Signal Enhancement of Selected Norepinephrine Metabolites Extracted from Artificial Urine Samples by Capillary Electrophoretic Separation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Extraction Parameters
2.1.1. Liquid-Liquid Extraction
2.1.2. Solid-Phase Extraction
2.1.3. Dispersive Solid-Phase Extraction with a 3D-Printed System
2.2. Optimization of Micellar-Electrokinetic Chromatography as Separation Method
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Analytical Equipment
3.3. Preparation of Stock and Working Solutions
3.4. MEKC Conditions
3.5. Extraction Procedures
3.5.1. Liquid-Liquid Extraction Procedure (LLE)
3.5.2. Solid-Phase Extraction Procedure (SPE)
3.5.3. Dispersive Solid-Phase Extraction Procedure (DSPE)
3.6. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Li, S.; Wynveen, P.; Mork, K.; Kellermann, G. Development and Validation of a Specific and Sensitive LC-MS/MS Method for Quantification of Urinary Catecholamines and Application in Biological Variation Studies. Anal. Bioanal. Chem. 2014, 406, 7287–7297. [Google Scholar] [CrossRef] [PubMed]
- Bicker, J.; Fortuna, A.; Alves, G.; Falcão, A. Liquid Chromatographic Methods for the Quantification of Catecholamines and Their Metabolites in Several Biological Samples--a Review. Anal. Chim. Acta 2013, 768, 12–34. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S. Catecholamines 101. Clin. Auton. Res. 2010, 20, 331–352. [Google Scholar] [CrossRef]
- Kaler, S.G.; Holmes, C.S.; Goldstein, D.S.; Tang, J.; Godwin, S.C.; Donsante, A.; Liew, C.J.; Sato, S.; Patronas, N. Neonatal Diagnosis and Treatment of Menkes Disease. N. Engl. J. Med. 2008, 358, 605–614. [Google Scholar] [CrossRef]
- Warsh, J.J.; Hasey, G.; Cooke, R.G.; Stancer, H.C.; Persad, E.; Jorna, T.; Godse, D.D. Elevated 3,4-Dihydroxyphenylethyleneglycol (DHPG) Excretion in Dexamethasone Resistant Depressed Patients. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 1985, 9, 661–664. [Google Scholar] [CrossRef]
- Herbert, M.K.; Kuiperij, H.B.; Bloem, B.R.; Verbeek, M.M. Levels of HVA, 5-HIAA, and MHPG in the CSF of Vascular Parkinsonism Compared to Parkinson’s Disease and Controls. J. Neurol. 2013, 260, 3129–3133. [Google Scholar] [CrossRef] [PubMed]
- Kurita, M.; Nishino, S.; Numata, Y.; Okubo, Y.; Sato, T. The Noradrenaline Metabolite MHPG Is a Candidate Biomarker between the Depressive, Remission, and Manic States in Bipolar Disorder I: Two Long-Term Naturalistic Case Reports. Neuropsychiatr. Dis. Treat. 2015, 11, 353–358. [Google Scholar] [CrossRef]
- Zumárraga, M.; Dávila, R.; Basterreche, N.; Arrue, A.; Goienetxea, B.; Zamalloa, M.I.; Erkoreka, L.; Bustamante, S.; Inchausti, L.; González-Torres, M.A.; et al. Catechol O-Methyltransferase and Monoamine Oxidase A Genotypes, and Plasma Catecholamine Metabolites in Bipolar and Schizophrenic Patients. Neurochem. Int. 2010, 56, 774–779. [Google Scholar] [CrossRef]
- Kurita, M.; Nishino, S.; Numata, Y.; Okubo, Y.; Sato, T. The Noradrenaline Metabolite MHPG Is a Candidate Biomarker from the Manic to the Remission State in Bipolar Disorder I: A Clinical Naturalistic Study. PLoS ONE 2014, 9, e100634. [Google Scholar] [CrossRef]
- Dekker, A.D.; Coppus, A.M.W.; Vermeiren, Y.; Aerts, T.; Van Duijn, C.M.; Kremer, B.P.; Naudé, P.J.W.; Van Dam, D.; De Deyn, P.P. Serum MHPG Strongly Predicts Conversion to Alzheimer’s Disease in Behaviorally Characterized Subjects with Down Syndrome. J. Alzheimer’s Dis. 2015, 43, 871–891. [Google Scholar] [CrossRef]
- Goto, N.; Yoshimura, R.; Kakeda, S.; Moriya, J.; Hayashi, K.; Ikenouchi-Sugita, A.; Umene-Nakano, W.; Hori, H.; Ueda, N.; Korogi, Y.; et al. Associations between Plasma Levels of 3-Methoxy-4-Hydroxyphenylglycol (MHPG) and Negative Symptoms or Cognitive Impairments in Early-Stage Schizophrenia. Hum. Psychopharmacol. 2009, 24, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Galfalvy, H.; Currier, D.; Oquendo, M.A.; Sullivan, G.; Huang, Y.Y.; John Mann, J. Lower CSF MHPG Predicts Short-Term Risk for Suicide Attempt. Int. J. Neuropsychopharmacol. 2009, 12, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Kanda, T.; Azuma, K.; Sakai, F.; Tazaki, Y. Increase in Cerebrospinal Fluid and Plasma Levels of 3-Methoxy-4-Hydroxyphenylglycol in Acute Stroke. Stroke 1991, 22, 1525–1529. [Google Scholar] [CrossRef]
- Vanylglycol|C9H12O4|CID 10805—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/10805 (accessed on 4 September 2024).
