I.; LaRusso, N.F. Specific inhibition of AQP1 water channels in isolated rat intrahepatic bile duct units by small interfering RNAs. J. Biol. Chem. 2003, 278, 6268–6274. [Google Scholar] [CrossRef]
- Marinelli, R.A.; LaRusso, N.F. Aquaporin water channels in liver: Their significance in bile formation. Hepatology 1997, 26, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, R.A.; Lehmann, G.L.; Soria, L.R.; Marchissio, M.J. Hepatocyte aquaporins in bile formation and cholestasis. Front. Biosci. (Landmark Ed.) 2011, 16, 2642–2652. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, R.A.; Tietz, P.S.; Pham, L.D.; Rueckert, L.; Agre, P.; LaRusso, N.F. Secretin induces the apical insertion of aquaporin-1 water channels in rat cholangiocytes. Am. J. Physiol. 1999, 276, G280–G286. [Google Scholar] [CrossRef] [PubMed]
- Tietz, P.S.; Marinelli, R.A.; Chen, X.M.; Huang, B.; Cohn, J.; Kole, J.; McNiven, M.A.; Alper, S.; LaRusso, N.F. Agonist-induced coordinated trafficking of functionally related transport proteins for water and ions in cholangiocytes. J. Biol. Chem. 2003, 278, 20413–20419. [Google Scholar] [CrossRef] [PubMed]
- Marinelli, R.A.; Pham, L.D.; Tietz, P.S.; LaRusso, N.F. Expression of aquaporin-4 water channels in rat cholangiocytes. Hepatology 2000, 31, 1313–1317. [Google Scholar] [CrossRef]
- Calamita, G.; Ferri, D.; Gena, P.; Liquori, G.E.; Marinelli, R.A.; Meyer, G.; Portincasa, P.; Svelto, M. Water transport into bile and role in bile formation. Curr. Drug Targets. Immune Endocr. Metab. Disord. 2005, 5, 137–142. [Google Scholar] [CrossRef]
- Mennone, A.; Verkman, A.S.; Boyer, J.L. Unimpaired osmotic water permeability and fluid secretion in bile duct epithelia of AQP1 null mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G739–G746. [Google Scholar] [CrossRef]
- Ueno, Y.; Alpini, G.; Yahagi, K.; Kanno, N.; Moritoki, Y.; Fukushima, K.; Glaser, S.; LeSage, G.; Shimosegawa, T. Evaluation of differential gene expression by microarray analysis in small and large cholangiocytes isolated from normal mice. Liver Int. 2003, 23, 449–459. [Google Scholar] [CrossRef]
- Poling, H.M.; Mohanty, S.K.; Tiao, G.M.; Huppert, S.S. A comprehensive analysis of aquaporin and secretory related gene expression in neonate and adult cholangiocytes. Gene Expr. Patterns 2014, 15, 96–103. [Google Scholar] [CrossRef]
- Masyuk, A.I.; Masyuk, T.V.; Tietz, P.S.; Splinter, P.L.; LaRusso, N.F. Intrahepatic bile ducts transport water in response to absorbed glucose. Am. J. Physiol. Cell Physiol. 2002, 283, C785–C791. [Google Scholar] [CrossRef]
- Deng, S.; Zhao, X.; Kou, Z.; Zhu, Y.; Zhang, X.; Chan, H.F. Effect of Valproic Acid on Promoting the Differentiation of Human Embryonic Stem Cells Into Cholangiocyte-Like Cells. Stem Cells Transl. Med. 2024, 13, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Jesus, T.T.; Bernardino, R.L.; Martins, A.D.; Sa, R.; Sousa, M.; Alves, M.G.; Oliveira, P.F. Aquaporin-9 is expressed in rat Sertoli cells and interacts with the cystic fibrosis transmembrane conductance regulator. IUBMB Life 2014, 66, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.C.; Bernardino, R.L.; Carrageta, D.F.; Soveral, G.; Calamita, G.; Alves, M.G.; Oliveira, P.F. CFTR modulates aquaporin-mediated glycerol permeability in mouse Sertoli cells. Cell. Mol. Life Sci. 2022, 79, 592. [Google Scholar] [CrossRef] [PubMed]
- Di Ciaula, A.; Bonfrate, L.; Baj, J.; Khalil, M.; Garruti, G.; Stellaard, F.; Wang, H.H.; Wang, D.Q.; Portincasa, P. Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients 2022, 14, 4950. [Google Scholar] [CrossRef] [PubMed]
