Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens
Abstract
:1. Introduction
2. Photorespiration and Its Role in the Network of Plant Cell Metabolism
3. Photosynthesis and Photorespiration in Plants Under Biotic Stress
4. Photorespiratory ROS in Plant Defence Against Pathogens
5. Photorespiratory Metabolites and Enzymes in Plant–Pathogen Interactions
Enzyme | Organellum | Pathogen | Infected Plant | Infection Effect | References |
---|---|---|---|---|---|
Glycolate oxidase (GOX, EC 1.1.3.15) | Peroxisome | Diaporthe citri | Citrus reticulata | Upregulation of four GOX genes | [128,129,130,131,132] |
Verticillium dahliae | Gossypium hirsutum | Six GOX gene expression (among 14) changes | |||
Septoria lycopersici | Solanum lycopersicum | Upregulation of genes: GOX1 and GOX2 | |||
Bremia lactucae | Lactuca sativa | LsGOX1 and LsGOX2 genes were slightly downregulated | |||
Erwinia amylovora | Arabidopsis thaliana | GOX activity increased in leaves; gox2-2 mutant sensitive to E. amylovora | |||
Aminotransferases (GGAT EC 2.6.1.4; SGAT EC 2.6.1.45) | Peroxisome | Botrytis cinerea | Arabidopsis thaliana | GGAT1 participate in the negative regulation of the plant systemic resistance against B. cinerea | [133] |
Glycine decarboxylase (GDC, EC 2.1.2.10) | Mitochondrion | Phytophthora infestans | Solanum tuberosum | Absence of GDC protein after infection | [134,135] |
Rhizoctonia solani | Oryza sativa | H-protein from glycine decarboxylase complex detected | |||
Serine hydroxymethyl-transferase (SHMT, EC 2.1.2.1) | Mitochondrion | Pseudomonas syringae pv tomato | Arabidopsis thaliana | SHMT6 overexpression lines —enhanced resistance | [132,135,136] |
Septoria lycopersici | Solanum lycopersicum | Upregulation of genes: SHMT2, SMHT3 | |||
Phytophthora infestans | Solanum tuberosum | Absence of SHMT protein after infection | |||
Glycerate-3-kinase (GLYK, EC 2.7.1.31) | Chloroplast | Septoria lycopersici | Solanum lycopersicum | GLYK gene upregulation | [132] |
6. Mitochondria and Respiration Under Biotic Stress—Various Aspects in a Nutshell
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ristaino, J.B.; Anderson, P.K.; Bebber, D.P.; Brauman, K.A.; Cunniffe, N.J.; Fedoroff, N.V.; Finegold, C.; Garrett, K.A.; Gilligan, C.A.; Jones, C.M.; et al. The Persistent Threat of Emerging Plant Disease Pandemics to Global Food Security. Proc. Natl. Acad. Sci. USA 2021, 118, e2022239118. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate Change Impacts on Plant Pathogens, Food Security and Paths Forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef]
- Bentham, A.R.; de la Concepcion, J.C.; Mukhi, N.; Zdrzałek, R.; Draeger, M.; Gorenkin, D.; Hughes, R.K.; Banfield, M.J. A Molecular Roadmap to the Plant Immune System. J. Biol. Chem. 2020, 295, 14916–14935. [Google Scholar] [CrossRef]
- Wu, S.; Shan, L.; He, P. Microbial Signature-Triggered Plant Defense Responses and Early Signaling Mechanisms. Plant Sci. 2014, 228, 118–126. [Google Scholar] [CrossRef]
- Li, J.; Yang, S.; Wu, Y.; Wang, R.; Liu, Y.; Liu, J.; Ye, Z.; Tang, R.; Whiteway, M.; Lv, Q.; et al. Alternative Oxidase: From Molecule and Function to Future Inhibitors. ACS Omega 2024, 9, 12478–12499. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.M.; Zhang, Y. Plant Immunity: Danger Perception and Signaling. Cell 2020, 181, 978–989. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.Q.; Niu, H.Q.; Liu, C.; Wang, H.L.; Yin, W.; Xia, X. PTI-ETI Synergistic Signal Mechanisms in Plant Immunity. Plant Biotechnol. J. 2024, 22, 2113–2128. [Google Scholar] [CrossRef]
- Yuan, M.; Ngou, B.P.M.; Ding, P.; Xin, X.F. PTI-ETI Crosstalk: An Integrative View of Plant Immunity. Curr. Opin. Plant Biol. 2021, 62, 102030. [Google Scholar] [CrossRef]
- Monson, R.K.; Trowbridge, A.M.; Lindroth, R.L.; Lerdau, M.T. Coordinated Resource Allocation to Plant Growth–Defense Tradeoffs. New Phytol. 2022, 233, 1051–1066. [Google Scholar] [CrossRef]
- Tian, D.; Traw, M.B.; Chen, J.Q.; Kreitman, M.; Bergelson, J. Fitness Costs of R-Gene-Mediated Resistance in Arabidopsis thaliana. Nature 2003, 423, 74–77. [Google Scholar] [CrossRef]
- Heil, M.; Baldwin, I.T. Fitness Costs of Induced Resistance: Emerging Experimental Support for a Slippery Concept. Trends Plant Sci. 2002, 7, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Skłodowska, M.; Naliwajski, M.; Wielanek, M.; Gajewska, E.; Kuźniak, E. Nitrogen Forms Modulate Effects of Benzothiadiazole and Arbutin on Cucumber Sugar Metabolism. Biol. Plant. 2015, 59, 757–766. [Google Scholar] [CrossRef]
- He, Z.; Webster, S.; He, S.Y. Growth–Defense Trade-Offs in Plants. Curr. Biol. 2022, 32, R634–R639. [Google Scholar] [CrossRef]
- Huot, B.; Yao, J.; Montgomery, B.L.; He, S.Y. Growth-Defense Tradeoffs in Plants: A Balancing Act to Optimize Fitness. Mol. Plant 2014, 7, 1267–1287. [Google Scholar] [CrossRef]
