Dual Photonics Probing of Nano- to Submicron-Scale Structural Alterations in Human Brain Tissues/Cells and Chromatin/DNA with the Progression of Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. PWS Analysis of Thin Brain Tissues
2.2. Confocal IPR Analysis of DNA/Chromatin
2.3. Increased Amyloid Beta Deposition in the Brains of AD Patients
2.4. Increased DNA Double-Strand Breaks (DDSBs) in the Brains of AD Patients
3. Discussion
4. Materials and Methods
4.1. Preparation of Brain Tissue Samples
4.1.1. Sample Preparation for PWS
4.1.2. Sample Preparation for IPR Study Using Confocal Microscopy
4.1.3. Sample Preparation for DNA Damage Analysis
4.1.4. Sample Preparation for Amyloid Beta (Aβ) Deposition
4.2. Partial Wave Spectroscopy
4.2.1. Optical Setup
4.2.2. Calculation of Structural Disorder Strength (Ld-PWS)
4.3. Confocal IPR Technique
4.3.1. Confocal Imaging
4.3.2. Inverse Participation Ratio and Analysis of Structural Disorder Strength Ld
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Popp, A.K.; Valentine, M.T.; Kaplan, P.D.; Weitz, D.A. Microscopic Origin of Light Scattering in Tissue. Appl. Opt. 2003, 42, 2871–2880. [Google Scholar] [CrossRef] [PubMed]
- Boustany, N.N.; Thakor, N.V. Light Scatter Spectroscopy and Imaging of Cellular and Subcellular Events. In Biomedical Photonics: Handbook; CRC Press: Boca Raton, FL, USA, 2003; p. 16. [Google Scholar]
- Drezek, R.; Dunn, A.; Richards-Kortum, R. Light Scattering from Cells: Finite-Difference Time-Domain Simulations and Goniometric Measurements. Appl. Opt. 1999, 38, 3651–3661. [Google Scholar] [CrossRef] [PubMed]
- Kinnunen, M.; Karmenyan, A. Overview of Single-Cell Elastic Light Scattering Techniques. JBO 2015, 20, 051040. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Gul, B.; Khan, S.; Nisar, H.; Ahmad, I. Refractive Index of Biological Tissues: Review, Measurement Techniques, and Applications. Photodiagn. Photodyn. Ther. 2021, 33, 102192. [Google Scholar] [CrossRef]
- Vlasov, A.V.; Maliar, N.L.; Bazhenov, S.V.; Nikelshparg, E.I.; Brazhe, N.A.; Vlasova, A.D.; Osipov, S.D.; Sudarev, V.V.; Ryzhykau, Y.L.; Bogorodskiy, A.O.; et al. Raman Scattering: From Structural Biology to Medical Applications. Crystals 2020, 10, 38. [Google Scholar] [CrossRef]
- Liu, P.Y.; Chin, L.K.; Ser, W.; Chen, H.F.; Hsieh, C.-M.; Lee, C.-H.; Sung, K.-B.; Ayi, T.C.; Yap, P.H.; Liedberg, B.; et al. Cell Refractive Index for Cell Biology and Disease Diagnosis: Past, Present and Future. Lab Chip 2016, 16, 634–644. [Google Scholar] [CrossRef]
- Losa, G.A. The Fractal Geometry of Life. Riv. Biol. 2009, 102, 29–59. [Google Scholar]
- Gardner, S.J.; White, N.; Albon, J.; Knupp, C.; Kamma-Lorger, C.S.; Meek, K.M. Measuring the Refractive Index of Bovine Corneal Stromal Cells Using Quantitative Phase Imaging. Biophys. J. 2015, 109, 1592–1599. [Google Scholar] [CrossRef]