- Reuss, L.; Segal, Y.; Altenberg, G. Regulation of ion transport across gallbladder epithelium. Annu. Rev. Physiol. 1991, 53, 361–373. [Google Scholar] [CrossRef]
- Ambe, P.C.; Godde, D.; Zirngibl, H.; Storkel, S. Aquaporin-1 and 8 expression in the gallbladder mucosa might not be associated with the development of gallbladder stones in humans. Eur. J. Clin. Investig. 2016, 46, 227–233. [Google Scholar] [CrossRef]
- van Erpecum, K.J.; Wang, D.Q.; Moschetta, A.; Ferri, D.; Svelto, M.; Portincasa, P.; Hendrickx, J.J.; Schipper, M.; Calamita, G. Gallbladder histopathology during murine gallstone formation: Relation to motility and concentrating function. J. Lipid Res. 2006, 47, 32–41. [Google Scholar] [CrossRef]
- Swartz-Basile, D.A.; Lu, D.; Basile, D.P.; Graewin, S.J.; Al-Azzawi, H.; Kiely, J.M.; Mathur, A.; Yancey, K.; Pitt, H.A. Leptin regulates gallbladder genes related to absorption and secretion. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G84–G90. [Google Scholar] [CrossRef]
- Li, L.; Zhang, H.; Ma, T.; Verkman, A.S. Very high aquaporin-1 facilitated water permeability in mouse gallbladder. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 296, G816–G822. [Google Scholar] [CrossRef]
- Goldblatt, M.I.; Swartz-Basile, D.A.; Svatek, C.L.; Nakeeb, A.; Pitt, H.A. Decreased gallbladder response in leptin-deficient obese mice. J. Gastrointest. Surg. 2002, 6, 438–442, discussion 443–434. [Google Scholar] [CrossRef]
- Zollner, G.; Trauner, M. Mechanisms of cholestasis. Clin. Liver Dis. 2008, 12, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Li, C.F.; Lü, L.; Mei, Z.C. Expression and clinical significance of aquaglyceroporins in human hepatocellular carcinoma. Mol. Med. Rep. 2016, 13, 5283–5289. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Shi, Y.; Liu, M.; Sun, J. circHIPK3 regulates cell proliferation and migration by sponging miR-124 and regulating AQP3 expression in hepatocellular carcinoma. Cell Death Dis. 2018, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Padma, S.; Smeltz, A.M.; Banks, P.M.; Iannitti, D.A.; McKillop, I.H. Altered aquaporin 9 expression and localization in human hepatocellular carcinoma. HPB 2009, 11, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, E.M.; Mattocks, M.A.; Sokolov, E.; Koniaris, L.G.; Hughes, F.M., Jr.; Fausto, N.; Pierce, R.H.; McKillop, I.H. Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Lett. 2007, 250, 36–46. [Google Scholar] [CrossRef]
- Vireak, C.; Seo, A.N.; Han, M.H.; Park, T.I.; Kim, Y.J.; Jeong, J.Y. Aquaporin 5 expression correlates with tumor multiplicity and vascular invasion in hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 2019, 12, 516–527. [Google Scholar]
- Cheng, Q.; Ding, H.; Fang, J.; Fang, X.; Liu, H.; Wang, J.; Chen, C.; Zhang, W. Aquaporin 9 Represents a Novel Target of Chronic Liver Injury That May Antagonize Its Progression by Reducing Lipotoxicity. Oxidative Med. Cell. Longev. 2021, 2021, 5653700. [Google Scholar] [CrossRef]
- Rodríguez, A.; Moreno, N.R.; Balaguer, I.; Méndez-Giménez, L.; Becerril, S.; Catalán, V.; Gómez-Ambrosi, J.; Portincasa, P.; Calamita, G.; Soveral, G.; et al. Leptin administration restores the altered adipose and hepatic expression of aquaglyceroporins improving the non-alcoholic fatty liver of ob/ob mice. Sci. Rep. 2015, 5, 12067. [Google Scholar] [CrossRef]
- Wang, C.; Lv, Z.-L.; Kang, Y.-J.; Xiang, T.-X.; Wang, P.-L.; Jiang, Z. Aquaporin-9 downregulation prevents steatosis in oleic acid-induced non-alcoholic fatty liver disease cell models. Int. J. Mol. Med. 2013, 32, 1159–1165. [Google Scholar] [CrossRef]