- Zaret, M.; Kinkel, L.; Borer, E.T.; Seabloom, E.W. Plant Growth–Defense Trade-Offs Are General across Interactions with Fungal, Insect, and Mammalian Consumers. Ecology 2024, 105, e4290. [Google Scholar] [CrossRef]
- Aroca, A.; García-Díaz, I.; García-Calderón, M.; Gotor, C.; Márquez, A.J.; Betti, M. Photorespiration: Regulation and New Insights on the Potential Role of Persulfidation. J. Exp. Bot. 2023, 74, 6023–6039. [Google Scholar] [CrossRef]
- Fu, X.; Gregory, L.M.; Weise, S.E.; Walker, B.J. Integrated Flux and Pool Size Analysis in Plant Central Metabolism Reveals Unique Roles of Glycine and Serine during Photorespiration. Nat. Plants 2023, 9, 169–178. [Google Scholar] [CrossRef]
- Timm, S.; Hagemann, M. Photorespiration-How Is It Regulated and How Does It Regulate Overall Plant Metabolism? J. Exp. Bot. 2020, 71, 3955–3965. [Google Scholar] [CrossRef] [PubMed]
- Lahlali, R.; Mohammed, T.; Laasli, S.-E.; Gachara, G.; Ezzouggari, R.; Belabess, Z.; Aberkani, K.; Assougeum, A.; Meddich, A.; El Jarroudi, M.; et al. Effects of Climate Change on Plant Pathogens and Host-Pathogen Interactions. Crop Environ. 2024, 3, 159–170. [Google Scholar] [CrossRef]
- Kim, J.H.; Castroverde, C.D.M.; Huang, S.; Li, C.; Hilleary, R.; Seroka, A.; Sohrabi, R.; Medina-Yerena, D.; Huot, B.; Wang, J.; et al. Increasing the Resilience of Plant Immunity to a Warming Climate. Nature 2022, 607, 339–344. [Google Scholar] [CrossRef]
- Peterhansel, C.; Maurino, V.G. Photorespiration Redesigned. Plant Physiol. 2011, 155, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Hodges, M.; Dellero, Y.; Keech, O.; Betti, M.; Raghavendra, A.S.; Sage, R.; Zhu, X.G.; Allen, D.K.; Weber, A.P.M. Perspectives for a Better Understanding of the Metabolic Integration of Photorespiration within a Complex Plant Primary Metabolism Network. J. Exp. Bot. 2016, 67, 3015–3026. [Google Scholar] [CrossRef] [PubMed]
- Khurshid, G.; Abbassi, A.Z.; Khalid, M.F.; Gondal, M.N.; Naqvi, T.A.; Shah, M.M.; Chaudhary, S.U.; Ahmad, R. A Cyanobacterial Photorespiratory Bypass Model to Enhance Photosynthesis by Rerouting Photorespiratory Pathway in C3 Plants. Sci. Rep. 2020, 10, 20879. [Google Scholar] [CrossRef]
- South, P.F.; Cavanagh, A.P.; Lopez-Calcagno, P.E.; Raines, C.A.; Ort, D.R. Optimizing Photorespiration for Improved Crop Productivity. J. Integr. Plant Biol. 2018, 60, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Bauwe, H. Photorespiration–Rubisco’s Repair Crew. J. Plant Physiol. 2023, 280, 153899. [Google Scholar] [CrossRef]
- Timm, S. The Impact of Photorespiration on Plant Primary Metabolism through Metabolic and Redox Regulation. Biochem. Soc. Trans. 2020, 48, 2495–2504. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, G.; Peng, X. Photorespiration in Plant Adaptation to Environmental Changes. Crop Environ. 2024, 3, 203–212. [Google Scholar] [CrossRef]
- Itoh, R.D. Tubular Extensions of Plant Organelles and Their Implications on Retrograde Signaling. J. Biol. Res. 2023, 96, 11724. [Google Scholar] [CrossRef]
- Kuźniak, E.; Skłodowska, M. Compartment-Specific Role of the Ascorbate-Glutathione Cycle in the Response of Tomato Leaf Cells to Botrytis cinerea Infection. J. Exp. Bot. 2005, 56, 921–933. [Google Scholar] [CrossRef]
- Park, E.; Nedo, A.; Caplan, J.L.; Dinesh-Kumar, S.P. Plant–Microbe Interactions: Organelles and the Cytoskeleton in Action. New Phytol. 2018, 217, 1012–1028. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of Primary Plant Metabolism during Plant-Pathogen Interactions and Its Contribution to Plant Defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Walker, B.J.; He, S.Y.; Hu, J. The Role of Photorespiration in Plant Immunity. Front. Plant Sci. 2023, 14, 1125945. [Google Scholar] [CrossRef] [PubMed]
- Kleczkowski, L.A.; Igamberdiev, A.U. Multiple Roles of Glycerate Kinase—From Photorespiration to Gluconeogenesis, C4 Metabolism, and Plant Immunity. Int. J. Mol. Sci. 2024, 25, 3258. [Google Scholar] [CrossRef] [PubMed]
- Grimmer, M.K.; Foulkes, J.M.; Paveley, N.D. Foliar Pathogenesis and Plant Water Relations: A Review. J. Exp. Bot. 2012, 63, 4321–4331. [Google Scholar] [CrossRef]
- Scharte, J.; Schön, H.; Weis, E. Photosynthesis and Carbohydrate Metabolism in Tobacco Leaves during an Incompatible Interaction with Phytophthora nicotianae. Plant Cell Environ. 2005, 28, 1421–1435. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Y. Stomata–Pathogen Interactions: Over a Century of Research. Trends Plant Sci. 2022, 27, 964–967. [Google Scholar] [CrossRef]
- Chojak-Koźniewska, J.; Linkiewicz, A.; Sowa, S.; Radzioch, M.A.; Kuźniak, E. Interactive Effects of Salt Stress and Pseudomonas syringae pv. lachrymans Infection in Cucumber: Involvement of Antioxidant Enzymes, Abscisic Acid and Salicylic Acid. Environ. Exp. Bot. 2017, 136, 9–20. [Google Scholar] [CrossRef]