- Steelman, Z.A.; Ho, D.S.; Chu, K.K.; Wax, A. Light-Scattering Methods for Tissue Diagnosis. Optica 2019, 6, 479–489. [Google Scholar] [CrossRef]
- Apachigawo, I.; Solanki, D.; Tate, R.; Singh, H.; Khan, M.M.; Pradhan, P. Fractal Dimension Analyses to Detect Alzheimer’s and Parkinson’s Diseases Using Their Thin Brain Tissue Samples via Transmission Optical Microscopy. Biophysica 2023, 3, 569–581. [Google Scholar] [CrossRef]
- Wyatt, P.J. Differential Light Scattering: A Physical Method for Identifying Living Bacterial Cells. Appl. Opt. 1968, 7, 1879–1896. [Google Scholar] [CrossRef] [PubMed]
- Boustany, N.N.; Boppart, S.A.; Backman, V. Microscopic Imaging and Spectroscopy with Scattered Light. Annu. Rev. Biomed. Eng. 2010, 12, 285–314. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, H.; Pradhan, P.; Liu, Y.; Capoglu, I.R.; Rogers, J.D.; Roy, H.K.; Brand, R.E.; Backman, V. Partial-Wave Microscopic Spectroscopy Detects Subwavelength Refractive Index Fluctuations: An Application to Cancer Diagnosis. Opt. Lett. 2009, 34, 518–520. [Google Scholar] [CrossRef] [PubMed]
- Chance, B.; Cooper, C.E.; Delpy, D.T.; Reynolds, E.O.R.; Delpy, D.T.; Cope, M. Quantification in Tissue near–Infrared Spectroscopy. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1997, 352, 649–659. [Google Scholar] [CrossRef]
- Yang, B.; Lesicko, J.; Sharma, M.; Hill, M.; Sacks, M.S.; Tunnell, J.W. Polarized Light Spatial Frequency Domain Imaging for Non-Destructive Quantification of Soft Tissue Fibrous Structures. Biomed. Opt. Express 2015, 6, 1520–1533. [Google Scholar] [CrossRef]
- Simpson, J.J.; Capoglu, I.R.; Backman, V. Using FDTD to Improve Our Understanding of Partial Wave Spectroscopy for Advancing Ultra Early-Stage Cancer Detection Techniques. In Proceedings of the 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, Banff, AB, Canada, 15–18 February 2009; pp. 1–4. [Google Scholar]
- Rancu, A.; Chen, C.X.; Price, H.; Wax, A. Multiscale Optical Phase Fluctuations Link Disorder Strength and Fractal Dimension of Cell Structure. Biophys. J. 2023, 122, 1390–1399. [Google Scholar] [CrossRef]
- Fernández, R.; Marcos-Vidal, A.; Gallego, S.; Beléndez, A.; Desco, M.; Ripoll, J. Qualitative Disorder Measurements from Backscattering Spectra through an Optical Fiber. Biomed. Opt. Express 2020, 11, 6038. [Google Scholar] [CrossRef]
- Adhikari, P. Optical Probing of Spatial Structural Abnormalities in Cells/Tissues Due to Cancer, Drug-Effect, and Brain Abnormalities Using Mesoscopic Physics-Based Spectroscopic Techniques. Ph.D. Thesis, Mississippi State University, Starkville, MS, USA, 2021. [Google Scholar] [CrossRef]
- Naimark, O.B.; Nikitiuk, A.S.; Baudement, M.-O.; Forné, T.; Lesne, A. The Physics of Cancer: The Role of Epigenetics and Chromosome Conformation in Cancer Progression. AIP Conf. Proc. 2016, 1760, 020051. [Google Scholar] [CrossRef]
- Tao, Y.; Ding, Z. Reflective Mesoscopic Spectroscopy for Noninvasive Detection of Reflective Index Alternations at Nano-Scale. J. Phys. Conf. Ser. 2011, 277, 012035. [Google Scholar] [CrossRef]