- Gu, L.y.; Qiu, L.w.; Chen, X.f.; Lü, L.; Mei, Z.C. Oleic Acid-Induced Hepatic Steatosis is Coupled with Downregulation of Aquaporin 3 and Upregulation of Aquaporin 9 via Activation of p38 Signaling. Horm. Metab. Res. 2015, 47, 259–264. [Google Scholar] [CrossRef]
- Iguchi, H.; Oda, M.; Yamazaki, H.; Yokomori, H. Participation of aquaporin-1 in vascular changes and remodeling in cirrhotic liver. Med. Mol. Morphol. 2013, 46, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Carreras, F.I.; Gradilone, S.A.; Mazzone, A.; Garcia, F.; Huang, B.Q.; Ochoa, J.E.; Tietz, P.S.; Larusso, N.F.; Calamita, G.; Marinelli, R.A. Rat hepatocyte aquaporin-8 water channels are down-regulated in extrahepatic cholestasis. Hepatology 2003, 37, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, G.L.; Marinelli, R.A. Peritoneal sepsis downregulates liver expression of Aquaporin-8: A water channel involved in bile secretion. Liver Int. 2009, 29, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, G.L.; Larocca, M.C.; Soria, L.R.; Marinelli, R.A. Aquaporins: Their role in cholestatic liver disease. World J. Gastroenterol. WJG 2008, 14, 7059–7067. [Google Scholar] [CrossRef] [PubMed]
- Marrone, J.; Lehmann, G.L.; Soria, L.R.; Pellegrino, J.M.; Molinas, S.; Marinelli, R.A. Adenoviral transfer of human aquaporin-1 gene to rat liver improves bile flow in estrogen-induced cholestasis. Gene Ther. 2014, 21, 1058–1064. [Google Scholar] [CrossRef]
- Marinelli, R.A.; Vore, M.; Javitt, N.B. Hepatic Bile Formation: Canalicular Osmolarity and Paracellular and Transcellular Water Flow. J. Pharmacol. Exp. Ther. 2019, 371, 713–717. [Google Scholar] [CrossRef]
- Javitt, N.B. Hepatic bile formation: Bile acid transport and water flow into the canalicular conduit. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 319, G609–G618. [Google Scholar] [CrossRef]
- Westerberg, N.S.; Atneosen-Asegg, M.; Melheim, M.; Chollet, M.E.; Harrison, S.P.; Siller, R.; Sullivan, G.J.; Almaas, R. Effect of hypoxia on aquaporins and hepatobiliary transport systems in human hepatic cells. Pediatr. Res. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Banales, J.M.; Masyuk, T.V.; Bogert, P.S.; Huang, B.Q.; Gradilone, S.A.; Lee, S.O.; Stroope, A.J.; Masyuk, A.I.; Medina, J.F.; LaRusso, N.F. Hepatic cystogenesis is associated with abnormal expression and location of ion transporters and water channels in an animal model of autosomal recessive polycystic kidney disease. Am. J. Pathol. 2008, 173, 1637–1646. [Google Scholar] [CrossRef]
- Chen, X.M.; O’Hara, S.P.; Huang, B.Q.; Splinter, P.L.; Nelson, J.B.; LaRusso, N.F. Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host-cell membrane protrusion. Proc. Natl. Acad. Sci. USA 2005, 102, 6338–6343. [Google Scholar] [CrossRef]
- Hara-Chikuma, M.; Tanaka, M.; Verkman, A.S.; Yasui, M. Inhibition of aquaporin-3 in macrophages by a monoclonal antibody as potential therapy for liver injury. Nat. Commun. 2020, 11, 5666. [Google Scholar] [CrossRef]
- Tardelli, M.; Bruschi, F.V.; Claudel, T.; Moreno-Viedma, V.; Halilbasic, E.; Marra, F.; Herac, M.; Stulnig, T.M.; Trauner, M. AQP3 is regulated by PPARγ and JNK in hepatic stellate cells carrying PNPLA3 I148M. Sci. Rep. 2017, 7, 14661. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Huang, S.; Li, D.; Zou, Q.; Yuan, Y.; Yang, Z. The expression of Aquaporin-1 and Aquaporin-3 in extrahepatic cholangiocarcinoma and their clinicopathological significance. Am. J. Med. Sci. 2022, 364, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Moschetta, A.; Palasciano, G. Cholesterol gallstone disease. Lancet 2006, 368, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Friedman, G.D. Natural history of asymptomatic and symptomatic gallstones. Am. J. Surg. 1993, 165, 399–404. [Google Scholar] [CrossRef]