- Wang, H.; Zhang, X.; Zhen, Q.; Zou, W.; Chen, H.; Luo, C.; Ding, M. Detection of Spot Urinary Free Metanephrines and 3-Methoxytyramine with Internal Reference Correction for the Diagnosis of Pheochromocytomas and Paragangliomas. J. Chromatogr. B 2020, 1156, 122306. [Google Scholar] [CrossRef]
- Lenders, J.W.M. Biochemical Diagnosis of Pheochromocytoma and Paraganglioma. Ann. D’Endocrinol. 2009, 70, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Abdenur, J.E.; Abeling, N.; Specola, N.; Jorge, L.; Schenone, A.B.; Van Cruchten, A.C.; Chamoles, N.A. Aromatic L-Aminoacid Decarboxylase Deficiency: Unusual Neonatal Presentation and Additional Findings in Organic Acid Analysis. Mol. Genet. Metab. 2006, 87, 48–53. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Peitzsch, M. Laboratory Evaluation of Pheochromocytoma and Paraganglioma. Clin. Chem. 2014, 60, 1486–1499. [Google Scholar] [CrossRef]
- Lagerstedt, S.A.; O’Kane, D.J.; Singh, R.J. Measurement of Plasma Free Metanephrine and Normetanephrine by Liquid Chromatography-Tandem Mass Spectrometry for Diagnosis of Pheochromocytoma. Clin. Chem. 2004, 50, 603–611. [Google Scholar] [CrossRef]
- Whiting, M.J. Simultaneous Measurement of Urinary Metanephrines and Catecholamines by Liquid Chromatography with Tandem Mass Spectrometric Detection. Ann. Clin. Biochem. 2009, 46 Pt 2, 129–136. [Google Scholar] [CrossRef]
- Grebe, S.K.G.; Singh, R.J. LC-MS/MS in the Clinical Laboratory—Where to From Here? Clin. Biochem. Rev. 2011, 32, 5. [Google Scholar]
- Peitzsch, M.; Prejbisz, A.; Kroiß, M.; Beuschlein, F.; Arlt, W.; Januszewicz, A.; Siegert, G.; Eisenhofer, G. Analysis of Plasma 3-Methoxytyramine, Normetanephrine and Metanephrine by Ultraperformance Liquid Chromatography-Tandem Mass Spectrometry: Utility for Diagnosis of Dopamine producing Metastatic Phaeochromocytoma. Ann. Clin. Biochem. 2013, 50, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Unger, N.; Pitt, C.; Schmidt, I.L.; Walz, M.K.; Schmid, K.W.; Philipp, T.; Mann, K.; Petersenn, S. Diagnostic Value of Various Biochemical Parameters for the Diagnosis of Pheochromocytoma in Patients with Adrenal Mass. Eur. J. Endocrinol. 2006, 154, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Pussard, E.; Chaouch, A.; Said, T. Radioimmunoassay of Free Plasma Metanephrines for the Diagnosis of Catecholamine-Producing Tumors. Clin. Chem. Lab. Med. 2014, 52, 437–444. [Google Scholar] [CrossRef]
- Van Dam, D.; Vermeiren, Y.; Aerts, T.; De Deyn, P.P. Novel and Sensitive Reversed-Phase High-Pressure Liquid Chromatography Method with Electrochemical Detection for the Simultaneous and Fast Determination of Eight Biogenic Amines and Metabolites in Human Brain Tissue. J. Chromatogr. A 2014, 1353, 28–39. [Google Scholar] [CrossRef]
- Wojnicz, A.; Ortiz, J.A.; Casas, A.I.; Freitas, A.E.; López, M.G.; Ruiz-Nuño, A. Simultaneous Determination of 8 Neurotransmitters and Their Metabolite Levels in Rat Brain Using Liquid Chromatography in Tandem with Mass Spectrometry: Application to the Murine Nrf2 Model of Depression. Clin. Chim. Acta 2016, 453, 174–181. [Google Scholar] [CrossRef]