- Subramanian, H.; Pradhan, P.; Liu, Y.; Capoglu, I.R.; Li, X.; Rogers, J.D.; Heifetz, A.; Kunte, D.; Roy, H.K.; Taflove, A.; et al. Optical Methodology for Detecting Histologically Unapparent Nanoscale Consequences of Genetic Alterations in Biological Cells. Proc. Natl. Acad. Sci. USA 2008, 105, 20118–20123. [Google Scholar] [CrossRef]
- Bhandari, S.; Shukla, P.K.; Almabadi, H.M.; Sahay, P.; Rao, R.; Pradhan, P. Optical Study of Stress Hormone-Induced Nanoscale Structural Alteration in Brain Using Partial Wave Spectroscopic Microscopy. J. Biophotonics 2019, 12, e201800002. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kandel, M.E.; Popescu, G. Spatial Light Interference Microscopy: Principle and Applications to Biomedicine. Adv. Opt. Photon. 2021, 13, 353–425. [Google Scholar] [CrossRef] [PubMed]
- Forouhesh Tehrani, K.; Pendleton, E.G.; Southern, W.M.; Call, J.A.; Mortensen, L.J. Spatial Frequency Metrics for Analysis of Microscopic Images of Musculoskeletal Tissues. Connect. Tissue Res. 2021, 62, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Gladstein, S.; Damania, D.; Almassalha, L.M.; Smith, L.T.; Gupta, V.; Subramanian, H.; Rex, D.K.; Roy, H.K.; Backman, V. Correlating Colorectal Cancer Risk with Field Carcinogenesis Progression Using Partial Wave Spectroscopic Microscopy. Cancer Med. 2018, 7, 2109–2120. [Google Scholar] [CrossRef]
- Chandler, J.E.; Subramanian, H.; Maneval, C.D.; White, C.A.; Levenson, R.M.; Backman, V. High-Speed Spectral Nanocytology for Early Cancer Screening. JBO 2013, 18, 117002. [Google Scholar] [CrossRef] [PubMed]
- Konda, V.J.; Cherkezyan, L.; Subramanian, H.; Wroblewski, K.; Damania, D.; Becker, V.; Gonzalez, M.H.R.; Koons, A.; Goldberg, M.; Ferguson, M.K.; et al. Nanoscale Markers of Esophageal Field Carcinogenesis: Potential Implications for Esophageal Cancer Screening. Endoscopy 2013, 45, 983–988. [Google Scholar] [CrossRef]
- Damania, D.; Subramanian, H.; Tiwari, A.K.; Stypula, Y.; Kunte, D.; Pradhan, P.; Roy, H.K.; Backman, V. Role of Cytoskeleton in Controlling the Disorder Strength of Cellular Nanoscale Architecture. Biophys. J. 2010, 99, 989–996. [Google Scholar] [CrossRef]
- Almassalha, L.M.; Bauer, G.M.; Chandler, J.E.; Gladstein, S.; Cherkezyan, L.; Stypula-Cyrus, Y.; Weinberg, S.; Zhang, D.; Thusgaard Ruhoff, P.; Roy, H.K.; et al. Label-Free Imaging of the Native, Living Cellular Nanoarchitecture Using Partial-Wave Spectroscopic Microscopy. Proc. Natl. Acad. Sci. USA 2016, 113, E6372–E6381. [Google Scholar] [CrossRef]
- Hensing, T.A.; Subramanian, H.; Roy, H.K.; Breault, D.; Bogojevic, Z.; Ray, D.; Hasabou, N.; Backman, V. Identification of Malignancy-Associated Change in Buccal Mucosa with Partial Wave Spectroscopy (PWS): A Potential Biomarker for Lung Cancer Risk. JCO 2008, 26, 11045. [Google Scholar] [CrossRef]