- Gahir, S.; Bharath, P.; Raghavendra, A.S. Stomatal Closure Sets in Motion Long-Term Strategies of Plant Defense Against Microbial Pathogens. Front. Plant Sci. 2021, 12, 761952. [Google Scholar] [CrossRef]
- Sekulska-Nalewajko, J.; Kornaś, A.; Gocławski, J.; Miszalski, Z.; Kuźniak, E. Spatial Referencing of Chlorophyll Fluorescence Images for Quantitative Assessment of Infection Propagation in Leaves Demonstrated on the Ice Plant: Botrytis cinerea Pathosystem. Plant Methods 2019, 15, 18. [Google Scholar] [CrossRef]
- Kopczewski, T.; Kuźniak, E.; Kornaś, A.; Rut, G.; Nosek, M.; Ciereszko, I.; Szczepaniak, L. Local and Systemic Changes in Photosynthetic Parameters and Antioxidant Activity in Cucumber Challenged with Pseudomonas syringae pv lachrymans. Int. J. Mol. Sci. 2020, 21, 6378. [Google Scholar] [CrossRef]
- Peng, P.; Li, R.; Chen, Z.H.; Wang, Y. Stomata at the Crossroad of Molecular Interaction between Biotic and Abiotic Stress Responses in Plants. Front. Plant Sci. 2022, 13, 1031891. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, U.; Karpinski, S.; Mullineaux, P.M. The Influence of the Light Environment and Photosynthesis on Oxidative Signalling Responses in Plant Biotrophic Pathogen Interactions. Plant Cell Environ. 2005, 38, 1046–1055. [Google Scholar] [CrossRef]
- Kopczewski, T.; Kuźniak, E.; Ciereszko, I.; Kornaś, A. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses. Int. J. Mol. Sci. 2022, 23, 12418. [Google Scholar] [CrossRef]
- Eisenhut, M.; Bräutigam, A.; Timm, S.; Florian, A.; Tohge, T.; Fernie, A.R.; Bauwe, H.; Weber, A.P.M. Photorespiration is Crucial for Dynamic Response of Photosynthetic Metabolism and Stomatal Movement to Altered CO2 Availability. Mol. Plant 2017, 10, 47–61. [Google Scholar] [CrossRef]
- Reumann, S.; Corpas, F.J. The Peroxisomal Ascorbate–Glutathione Pathway: Molecular Identification and Insights into Its Essential Role Under Environmental Stress Conditions. In Ascorbate-Glutathione Pathway and Stress Tolerance in Plants; Anjum, N.A., Chan, M.-T., Umar, S., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 387–404. ISBN 978-90-481-9404-9. [Google Scholar]
- Igamberdiev, A.U.; Bykova, N.V.; Lea, P.J.; Gardeström, P. The Role of Photorespiration in Redox and Energy Balance of Photosynthetic Plant Cells: A Study with a Barley Mutant Deficient in Glycine Decarboxylase. Physiol. Plant. 2001, 111, 427–438. [Google Scholar] [CrossRef]
- Voss, I.; Sunil, B.; Scheibe, R.; Raghavendra, A.S. Emerging Concept for the Role of Photorespiration as an Important Part of Abiotic Stress Response. Plant Biol. 2013, 15, 713–722. [Google Scholar] [CrossRef]
- Noctor, G.; Queval, G.; Gakière, B. NAD(P) Synthesis and Pyridine Nucleotide Cycling in Plants and Their Potential Importance in Stress Conditions. J. Exp. Bot. 2006, 57, 1603–1620. [Google Scholar] [CrossRef]
- Sunic, K.; Brkljacic, L.; Vukovic, R.; Katanic, Z.; Salopek-Sondi, B.; Spanic, V. Fusarium Head Blight Infection Induced Responses of Six Winter Wheat Varieties in Ascorbate–Glutathione Pathway, Photosynthetic Efficiency and Stress Hormones. Plants 2023, 12, 3720. [Google Scholar] [CrossRef] [PubMed]
- Calzadilla, P.I.; Song, J.; Gallois, P.; Johnson, G.N. Proximity to Photosystem II Is Necessary for Activation of Plastid Terminal Oxidase (PTOX) for Photoprotection. Nat. Commun. 2024, 15, 287. [Google Scholar] [CrossRef]
- Johnson, G.N.; Stepien, P. Plastid Terminal Oxidase as a Route to Improving Plant Stress Tolerance: Known Knowns and Known Unknowns. Plant Cell Physiol. 2016, 57, 1387–1396. [Google Scholar] [CrossRef]
- Messant, M.; Hani, U.; Lai, T.L.; Wilson, A.; Shimakawa, G.; Krieger-Liszkay, A. Plastid Terminal Oxidase (PTOX) Protects Photosystem I and Not Photosystem II against Photoinhibition in Arabidopsis thaliana and Marchantia polymorpha. Plant J. 2024, 117, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Sørhagen, K.; Laxa, M.; Peterhänsel, C.; Reumann, S. The Emerging Role of Photorespiration and Non-Photorespiratory Peroxisomal Metabolism in Pathogen Defence. Plant Biol. 2013, 15, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Veljovic-Jovanovic, S.; Driscoll, S.; Novitskaya, L.; Foyer, C.H. Drought and Oxidative Load in the Leaves of C3 Plants: A Predominant Role for Photorespiration? Ann. Bot. 2002, 89, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, G.R.; Breen, S.; Smirnoff, N.; Grant, M. Chloroplast Immunity Illuminated. New Phytol. 2021, 229, 3088–3107. [Google Scholar] [CrossRef] [PubMed]
- Smirnoff, N.; Arnaud, D. Hydrogen Peroxide Metabolism and Functions in Plants. New Phytol. 2019, 221, 1197–1214. [Google Scholar] [CrossRef]