- Yoshimura, R.; Kishi, T.; Atake, K.; Katsuki, A.; Iwata, N. Serum Brain-Derived Neurotrophic Factor, and Plasma Catecholamine Metabolites in People with Major Depression: Preliminary Cross-Sectional Study. Front. Psychiatry 2018, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- van der Hoorn, F.A.J.; Boomsma, F.; Man in ’t Veld, A.J.; Schalekamp, M.A.D.H. Improved Measurement of Urinary Catecholamines by Liquid—Liquid Extraction, Derivatization and High-Performance Liquid Chromatography with Fluorimetric Detection. J. Chromatogr. B Biomed. Sci. Appl. 1991, 563, 348–355. [Google Scholar] [CrossRef]
- Miękus, N.; Plenis, A.; Rudnicka, M.; Kossakowska, N.; Olędzka, I.; Kowalski, P.; Bączek, T. Extraction and Preconcentration of Compounds from the L-Tyrosine Metabolic Pathway Prior to Their Micellar Electrokinetic Chromatography Separation. J. Chromatogr. A 2020, 1620, 461032. [Google Scholar] [CrossRef]
- Soda, E.; Miura, I.; Hoshino, H.; Kanno-Nozaki, K.; Ota, T.; Oguchi, H.; Watanabe, K.; Yang, Q.; Mashiko, H.; Niwa, S.I. Impacts of Age on Plasma Monoamine Metabolite Concentrations in a Large Cohort of Healthy Individuals. Psychiatry Res. 2014, 220, 639–645. [Google Scholar] [CrossRef]
- Cao, G.M.; Hoshino, T. Simultaneous Determination of 3,4-Dihydroxymandelic Acid, 4-Hydroxy-3- Methoxymandelic Acid, 3,4-Dihydroxyphenylglycol, 4-Hydroxy-3- Methoxyphenylglycol, and Their Precursors, in Human Urine by HPLC with Electrochemical Detection. Chromatographia 1998, 47, 396–400. [Google Scholar] [CrossRef]
- Sabbioni, C.; Saracino, M.A.; Mandrioli, R.; Pinzauti, S.; Furlanetto, S.; Gerra, G.; Raggi, M.A. Simultaneous Liquid Chromatographic Analysis of Catecholamines and 4-Hydroxy-3-Methoxyphenylethylene Glycol in Human Plasma: Comparison of Amperometric and Coulometric Detection. J. Chromatogr. A 2004, 1032, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Mercolini, L.; Gerra, G.; Consorti, M.; Somaini, L.; Raggi, M.A. Fast Analysis of Catecholamine Metabolites MHPG and VMA in Human Plasma by HPLC with Fluorescence Detection and a Novel SPE Procedure. Talanta 2009, 78, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Eisenhofer, G.; Stull, R.; Folio, C.J.; Keiser, H.R.; Kopin, I.J. Plasma Dihydroxyphenylglycol and the Intraneuronal Disposition of Norepinephrine in Humans. J. Clin. Investig. 1988, 81, 213–220. [Google Scholar] [CrossRef]
- Naccarato, A.; Gionfriddo, E.; Sindona, G.; Tagarelli, A. Development of a Simple and Rapid Solid Phase Microextraction-Gas Chromatography–Triple Quadrupole Mass Spectrometry Method for the Analysis of Dopamine, Serotonin and Norepinephrine in Human Urine. Anal. Chim. Acta 2014, 810, 17–24. [Google Scholar] [CrossRef]
- Fda; Cder. Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Bioanalytical Method Validation Guidance for Industry Biopharmaceutics Contains Nonbinding Recommendations. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 4 September 2024).