- Gladstein, S.; Stawarz, A.; Almassalha, L.M.; Cherkezyan, L.; Chandler, J.E.; Zhou, X.; Subramanian, H.; Backman, V. Measuring Nanoscale Chromatin Heterogeneity with Partial Wave Spectroscopic Microscopy. In Cellular Heterogeneity: Methods and Protocols; Barteneva, N.S., Vorobjev, I.A., Eds.; Springer: New York, NY, USA, 2018; pp. 337–360. ISBN 978-1-4939-7680-5. [Google Scholar]
- Sahay, P.; Ganju, A.; Almabadi, H.M.; Ghimire, H.M.; Yallapu, M.M.; Skalli, O.; Jaggi, M.; Chauhan, S.C.; Pradhan, P. Quantification of Photonic Localization Properties of Targeted Nuclear Mass Density Variations: Application in Cancer-Stage Detection. J. Biophotonics 2018, 11, e201700257. [Google Scholar] [CrossRef]
- Adhikari, P.; Shukla, P.K.; Alharthi, F.; Bhandari, S.; Meena, A.S.; Rao, R.; Pradhan, P. Photonics Probing of Pup Brain Tissue and Molecular-Specific Nuclear Nanostructure Alterations Due to Fetal Alcoholism via Light Scattering/Localization Approaches. JBO 2022, 27, 076002. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.L.; Robinson, K.A.; Lee, V.M.; Trojanowski, J.Q. Chemical and Immunological Heterogeneity of Fibrillar Amyloid in Plaques of Alzheimer’s Disease and Down’s Syndrome Brains Revealed by Confocal Microscopy. Am. J. Pathol. 1995, 147, 503–515. [Google Scholar] [PubMed]
- Shukla, P.K.; Meena, A.S.; Dalal, K.; Canelas, C.; Samak, G.; Pierre, J.F.; Rao, R. Chronic Stress and Corticosterone Exacerbate Alcohol-Induced Tissue Injury in the Gut-Liver-Brain Axis. Sci. Rep. 2021, 11, 826. [Google Scholar] [CrossRef] [PubMed]
- Colocalization of Cellular Nanostructure Using Confocal Fluorescence and Partial Wave Spectroscopy—Chandler—2017—Journal of Biophotonics—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.201500298 (accessed on 29 September 2024).
- Eshein, A.; Li, Y.; Zhou, X.; Spicer, G.; Nguyen, T.-Q.; Almassalha, L.M.; Chandler, J.E.; Gladstein, S.; Dong, B.; Sun, C.; et al. Nanoscale Imaging of Chromatin with Labeled and Label-Free Super-Resolution Microscopy and Partial-Wave Spectroscopy. In Proceedings of the Biophotonics Congress: Biomedical Optics Congress 2018 (Microscopy/Translational/Brain/OTS) (2018), paper MW2A.4, Hollywood, FL, USA, 3 April 2018; Optica Publishing Group: Washington, DC, USA, 2018; p. MW2A.4. [Google Scholar]
- 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [CrossRef]
- 2022 Alzheimer’s Disease Facts and Figures. Available online: https://alz-journals.onlinelibrary.wiley.com/doi/epdf/10.1002/alz.12638 (accessed on 26 September 2023).
- Förstl, H.; Kurz, A. Clinical Features of Alzheimer’s Disease. Eur. Arch. Psychiatry Clin. Neurosci. 1999, 249, 288–290. [Google Scholar] [CrossRef]
- Querfurth, H.W.; LaFerla, F.M. Alzheimer’s Disease. N. Engl. J. Med. 2010, 362, 329–344. [Google Scholar] [CrossRef]
- Alzheimer’s Disease and Inflammaging. Available online: https://www.mdpi.com/2076-3425/12/9/1237 (accessed on 28 September 2024).