- Bleau, J.R.; Spoel, S.H. Selective Redox Signaling Shapes Plant-Pathogen Interactions. Plant Physiol. 2021, 186, 53–65. [Google Scholar] [CrossRef]
- Arnaud, D.; Deeks, M.J.; Smirnoff, N. Organelle-Targeted Biosensors Reveal Distinct Oxidative Events during Pattern-Triggered Immune Responses. Plant Physiol. 2023, 191, 2551–2569. [Google Scholar] [CrossRef]
- Kuźniak, E.; Kopczewski, T. The Chloroplast Reactive Oxygen Species-Redox System in Plant Immunity and Disease. Front. Plant Sci. 2020, 11, 572686. [Google Scholar] [CrossRef]
- Zechmann, B. Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress. Plants 2020, 9, 1067. [Google Scholar] [CrossRef]
- Zabala, M.d.T.; Littlejohn, G.; Jayaraman, S.; Studholme, D.; Bailey, T.; Lawson, T.; Tillich, M.; Licht, D.; Bölter, B.; Delfino, L.; et al. Chloroplasts Play a Central Role in Plant Defence and Are Targeted by Pathogen Effectors. Nat. Plants 2015, 1, 15074. [Google Scholar] [CrossRef]
- Bittner, A.; Cieśla, A.; Gruden, K.; Lukan, T.; Mahmud, S.; Teige, M.; Vothknecht, U.C.; Wurzinger, B. Organelles and Phytohormones: A Network of Interactions in Plant Stress Responses. J. Exp. Bot. 2022, 73, 7165–7181. [Google Scholar] [CrossRef] [PubMed]
- Noshi, M.; Maruta, T.; Shigeoka, S. Relationship between Chloroplastic H2O2 and the Salicylic Acid Response. Plant Signal. Behav. 2012, 7, 944–946. [Google Scholar] [CrossRef] [PubMed]
- Medina-Puche, L.; Tan, H.; Dogra, V.; Wu, M.; Rosas-Diaz, T.; Wang, L.; Ding, X.; Zhang, D.; Fu, X.; Kim, C.; et al. A Defense Pathway Linking Plasma Membrane and Chloroplasts and Co-Opted by Pathogens. Cell 2020, 182, 1109–1124.e25. [Google Scholar] [CrossRef] [PubMed]
- Savage, Z.; Duggan, C.; Toufexi, A.; Pandey, P.; Liang, Y.; Segretin, M.E.; Yuen, L.H.; Gaboriau, D.C.A.; Leary, A.Y.; Tumtas, Y.; et al. Chloroplasts Alter Their Morphology and Accumulate at the Pathogen Interface during Infection by Phytophthora infestans. Plant J. 2021, 107, 1771–1787. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Jimenez-Gongora, T.; Krenz, B.; Lozano-Duran, R. Chloroplast Clustering around the Nucleus Is a General Response to Pathogen Perception in Nicotiana benthamiana. Mol. Plant Pathol. 2019, 20, 1298–1306. [Google Scholar] [CrossRef]
- Prautsch, J.; Erickson, J.L.; Özyürek, S.; Gormanns, R.; Franke, L.; Lu, Y.; Marx, J.; Niemeyer, F.; Parker, J.E.; Stuttmann, J.; et al. Effector XopQ-Induced Stromule Formation in Nicotiana benthamiana Depends on ETI Signaling Components ADR1 and NRG1. Plant Physiol. 2023, 191, 161–176. [Google Scholar] [CrossRef]
- Sowden, R.G.; Watson, S.J.; Jarvis, P. The Role of Chloroplasts in Plant Pathology. Essays Biochem. 2018, 62, 21–39. [Google Scholar] [CrossRef]
- Liu, T.; Song, T.; Zhang, X.; Yuan, H.; Su, L.; Li, W.; Xu, J.; Liu, S.; Chen, L.; Chen, T.; et al. Unconventionally Secreted Effectors of Two Filamentous Pathogens Target Plant Salicylate Biosynthesis. Nat. Commun. 2014, 5, 4686. [Google Scholar] [CrossRef]
- Jelenska, J.; Yao, N.; Vinatzer, B.A.; Wright, C.M.; Brodsky, J.L.; Greenberg, J.T. A J Domain Virulence Effector of Pseudomonas syringae Remodels Host Chloroplasts and Suppresses Defenses. Curr. Biol. 2007, 17, 499–508. [Google Scholar] [CrossRef]
- Pierella Karlusich, J.J.; Zurbriggen, M.D.; Shahinnia, F.; Sonnewald, S.; Sonnewald, U.; Hosseini, S.A.; Hajirezaei, M.R.; Carrillo, N. Chloroplast Redox Status Modulates Genome-Wide Plant Responses during the Non-Host Interaction of Tobacco with the Hemibiotrophic Bacterium Xanthomonas campestris pv. vesicatoria. Front. Plant Sci. 2017, 8, 01158. [Google Scholar] [CrossRef]
- Foyer, C.H.; Hanke, G. ROS Production and Signalling in Chloroplasts: Cornerstones and Evolving Concepts. Plant J. 2022, 111, 642–661. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Kim, C. Chloroplast ROS and Stress Signaling. Plant Commun. 2022, 3, 100264. [Google Scholar] [CrossRef] [PubMed]
- Lima-Melo, Y.; Kılıç, M.; Aro, E.M.; Gollan, P.J. Photosystem I Inhibition, Protection and Signalling: Knowns and Unknowns. Front. Plant Sci. 2021, 12, 791124. [Google Scholar] [CrossRef] [PubMed]
- Zurbriggen, M.D.; Carrillo, N.; Tognetti, V.B.; Melzer, M.; Peisker, M.; Hause, B.; Hajirezaei, M.R. Chloroplast-Generated Reactive Oxygen Species Play a Major Role in Localized Cell Death during the Non-Host Interaction between Tobacco and Xanthomonas campestris pv. vesicatoria. Plant J. 2009, 60, 962–973. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.R.; Krapp, A.R.; Bisaro, F.; Maiale, S.J.; Pieckenstain, F.L.; Carrillo, N. Reactive Oxygen Species Generated in Chloroplasts Contribute to Tobacco Leaf Infection by the Necrotrophic Fungus Botrytis cinerea. Plant J. 2017, 92, 761–773. [Google Scholar] [CrossRef]