- Portincasa, P.; Di Ciaula, A.; Bonfrate, L.; Stella, A.; Garruti, G.; Lamont, J.T. Metabolic dysfunction-associated gallstone disease: Expecting more from critical care manifestations. Intern. Emerg. Med. 2023, 18, 1897–1918. [Google Scholar] [CrossRef]
- Sandler, R.S.; Everhart, J.E.; Donowitz, M.; Adams, E.; Cronin, K.; Goodman, C.; Gemmen, E.; Shah, S.; Avdic, A.; Rubin, R. The burden of selected digestive diseases in the United States. Gastroenterology 2002, 122, 1500–1511. [Google Scholar] [CrossRef]
- Wang, D.Q.; Cohen, D.E.; Carey, M.C. Biliary lipids and cholesterol gallstone disease. J. Lipid Res. 2009, 50, S406–S411. [Google Scholar] [CrossRef]
- Katsika, D.; Grjibovski, A.; Einarsson, C.; Lammert, F.; Lichtenstein, P.; Marschall, H.U. Genetic and environmental influences on symptomatic gallstone disease: A Swedish study of 43,141 twin pairs. Hepatology 2005, 41, 1138–1143. [Google Scholar] [CrossRef]
- Shabanzadeh, D.M.; Skaaby, T.; Sørensen, L.T.; Eugen-Olsen, J.; Jørgensen, T. Metabolic biomarkers and gallstone disease—A population-based study. Scand. J. Gastroenterol. 2017, 52, 1270–1277. [Google Scholar] [CrossRef]
- Wang, H.H.; Li, T.; Portincasa, P.; Ford, D.A.; Neuschwander-Tetri, B.A.; Tso, P.; Wang, D.Q. New insights into the role of Lith genes in the formation of cholesterol-supersaturated bile. Liver Res. 2017, 1, 42–53. [Google Scholar] [CrossRef]
- Wang, H.H.; Afdhal, N.H.; Gendler, S.J.; Wang, D.Q. Targeted disruption of the murine mucin gene 1 decreases susceptibility to cholesterol gallstone formation. J. Lipid Res. 2004, 45, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Q.; Afdhal, N.H. Genetic analysis of cholesterol gallstone formation: Searching for Lith (gallstone) genes. Curr. Gastroenterol. Rep. 2004, 6, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Konikoff, F.M.; Chung, D.S.; Donovan, J.M.; Small, D.M.; Carey, M.C. Filamentous, helical and tubular microstructures during cholesterol crystallization from bile. Evidence that biliary cholesterol does not nucleate classic monohydrate plates. J. Clin. Investig. 1992, 90, 1156–1161. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Q.; Carey, M.C. Complete mapping of crystallization pathways during cholesterol precipitation from model bile: Influence of physical-chemical variables of pathophysiologic relevance and identification of a stable liquid crystalline state in cold, dilute and hydrophilic bile salt-containing systems. J. Lipid Res. 1996, 37, 606–630. [Google Scholar] [PubMed]
- Wang, D.Q.; Paigen, B.; Carey, M.C. Phenotypic characterization of Lith genes that determine susceptibility to cholesterol cholelithiasis in inbred mice: Physical-chemistry of gallbladder bile. J. Lipid Res. 1997, 38, 1395–1411. [Google Scholar] [CrossRef]
- Wang, D.Q.; Carey, M.C. Characterization of crystallization pathways during cholesterol precipitation from human gallbladder biles: Identical pathways to corresponding model biles with three predominating sequences. J. Lipid Res. 1996, 37, 2539–2549. [Google Scholar] [CrossRef]