- Uwishema, O.; Mahmoud, A.; Sun, J.; Correia, I.F.S.; Bejjani, N.; Alwan, M.; Nicholas, A.; Oluyemisi, A.; Dost, B. Is Alzheimer’s Disease an Infectious Neurological Disease? A Review of the Literature. Brain Behav. 2022, 12, e2728. [Google Scholar] [CrossRef]
- Tai, S.-Y.; Chi, Y.-C.; Lo, Y.-T.; Chien, Y.-W.; Kwachi, I.; Lu, T.-H. Ranking of Alzheimer’s Disease and Related Dementia among the Leading Causes of Death in the US Varies Depending on NCHS or WHO Definitions. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2023, 15, e12442. [Google Scholar] [CrossRef]
- Bush, A.I. The Metallobiology of Alzheimer’s Disease. Trends Neurosci. 2003, 26, 207–214. [Google Scholar] [CrossRef]
- DeTure, M.A.; Dickson, D.W. The Neuropathological Diagnosis of Alzheimer’s Disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef]
- Hanselmann, R.G.; Welter, C. Origin of Cancer: Cell Work Is the Key to Understanding Cancer Initiation and Progression. Front. Cell Dev. Biol. 2022, 10, 787995. [Google Scholar] [CrossRef] [PubMed]
- Suresh, S. Biomechanics and Biophysics of Cancer Cells. Acta Biomater. 2007, 3, 413–438. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ingber, D.E. The Structural and Mechanical Complexity of Cell-Growth Control. Nat. Cell Biol. 1999, 1, E131–E138. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Shukla, P.K.; Nanda, S.; Adhikari, P.; Rao, R.; Pradhan, P. Photonic Probing of Structural Alterations in DNA Specific Mass Density Fluctuations in Nuclei Due to Total Body Irradiation (TBI) via Confocal Imaging. OSA Contin. 2021, 4, 569–578. [Google Scholar] [CrossRef]
- Madabhushi, R.; Pan, L.; Tsai, L.-H. DNA Damage and Its Links to Neurodegeneration. Neuron 2014, 83, 266–282. [Google Scholar] [CrossRef]
- Hinkle, J.T.; Patel, J.; Panicker, N.; Karuppagounder, S.S.; Biswas, D.; Belingon, B.; Chen, R.; Brahmachari, S.; Pletnikova, O.; Troncoso, J.C.; et al. STING Mediates Neurodegeneration and Neuroinflammation in Nigrostriatal α-Synucleinopathy. Proc. Natl. Acad. Sci. USA 2022, 119, e2118819119. [Google Scholar] [CrossRef]
- Shanbhag, N.M.; Evans, M.D.; Mao, W.; Nana, A.L.; Seeley, W.W.; Adame, A.; Rissman, R.A.; Masliah, E.; Mucke, L. Early Neuronal Accumulation of DNA Double Strand Breaks in Alzheimer’s Disease. Acta Neuropathol. Commun. 2019, 7, 77. [Google Scholar] [CrossRef]
- Welch, G.M.; Boix, C.A.; Schmauch, E.; Davila-Velderrain, J.; Victor, M.B.; Dileep, V.; Bozzelli, P.L.; Su, Q.; Cheng, J.D.; Lee, A.; et al. Neurons Burdened by DNA Double-Strand Breaks Incite Microglia Activation through Antiviral-like Signaling in Neurodegeneration. Sci. Adv. 2022, 8, eabo4662. [Google Scholar] [CrossRef]
- Thadathil, N.; Delotterie, D.F.; Xiao, J.; Hori, R.; McDonald, M.P.; Khan, M.M. DNA Double-Strand Break Accumulation in Alzheimer’s Disease: Evidence from Experimental Models and Postmortem Human Brains. Mol. Neurobiol. 2021, 58, 118–131. [Google Scholar] [CrossRef]
- Shukla, P.K.; Delotterie, D.F.; Xiao, J.; Pierre, J.F.; Rao, R.; McDonald, M.P.; Khan, M.M. Alterations in the Gut-Microbial-Inflammasome-Brain Axis in a Mouse Model of Alzheimer’s Disease. Cells 2021, 10, 779. [Google Scholar] [CrossRef]