- Govrin, E.M.; Rachmilevitch, S.; Tiwari, B.S.; Solomon, M.; Levine, A. An Elicitor from Botrytis cinerea Induces the Hypersensitive Response in Arabidopsis thaliana and Other Plants and Promotes the Gray Mold Disease. Phytopathology 2006, 96, 299–307. [Google Scholar] [CrossRef]
- Govrin, E.M.; Levine, A. The Hypersensitive Response Facilitates Plant Infection by the Necrotrophic Pathogen Botrytis cinerea. Curr. Biol. 2000, 10, 751–757. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Zhang, G.; Zhang, H.; Shi, J.; Pan, C.; Yu, J.; Shi, K. Tomato Photorespiratory Glycolate-Oxidase-Derived H2O2 Production Contributes to Basal Defence against Pseudomonas syringae. Plant Cell Environ. 2018, 41, 1126–1138. [Google Scholar] [CrossRef]
- Rojas, C.M.; Mysore, K.S. Glycolate Oxidase Is an Alternative Source for H2O2 Production during Plant Defense Responses and Functions Independently from NADPH Oxidase. Plant Signal. Behav. 2012, 7, 752–755. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, Y.; Xie, Z.; Li, X.; He, Z.-H.; Peng, X.-X. Association–Dissociation of Glycolate Oxidase with Catalase in Rice: A Potential Switch to Modulate Intracellular H2O2 Levels. Mol. Plant 2016, 9, 737–748. [Google Scholar] [CrossRef]
- Sandalio, L.M.; Peláez-Vico, M.A.; Molina-Moya, E.; Romero-Puertas, M.C. Peroxisomes as Redox-Signaling Nodes in Intracellular Communication and Stress Responses. Plant Physiol. 2021, 186, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, M.; Brini, F.; Sharma, A.; Landi, M. Role of Jasmonic Acid in Plants: The Molecular Point of View. Plant Cell Rep. 2021, 40, 1471–1494. [Google Scholar] [CrossRef] [PubMed]
- Macioszek, V.K.; Jęcz, T.; Ciereszko, I.; Kononowicz, A.K. Jasmonic Acid as a Mediator in Plant Response to Necrotrophic Fungi. Cells 2023, 12, 1027. [Google Scholar] [CrossRef]
- Tada, Y.; Spoel, S.H.; Pajerowska-Mukhtar, K.; Mou, Z.; Song, J.; Wang, C.; Zuo, J.; Dong, X. Plant Immunity Requires conformational changes of NPR1 via S-Nitrosylation and Thioredoxins. Science 2008, 321, 952–956. [Google Scholar] [CrossRef]
- Jayakannan, M.; Bose, J.; Babourina, O.; Shabala, S.; Massart, A.; Poschenrieder, C.; Rengel, Z. The NPR1-Dependent Salicylic Acid Signalling Pathway Is Pivotal for Enhanced Salt and Oxidative Stress Tolerance in Arabidopsis. J. Exp. Bot. 2015, 66, 1865–1875. [Google Scholar] [CrossRef] [PubMed]
- Mamun, M.A.; Lee, B.R.; Park, S.H.; Muchlas, M.; Bae, D.W.; Kim, T.H. Interactive Regulation of Immune-Related Resistance Genes with Salicylic Acid and Jasmonic Acid Signaling in Systemic Acquired Resistance in the Xanthomonas–Brassica Pathosystem. J. Plant Physiol. 2024, 302, 154323. [Google Scholar] [CrossRef]
- Ali, J.; Mukarram, M.; Ojo, J.; Dawam, N.; Riyazuddin, R.; Ghramh, H.A.; Khan, K.A.; Chen, R.; Kurjak, D.; Bayram, A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. Physiol. Plant. 2024, 176, 14307. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Gupta, R.; Shokat, S.; Iqbal, N.; Kocsy, G.; Pérez-Pérez, J.M.; Riyazuddin, R. Ascorbate, Plant Hormones and Their Interactions during Plant Responses to Biotic Stress. Physiol. Plant. 2024, 176, 14388. [Google Scholar] [CrossRef]
- Corpas, F.J. What Is the Role of Hydrogen Peroxide in Plant Peroxisomes? Plant Biol. 2015, 17, 1099–1103. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Liu, T.; Liu, L.; Shen, D.; Zhu, Y.; Liu, P.; Zhou, J.M.; Dou, D. Two Cytoplasmic Effectors of Phytophthora sojae Regulate Plant Cell Death via Interactions with Plant Catalases. Plant Physiol. 2015, 167, 164–175. [Google Scholar] [CrossRef]
- Sousa, R.H.V.; Carvalho, F.E.L.; Lima-Melo, Y.; Alencar, V.T.C.B.; Daloso, D.M.; Margis-Pinheiro, M.; Komatsu, S.; Silveira, J.A.G. Impairment of Peroxisomal APX and CAT Activities Increases Protection of Photosynthesis under Oxidative Stress. J. Exp. Bot. 2019, 70, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Romero-Puertas, M.C.; Rodríguez-Serrano, M.; Corpas, F.J.; Gómez, M.; Del Río, L.A.; Sandalio, L.M. Cadmium-Induced Subcellular Accumulation of O2·− and H2O2 in Pea Leaves. Plant Cell Environ. 2004, 27, 1122–1134. [Google Scholar] [CrossRef]
- Sandalio, L.M.; Collado-Arenal, A.M.; Romero-Puertas, M.C. Deciphering Peroxisomal Reactive Species Interactome and Redox Signalling Networks. Free Radic. Biol. Med. 2023, 197, 58–70. [Google Scholar] [CrossRef]
- Sewelam, N.; Jaspert, N.; Van Der Kelen, K.; Tognetti, V.B.; Schmitz, J.; Frerigmann, H.; Stahl, E.; Zeier, J.; Van Breusegem, F.; Maurino, V.G. Spatial H2O2 Signaling Specificity: H2O2 from Chloroplasts and Peroxisomes Modulates the Plant Transcriptome Differentially. Mol. Plant 2014, 7, 1191–1210. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.J.; Kaladhar, V.C.; Fitzpatrick, T.B.; Fernie, A.R.; Møller, I.M.; Loake, G.J. Nitric Oxide Regulation of Plant Metabolism. Mol. Plant 2022, 15, 228–242. [Google Scholar] [CrossRef] [PubMed]