- Portincasa, P.; Venneman, N.G.; Moschetta, A.; van den Berg, A.; Palasciano, G.; vanBerge-Henegouwen, G.P.; van Erpecum, K.J. Quantitation of cholesterol crystallization from supersaturated model bile. J. Lipid Res. 2002, 43, 604–610. [Google Scholar] [CrossRef]
- Maurer, K.J.; Carey, M.C.; Fox, J.G. Roles of infection, inflammation, and the immune system in cholesterol gallstone formation. Gastroenterology 2009, 136, 425–440. [Google Scholar] [CrossRef]
- Geetha, A. Evidence for oxidative stress in the gall bladder mucosa of gall stone patients. J. Biochem. Mol. Biol. Biophys. 2002, 6, 427–432. [Google Scholar] [CrossRef]
- Kube, I.; Kowalczyk, M.; Hofmann, U.; Ghallab, A.; Hengstler, J.G.; Fuhrer, D.; Zwanziger, D. Hepatobiliary Thyroid Hormone Deficiency Impacts Bile Acid Hydrophilicity and Aquaporins in Cholestatic C57BL/6J Mice. Int. J. Mol. Sci. 2022, 23, 2355. [Google Scholar] [CrossRef]
- Sekine, S.; Shimada, Y.; Nagata, T.; Sawada, S.; Yoshioka, I.; Matsui, K.; Moriyama, M.; Omura, T.; Osawa, S.; Shibuya, K.; et al. Role of aquaporin-5 in gallbladder carcinoma. Eur. Surg. Res. 2013, 51, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Sekine, S.; Shimada, Y.; Nagata, T.; Moriyama, M.; Omura, T.; Watanabe, T.; Hori, R.; Yoshioka, I.; Okumura, T.; Sawada, S.; et al. Prognostic significance of aquaporins in human biliary tract carcinoma. Oncol. Rep. 2012, 27, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S.; Anderson, M.O.; Papadopoulos, M.C. Aquaporins: Important but elusive drug targets. Nat. Rev. Drug Discov. 2014, 13, 259–277. [Google Scholar] [CrossRef] [PubMed]
- Bill, R.M. Drugging aquaporins. Biochim. Biophys. Acta Biomembr. 2024, 1866, 184164. [Google Scholar] [CrossRef] [PubMed]
- Tradtrantip, L.; Jin, B.J.; Yao, X.; Anderson, M.O.; Verkman, A.S. Aquaporin-Targeted Therapeutics: State-of-the-Field. Adv. Exp. Med. Biol. 2017, 969, 239–250. [Google Scholar] [CrossRef]
- Portincasa, P.; Calamita, G. Phytocompounds modulating Aquaporins: Clinical benefits are anticipated. Food Chem. 2019, 274, 642–650. [Google Scholar] [CrossRef]
- Markou, A.; Kitchen, P.; Aldabbagh, A.; Repici, M.; Salman, M.M.; Bill, R.M.; Balklava, Z. Mechanisms of aquaporin-4 vesicular trafficking in mammalian cells. J. Neurochem. 2024, 168, 100–114. [Google Scholar] [CrossRef]
- Pimpao, C.; Wragg, D.; da Silva, I.V.; Casini, A.; Soveral, G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front. Mol. Biosci. 2022, 9, 845237. [Google Scholar] [CrossRef]
- Wang, S.; Solenov, E.I.; Yang, B. Aquaporin Inhibitors. Adv. Exp. Med. Biol. 2023, 1398, 317–330. [Google Scholar] [CrossRef]
- Fiorentini, D.; Zambonin, L.; Dalla Sega, F.V.; Hrelia, S. Polyphenols as Modulators of Aquaporin Family in Health and Disease. Oxidative Med. Cell. Longev. 2015, 2015, 196914. [Google Scholar] [CrossRef]
- De Ieso, M.L.; Pei, J.V.; Nourmohammadi, S.; Smith, E.; Chow, P.H.; Kourghi, M.; Hardingham, J.E.; Yool, A.J. Combined pharmacological administration of AQP1 ion channel blocker AqB011 and water channel blocker Bacopaside II amplifies inhibition of colon cancer cell migration. Sci. Rep. 2019, 9, 12635. [Google Scholar] [CrossRef] [PubMed]
- Marrone, J.; Danielli, M.; Gaspari, C.I.; Capiglioni, A.M.; Marinelli, R.A. Aquaporin gene transfer for hepatocellular cholestasis. Biochimie 2021, 188, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S. A cautionary note on cosmetics containing ingredients that increase aquaporin-3 expression. Exp. Dermatol. 2008, 17, 871–872. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, T.; Wang, H.; Jiao, L. AQP5 promotes epithelial-mesenchymal transition and tumor growth through activating the Wnt/beta-catenin pathway in triple-negative breast cancer. Mutat. Res. 2024, 829, 111868. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Chen, A.; Tian, H.; Wang, F.; Wang, N.; Ge, K.; Lian, C.; Wang, F.; Zhang, Q. Investigating the mechanism and the effect of aquaporin 5 (AQP5) on the self-renewal capacity of gastric cancer stem cells. J. Cancer 2024, 15, 4313–4327. [Google Scholar] [CrossRef]