- Khan, M.M.; Xiao, J.; Patel, D.; LeDoux, M.S. DNA Damage and Neurodegenerative Phenotypes in Aged Ciz1 Null Mice. Neurobiol. Aging 2018, 62, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Liu, Y.; Kim, Y.; Li, X.; Wali, R.K.; Roy, H.K.; Backman, V. Mesoscopic Light Transport Properties of a Single Biological Cell: Early Detection of Cancer. In Proceedings of the APS March Meeting Abstracts, Baltimore, MD, USA, 13–17 March 2006; p. Q1-326. [Google Scholar]
- Adhikari, P.; Alharthi, F.; Pradhan, P. Partial Wave Spectroscopy Detection of Cancer Stages Using Tissue Microarrays (TMA) Samples. In Proceedings of the Frontiers in Optics + Laser Science APS/DLS (2019), Washington, DC, USA, 15 September 2019; paper JW4A.89; Optica Publishing Group: Washington, DC, USA, 2019; p. JW4A.89. [Google Scholar]
- Pradhan, P.; Subramanian, H.; Liu, Y.; Kim, Y.; Roy, H.; Backman, V. Application of Mesoscopic Light Transport Theory to Ultra-Early Detection of Cancer in a Single Biological Cell. In Proceedings of the 2007 APS March Meeting, Denver, CO, USA, 1 March 2007; p. B41.013. [Google Scholar]
- Pradhan, P. Phase Statistics of Light/Photonic Wave Reflected from One-Dimensional Optical Disordered Media and Its Effects on Light Transport Properties. Photonics 2021, 8, 485. [Google Scholar] [CrossRef]
- Pradhan, P.; Kumar, N. Localization of Light in Coherently Amplifying Random Media. Phys. Rev. B 1994, 50, 9644–9647. [Google Scholar] [CrossRef] [PubMed]
- Haley, S.B.; Erdös, P. Wave Propagation in One-Dimensional Disordered Structures. Phys. Rev. B 1992, 45, 8572–8584. [Google Scholar] [CrossRef]
- Subramanian, H.; Pradhan, P.; Kunte, D.; Deep, N.; Roy, H.; Backman, V. Single-Cell Partial Wave Spectroscopic Microscopy. In Proceedings of the Biomedical Optics (2008), St. Petersburg, FL, USA, 16 March 2008; paper BTuC5. Optica Publishing Group: Washington, DC, USA, 2008; p. BTuC5. [Google Scholar]
- Roy, H.K.; Subramanian, H.; Damania, D.; Hensing, T.A.; Rom, W.N.; Pass, H.I.; Ray, D.; Rogers, J.D.; Bogojevic, A.; Shah, M.; et al. Optical Detection of Buccal Epithelial Nanoarchitectural Alterations in Patients Harboring Lung Cancer: Implications for Screening. Cancer Res. 2010, 70, 7748–7754. [Google Scholar] [CrossRef]
- Adhikari, P.; Nagesh, P.K.B.; Alharthi, F.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M.; Pradhan, P. Optical Detection of the Structural Properties of Tumor Tissue Generated by Xenografting of Drug-Sensitive and Drug-Resistant Cancer Cells Using Partial Wave Spectroscopy (PWS). Biomed. Opt. Express 2019, 10, 6422–6431. [Google Scholar] [CrossRef]
- Jimenez-Villar, E.; Xavier, M.C.S.; Ramos, J.G.G.S.; Wetter, N.U.; Mestre, V.; Martins, W.S.; Basso, G.F.; Ermakov, V.A.; Marques, F.C.; de Sá, G.F. Localization of Light: Beginning of a New Optics. In Proceedings of the Complex Light and Optical Forces XII, San Francisco, CA, USA, 30 January–1 February 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10549, pp. 10–20. [Google Scholar]
- Sahay, P.; Almabadi, H.M.; Ghimire, H.M.; Skalli, O.; Pradhan, P. Light Localization Properties of Weakly Disordered Optical Media Using Confocal Microscopy: Application to Cancer Detection. Opt. Express 2017, 25, 15428. [Google Scholar] [CrossRef]