- Mur, L.A.J.; Kumari, A.; Brotman, Y.; Zeier, J.; Mandon, J.; Cristescu, S.M.; Harren, F.; Kaiser, W.M.; Fernie, A.R.; Gupta, K.J. Nitrite and Nitric Oxide Are Important in the Adjustment of Primary Metabolism during the Hypersensitive Response in Tobacco. J. Exp. Bot. 2019, 70, 4571–4582. [Google Scholar] [CrossRef]
- Nawrocka, J.; Szymczak, K.; Maćkowiak, A.; Skwarek-Fadecka, M.; Małolepsza, U. Determination of Reactive Oxygen or Nitrogen Species and Novel Volatile Organic Compounds in the Defense Responses of Tomato Plants against Botrytis cinerea Induced by Trichoderma virens TRS 106. Cells 2022, 11, 3051. [Google Scholar] [CrossRef]
- Mittler, R.; Zandalinas, S.I.; Fichman, Y.; Van Breusegem, F. Reactive Oxygen Species Signalling in Plant Stress Responses. Nat. Rev. Mol. Cell Biol. 2022, 23, 663–679. [Google Scholar] [CrossRef]
- Bohman, S.; Wang, M.; Dixelius, C. Arabidopsis thaliana-Derived Resistance against Leptosphaeria maculans in a Brassica napus Genomic Background. Theor. Appl. Genet. 2002, 105, 498–504. [Google Scholar] [CrossRef]
- Schäfer, P.; Hückelhoven, R.; Kogel, K.H. The White Barley Mutant Albostrians Shows a Supersusceptible but Symptomless Interaction Phenotype with the Hemibiotrophic Fungus Bipolaris sorokiniana. Mol. Plant-Microbe Interact. 2004, 17, 366–373. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil-Kumar, M.; Wang, K.; Ryu, C.M.; Kaundal, A.; Mysore, K.S. Glycolate Oxidase Modulates Reactive Oxygen Species-Mediated Signal Transduction during Nonhost Resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 2012, 24, 336–352. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.P.; Yang, J.; Cai, X.Z. Glycolate Oxidase Gene Family in Nicotiana benthamiana: Genome-wide Identification and Functional Analyses in Disease Resistance. Sci. Rep. 2018, 8, 8615. [Google Scholar] [CrossRef] [PubMed]
- Taler, D.; Galperin, M.; Benjamin, I.; Cohen, Y.; Kenigsbuch, D. Plant ER Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease. Plant Cell 2004, 16, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.I.; Martín, R.; Castresana, C. Arabidopsis SHMT1, a Serine Hydroxymethyltransferase That Functions in the Photorespiratory Pathway Influences Resistance to Biotic and Abiotic Stress. Plant J. 2005, 41, 451–463. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Lea, P.J. The Role of Peroxisomes in the Integration of Metabolism and Evolutionary Diversity of Photosynthetic Organisms. Phytochemistry 2002, 60, 651–674. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, X.; Lu, L.; Xu, Z.; Huang, J.; He, H.; Peng, X. Two Glyoxylate Reductase Isoforms Are Functionally Redundant but Required under High Photorespiration Conditions in Rice. BMC Plant Biol. 2020, 20, 357. [Google Scholar] [CrossRef]
- Kim, K.S.; Min, J.Y.; Dickman, M.B. Oxalic Acid Is an Elicitor of Plant Programmed Cell Death during Sclerotinia sclerotiorum Disease Development. Mol. Plant-Microbe Interact. 2008, 21, 605–612. [Google Scholar] [CrossRef]
- Vanlerberghe, G.C. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants. Int. J. Mol. Sci. 2013, 14, 6805–6847. [Google Scholar] [CrossRef]
- Pastore, D.; Trono, D.; Laus, M.N.; Di Fonzo, N.; Passarella, S. Alternative Oxidase in Durum Wheat Mitochondria. Activation by Pyruvate, Hydroxypyruvate and Glyoxylate and Physiological Role. Plant Cell Physiol. 2001, 42, 1373–1382. [Google Scholar] [CrossRef]
- Zhang, L.; Oh, Y.; Li, H.; Baldwin, I.T.; Galis, I. Alternative Oxidase in Resistance to Biotic Stresses: Nicotiana attenuata AOX Contributes to Resistance to a Pathogen and a Piercing-Sucking Insect but Not Manduca sexta Larvae. Plant Physiol. 2012, 160, 1453–1467. [Google Scholar] [CrossRef]
- Navarre, D.A.; Wolpert, T.J. Inhibition of the Glycine Decarboxylase Multienzyme Complex by the Host-Selective Toxin Victorin. Plant Cell 1995, 7, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Laubengayer, K.M.; Schauer, N.; Fernie, A.R.; Jander, G. Two Arabidopsis Threonine Aldolases Are Nonredundant and Compete with Threonine Deaminase for a Common Substrate Pool. Plant Cell 2006, 18, 3565–3575. [Google Scholar] [CrossRef] [PubMed]
- Noctor, G.; Cohen, M.; Trémulot, L.; Châtel-Innocenti, G.; Van Breusegem, F.; Mhamdi, A. Glutathione: A Key Modulator of Plant Defence and Metabolism through Multiple Mechanisms. J. Exp. Bot. 2024, 75, 4549–4572. [Google Scholar] [CrossRef]