- Yamamoto, A.; Shimizu, H.; Takiguchi, K.; Shoda, K.; Shiraishi, K.; Furuya, S.; Akaike, H.; Kawaguchi, Y.; Amemiya, H.; Kawaida, H.; et al. The Expression and Role of Aquaporin 4 in Colon Cancer. Anticancer Res. 2024, 44, 567–573. [Google Scholar] [CrossRef]
- Salman, M.M.; Kitchen, P.; Yool, A.J.; Bill, R.M. Recent breakthroughs and future directions in drugging aquaporins. Trends Pharmacol. Sci. 2022, 43, 30–42. [Google Scholar] [CrossRef]
Hepatobiliary Section | Aquaporin | Cellular Location and Species | Subcellular Location | Functional Involvement |
---|---|---|---|---|
Liver parenchyma | AQP8 | Hepatocytes (r, m, h) | APM, SAV, IMM, SER | Canalicular bile secretion; cytoplasmic osmotic homeostasis; mitochondrial ammonia detoxification and ureagenesis; mitochondrial H2O2 release; cholesterol biosynthesis; regulation of metabolic signaling |
AQP9 | Hepatocytes (r, m, h) | BLM | Uptake of glycerol during starvation; lipid homeostasis; import of water from sinusoidal blood; catabolic urea extrusion | |
AQP11 | Hepatocytes (m) | RER | RER homeostasis; liver regeneration | |
Intrahepatic bile ducts | AQP1 | Cholangiocytes (m, r, h) | APM, SAV, BLM | Secretion and reabsorption of ductal bile water |
AQP4 | Cholangiocytes (m, r) | BLM | Secretion and reabsorption of ductal bile water | |
Gallbladder | AQP1 | Epithelial cells (m, h) | APM, BLM, SAV | Cystic bile secretion/reabsorption |
AQP8 | Epithelial cells (m, h) | APM, SAV | Cystic bile absorption (?) | |
Portal sinusoids; PVP; BV | AQP1 | Endothelial cells (h) | APM, BLM | Bile formation and flow |
Other hepatic cell types | AQP3 | Kupffer cells (h) | PM | Cell migration and proinflammatory cytokines secretion (?) |
AQP8 | Kupffer cells (r) | PM | Repopulation of Kupffer cells during liver regeneration (?) | |
AQP3 | Stellate cells (h) | PM | Adiponectin-mediated inhibition of hepatic stellate cells activation | |
AQP11 | Stellate cells (r) | Undefined | Control of activated hepatic stellate cells proliferation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, M.; Gena, P.; Di Ciaula, A.; Portincasa, P.; Calamita, G. Aquaporins in Biliary Function: Pathophysiological Implications and Therapeutic Targeting. Int. J. Mol. Sci. 2024, 25, 12133. https://doi.org/10.3390/ijms252212133
Khalil M, Gena P, Di Ciaula A, Portincasa P, Calamita G. Aquaporins in Biliary Function: Pathophysiological Implications and Therapeutic Targeting. International Journal of Molecular Sciences. 2024; 25(22):12133. https://doi.org/10.3390/ijms252212133
Chicago/Turabian StyleKhalil, Mohamad, Patrizia Gena, Agostino Di Ciaula, Piero Portincasa, and Giuseppe Calamita. 2024. "Aquaporins in Biliary Function: Pathophysiological Implications and Therapeutic Targeting" International Journal of Molecular Sciences 25, no. 22: 12133. https://doi.org/10.3390/ijms252212133
APA StyleKhalil, M., Gena, P., Di Ciaula, A., Portincasa, P., & Calamita, G. (2024). Aquaporins in Biliary Function: Pathophysiological Implications and Therapeutic Targeting. International Journal of Molecular Sciences, 25(22), 12133. https://doi.org/10.3390/ijms252212133