- Schwartz, T.; Bartal, G.; Fishman, S.; Segev, M. Transport and Anderson Localization in Disordered Two-Dimensional Photonic Lattices. Nature 2007, 446, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Damania, D.; Joshi, H.M.; Turzhitsky, V.; Subramanian, H.; Roy, H.K.; Taflove, A.; Dravid, V.P.; Backman, V. Quantification of Nanoscale Density Fluctuations Using Electron Microscopy: Light-Localization Properties of Biological Cells. Appl. Phys. Lett. 2010, 97, 243704. [Google Scholar] [CrossRef]
- Xu, L.; Yin, Y.; Bo, F.; Xu, J.; Zhang, G. Transverse Localization of Light in the Disordered One-Dimensional Waveguide Arrays in the Linear and Nonlinear Regimes. Opt. Commun. 2013, 296, 65–71. [Google Scholar] [CrossRef]
- Basiri, A.; Bromberg, Y.; Yamilov, A.; Cao, H.; Kottos, T. Light Localization Induced by a Random Imaginary Refractive Index. Phys. Rev. A 2014, 90, 043815. [Google Scholar] [CrossRef]
- Sahay, P.; Ganju, A.; Ghimire, H.M.; Almabadi, H.; Yallappu, M.M.; Skalli, O.; Jaggi, M.; Chauhan, S.C.; Pradhan, P. Probing Intracellular Mass Density Fluctuation through Confocal Microscopy: Application in Cancer Diagnostics as a Case Study. arXiv 2015, arXiv:1512.08583. [Google Scholar]
- Adhikari, P.; Shukla, P.K.; Rao, R.; Pradhan, P. Quantification of Light Localization Properties to Study the Effect of Probiotic on Chronic Alcoholic Brain Cells via Confocal Imaging. In Proceedings of the Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XIX, Online, 5 March 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11647, pp. 116–120. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, F.; Apachigawo, I.; Solanki, D.; Khan, S.; Singh, H.; Khan, M.M.; Pradhan, P. Dual Photonics Probing of Nano- to Submicron-Scale Structural Alterations in Human Brain Tissues/Cells and Chromatin/DNA with the Progression of Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 12211. https://doi.org/10.3390/ijms252212211
Alharthi F, Apachigawo I, Solanki D, Khan S, Singh H, Khan MM, Pradhan P. Dual Photonics Probing of Nano- to Submicron-Scale Structural Alterations in Human Brain Tissues/Cells and Chromatin/DNA with the Progression of Alzheimer’s Disease. International Journal of Molecular Sciences. 2024; 25(22):12211. https://doi.org/10.3390/ijms252212211
Chicago/Turabian StyleAlharthi, Fatemah, Ishmael Apachigawo, Dhruvil Solanki, Sazzad Khan, Himanshi Singh, Mohammad Moshahid Khan, and Prabhakar Pradhan. 2024. "Dual Photonics Probing of Nano- to Submicron-Scale Structural Alterations in Human Brain Tissues/Cells and Chromatin/DNA with the Progression of Alzheimer’s Disease" International Journal of Molecular Sciences 25, no. 22: 12211. https://doi.org/10.3390/ijms252212211
APA StyleAlharthi, F., Apachigawo, I., Solanki, D., Khan, S., Singh, H., Khan, M. M., & Pradhan, P. (2024). Dual Photonics Probing of Nano- to Submicron-Scale Structural Alterations in Human Brain Tissues/Cells and Chromatin/DNA with the Progression of Alzheimer’s Disease. International Journal of Molecular Sciences, 25(22), 12211. https://doi.org/10.3390/ijms252212211