- Czolpinska, M.; Rurek, M. Plant Glycine-Rich Proteins in Stress Response: An Emerging, Still Prospective Story. Front. Plant Sci. 2018, 9, 302. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, J.S.; Yoo, S.J.; Kang, E.Y.; Han, S.H.; Yang, K.Y.; Kim, Y.C.; McSpadden Gardener, B.; Kang, H. Different Roles of Glycine-Rich RNA-Binding Protein7 in Plant Defense against Pectobacterium carotovorum, Botrytis cinerea, and Tobacco Mosaic Viruses. Plant Physiol. Biochem. 2012, 60, 46–52. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Kleczkowski, L.A. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism. Front. Plant Sci. 2018, 9, 318. [Google Scholar] [CrossRef]
- Siebers, M.; Brands, M.; Wewer, V.; Duan, Y.; Hölzl, G.; Dörmann, P. Lipids in Plant–Microbe Interactions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2016, 1861, 1379–1395. [Google Scholar] [CrossRef]
- Timm, S.; Florian, A.; Wittmiß, M.; Jahnke, K.; Hagemann, M.; Fernie, A.R.; Bauwe, H. Serine Acts as a Metabolic Signal for the Transcriptional Control of Photorespiration-Related Genes in Arabidopsis. Plant Physiol. 2013, 162, 379–389. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, M.; Mur, L.A.J.; Shen, Q.; Guo, S. Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int. J. Mol. Sci. 2020, 21, 572. [Google Scholar] [CrossRef]
- Abadie, C.; Tcherkez, G. Plant Sulphur Metabolism Is Stimulated by Photorespiration. Commun. Biol. 2019, 2, 379. [Google Scholar] [CrossRef]
- Khan, M.; Ali, S.; Al Azzawi, T.N.I.; Saqib, S.; Ullah, F.; Ayaz, A.; Zaman, W. The Key Roles of ROS and RNS as a Signaling Molecule in Plant–Microbe Interactions. Antioxidants 2023, 12, 268. [Google Scholar] [CrossRef] [PubMed]
- Roblin, G.; Octave, S.; Faucher, M.; Fleurat-Lessard, P.; Berjeaud, J.M. Cysteine: A Multifaceted Amino Acid Involved in Signaling, Plant Resistance and Antifungal Development. Plant Physiol. Biochem. 2018, 129, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; McClung, C.R.; Zhang, C. Tick Tock: Circadian Regulation of Plant Innate Immunity. Annu. Rev. Phytopathol. 2017, 55, 287–311. [Google Scholar] [CrossRef]
- Lai, A.G.; Doherty, C.J.; Mueller-Roeber, B.; Kay, S.A.; Schippers, J.H.M.; Dijkwel, P.P. CIRCADIAN CLOCK-ASSOCIATED 1 Regulates ROS Homeostasis and Oxidative Stress Responses. Proc. Natl. Acad. Sci. USA 2012, 109, 17129–17134. [Google Scholar] [CrossRef]
- Cervela-Cardona, L.; Yoshida, T.; Zhang, Y.; Okada, M.; Fernie, A.; Mas, P. Circadian Control of Metabolism by the Clock Component TOC1. Front. Plant Sci. 2021, 12, 683516. [Google Scholar] [CrossRef]
- McClung, C.R.; Hsu, M.; Painter, J.E.; Gagne, J.M.; Karlsberg, S.D.; Salomé, P.A. Integrated Temporal Regulation of the Photorespiratory Pathway. Circadian Regulation of Two Arabidopsis Genes Encoding Serine Hydroxymethyltransferase. Plant Physiol. 2000, 123, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Zhang, X.; Wang, M.; Fu, X.; Liu, G.; Zhang, S. Glycolate Oxidase Gene Family Identification and Functional Analyses in Cotton Resistance to Verticillium Wilt. Genome 2023, 66, 305–318. [Google Scholar] [CrossRef]
- Launay, A.; Jolivet, S.; Clément, G.; Zarattini, M.; Dellero, Y.; Le Hir, R.; Jossier, M.; Hodges, M.; Expert, D.; Fagard, M. DspA/E-Triggered Non-Host Resistance against E. amylovora Depends on the Arabidopsis GLYCOLATE OXIDASE 2 Gene. Int. J. Mol. Sci. 2022, 23, 4224. [Google Scholar] [CrossRef]
- Li, P.; Xiao, X.; Wang, J.; Niu, F.; Huang, J.; Xie, B.; Ye, L.; Zhang, C.; Wang, D.; Wu, Q.; et al. Transcriptional Insights of Citrus Defense Response against Diaporthe citri. BMC Plant Biol. 2023, 23, 614. [Google Scholar] [CrossRef]
- Mariyam; Shafiq, M.; Sadiq, S.; Ali, Q.; Haider, M.S.; Habib, U.; Ali, D.; Shahid, M.A. Identification and Characterization of Glycolate Oxidase Gene Family in Garden Lettuce (Lactuca sativa cv. ‘Salinas’) and Its Response under Various Biotic, Abiotic, and Developmental Stresses. Sci. Rep. 2023, 13, 19686. [Google Scholar] [CrossRef]
- Silva, B.N.; Picanço, B.B.M.; Martins, S.C.V.; Rodrigues, F.A. Impairment of the Photorespiratory Pathway on Tomato Leaves during the Infection Process of Septoria lycopersici. Physiol. Mol. Plant Pathol. 2023, 125, 102020. [Google Scholar] [CrossRef]
- González-López, M.D.C.; Jijón-Moreno, S.; Dautt-Castro, M.; Ovando-Vázquez, C.; Ziv, T.; Horwitz, B.A.; Casas-Flores, S. Secretome Analysis of Arabidopsis–Trichoderma atroviride Interaction Unveils New Roles for the Plant Glutamate:Glyoxylate Aminotransferase GGAT1 in Plant Growth Induced by the Fungus and Resistance against Botrytis cinerea. Int. J. Mol. Sci. 2021, 22, 6804. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Sheng, C.; Qiao, L.; Zhao, H.; Niu, D. A Comparative Proteomic Approach to Identify Defence-Related Proteins between Resistant and Susceptible Rice Cultivars Challenged with the Fungal Pathogen Rhizoctonia solani. Plant Growth Regul. 2020, 90, 73–88. [Google Scholar] [CrossRef]
- Yarullina, L.G.; Tsvetkov, V.O.; Khabibullina, V.O.; Cherepanova, E.A.; Burkhanova, G.F.; Zaikina, E.A.; Kalatskaya, J.N. Impact of Bacillus subtilis Bacteria in Combination with Salicylic and Jasmonic Acids on Changing the Proteome of Potato Leaves When Infected by Phytophthora infestans (Mont.) De Bary and with a Moisture Deficit. Russ. J. Plant Physiol. 2022, 69, 438–448. [Google Scholar] [CrossRef]
- Singh, P.; Kumari, A.; Khaladhar, V.C.; Singh, N.; Pathak, P.K.; Kumar, V.; Kumar, R.J.; Jain, P.; Thakur, J.K.; Fernie, A.R.; et al. Serine Hydroxymethyltransferase6 Is Involved in Growth and Resistance against Pathogens via Ethylene and Lignin Production in Arabidopsis. Plant J. 2024, 119, 1920–1936. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Sinha, A.K.; Roitsch, T. Plant Physiology Meets Phytopathology: Plant Primary Metabolism and Plant-Pathogen Interactions. J. Exp. Bot. 2007, 58, 4019–4026. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Z.; Min, W. Mitochondria, Oxidative Stress and Innate Immunity. Front. Physiol. 2018, 9, 1487. [Google Scholar] [CrossRef]
- Mills, E.L.; Kelly, B.; O’Neill, L.A.J. Mitochondria Are the Powerhouses of Immunity. Nat. Immunol. 2017, 18, 488–498. [Google Scholar] [CrossRef]
- Colombatti, F.; Gonzalez, D.H.; Welchen, E. Plant Mitochondria under Pathogen Attack: A Sigh of Relief or a Last Breath? Mitochondrion 2014, 19, 238–244. [Google Scholar] [CrossRef]
- Wang, J.; Xu, G.; Ning, Y.; Wang, X.; Wang, G.L. Mitochondrial Functions in Plant Immunity. Trends Plant Sci. 2022, 27, 1063–1076. [Google Scholar] [CrossRef]
- Khan, K.; Tran, H.C.; Mansuroglu, B.; Önsell, P.; Buratti, S.; Schwarzländer, M.; Costa, A.; Rasmusson, A.G.; Van Aken, O. Mitochondria-Derived Reactive Oxygen Species Are the Likely Primary Trigger of Mitochondrial Retrograde Signaling in Arabidopsis. Curr. Biol. 2024, 34, 327–342.e4. [Google Scholar] [CrossRef] [PubMed]
- Block, A.; Guo, M.; Li, G.; Elowsky, C.; Clemente, T.E.; Alfano, J.R. The Pseudomonas syringae Type III Effector HopG1 Targets Mitochondria, Alters Plant Development and Suppresses Plant Innate Immunity. Cell. Microbiol. 2010, 12, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.; Shen, C.; Fu, Y.; Xie, J.; Jiang, D.; Li, G.; Cheng, J. A Small Secreted Virulence-Related Protein Is Essential for the Necrotrophic Interactions of Sclerotinia sclerotiorum with Its Host Plants. PLoS Pathog. 2016, 12, e1005435. [Google Scholar] [CrossRef]
- Igamberdiev, A.U.; Bykova, N.V. Mitochondria in Photosynthetic Cells: Coordinating Redox Control and Energy Balance. Plant Physiol. 2023, 191, 2104–2119. [Google Scholar] [CrossRef]
- Welchen, E.; Canal, M.V.; Gras, D.E.; Gonzalez, D.H. Cross-Talk between Mitochondrial Function, Growth, and Stress Signalling Pathways in Plants. J. Exp. Bot. 2021, 72, 4102–4118. [Google Scholar] [CrossRef]
- Cvetkovska, M.; Vanlerberghe, G.C. Alternative Oxidase Impacts the Plant Response to Biotic Stress by Influencing the Mitochondrial Generation of Reactive Oxygen Species. Plant Cell Environ. 2013, 36, 721–732. [Google Scholar] [CrossRef]
- Suleman, M.; Ma, M.; Ge, G.; Hua, D.; Li, H. The Role of Alternative Oxidase in Plant Hypersensitive Response. Plant Biol. 2021, 23, 415–419. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, C.; Lu, T.; Fan, Y.; Ren, Y.; Zhao, J.; Shan, X.; Guan, Y.; Song, P.; Li, D.; et al. New Insights into Molecular Features of the Genome-Wide AOX Family and Their Responses to Various Stresses in Common Wheat (Triticum aestivum L.). Gene 2023, 888, 147756. [Google Scholar] [CrossRef] [PubMed]
- Garmash, E.V. Suppression of Mitochondrial Alternative Oxidase Can Result in Upregulation of the ROS Scavenging Network: Some Possible Mechanisms Underlying the Compensation Effect. Plant Biol. 2023, 25, 43–53. [Google Scholar] [CrossRef]
- Popov, V.N.; Syromyatnikov, M.Y.; Fernie, A.R.; Chakraborty, S.; Gupta, K.J.; Igamberdiev, A.U. The Uncoupling of Respiration in Plant Mitochondria: Keeping Reactive Oxygen and Nitrogen Species under Control. J. Exp. Bot. 2021, 72, 793–807. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciereszko, I.; Kuźniak, E. Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens. Int. J. Mol. Sci. 2024, 25, 12134. https://doi.org/10.3390/ijms252212134
Ciereszko I, Kuźniak E. Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens. International Journal of Molecular Sciences. 2024; 25(22):12134. https://doi.org/10.3390/ijms252212134
Chicago/Turabian StyleCiereszko, Iwona, and Elżbieta Kuźniak. 2024. "Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens" International Journal of Molecular Sciences 25, no. 22: 12134. https://doi.org/10.3390/ijms252212134
APA StyleCiereszko, I., & Kuźniak, E. (2024). Photorespiratory Metabolism and Its Regulatory Links to Plant Defence Against Pathogens. International Journal of Molecular Sciences, 25(22), 12134. https://doi.org/10.3390/ijms252212134