- Roberts, N.B.; Higgins, G.; Sargazi, M. A Study on the Stability of Urinary Free Catecholamines and Free Methyl-Derivatives at Different PH, Temperature and Time of Storage. Clin. Chem. Lab. Med. 2010, 48, 81–87. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.; Wagrowski-Diehl, D.M.; Lu, Z.; Mazzeo, J.R. Systematic and Comprehensive Strategy for Reducing Matrix Effects in LC/MS/MS Analyses. J. Chromatogr. B 2007, 852, 22–34. [Google Scholar] [CrossRef]
- EVOLUTE® EXPRESS User Guide. Load-Wash-Elute SPE EVOLUTE® EXPRESS User Guide | © Biotage 2016 EVOLUTE® EXPRESS User Guide. 2016. Available online: https://selekt.biotage.com/hubfs/ANALYTICAL/DOCUMENTS/USERS%20GUIDES%20AND%20USER%20INSTRUCTIONS/ui330.V.1_evolute_express_user_guide_2016_web.pdf (accessed on 4 September 2024).
- Szynkiewicz, D.; Georgiev, P.; Ulenberg, S.; Bączek, T.; Belka, M. Dispersive Solid-Phase Extraction Facilitated by Newly Developed, Fully 3D-Printed Device. Microchem. J. 2023, 187, 108367. [Google Scholar] [CrossRef]
- Kaczmarczyk, N.; Ciżewska, J.; Treder, N.; Miękus, N.; Plenis, A.; Kowalski, P.; Roszkowska, A.; Bączek, T.; Olędzka, I. The Critical Evaluation of the Effects of Imidazolium-Based Ionic Liquids on the Separation Efficiency of Selected Biogenic Amines and Their Metabolites during MEKC Analysis. Talanta 2022, 238, 122997. [Google Scholar] [CrossRef]
Analyte | Chemical Structure | pKa Values | Log P (Experimental) | Water Solubility [g/L] |
---|---|---|---|---|
Zwitterion compounds | ||||
DHPG | −3 9.21 | −0.72 | 16.7 | |
MHPG | −3 9.91 | 0.11 | 8.99 | |
Compound with the acidic nature | ||||
VMA | −4.1 3.11 | 0.43 0.94 | 5.16 |
LLE Based Extraction Procedures | DHPG | MHPG | VMA | ||||
---|---|---|---|---|---|---|---|
R ± SD (%) | EF | R ± SD (%) | EF | R ± SD (%) | EF | ||
single process | pH 4.6 | 159.4 ± 10.5 | 1.6 | 11.6 ± 1.3 | - | 103.8 ± 5.5 | 1.0 |
pH 5.5 | no | - | 125.2 ± 5.9 | 1.2 | 103.5 ± 6.3 | 1.0 | |
pH 6.0 | 140.7 ± 4.9 | 1.4 | no | - | 197.8 ± 5.7 | 1.9 | |
pH 9.2 | 151.4 ± 6.0 | 1.5 | no | - | 18.6 ± 3.3 | - | |
double process | pH 5.8 | 218.2 ± 4.2 | 2.2 | 192.2 ± 8.0 | 1.9 | 157.7 ± 8.8 | 1.6 |
pH 7.4 | 209.9 ± 5.5 | 2.1 | no | - | 166.7 ± 4.2 | 1.6 |
Type of Sorbent | Activation Step | Washing Step | Elution Step |
---|---|---|---|
HLB | 1 mL of MeOH followed by 1 mL of DI water | 1 mL of mixture water:MeOH (9:1, v/v) | 1 mL of ACN:MeOH (50:50, v/v) or 1 mL of acetone or 1 mL of MeOH |
C18 | |||
CN | 1 mL of acetone | ||
AX | - | 1 mL of 0.05 M ammonium acetate pH6:MeOH (95:5, v/v) followed by 1 mL of MeOH | 1 mL of MeOH:formic acid (98:2, v/v) |
CX | - | 1 mL MeOH:ammonium hydroxide 25% (95:5, v/v) | |
Evolute ABN | - | 1 mL of water:MeOH (95:5, v/v) | 1 mL of MeOH |
Styren DVB | - | 1 mL of DI water | 1 mL of CH2Cl2:IPA:NH4OH (78:20:2, v/v/v) |
SPE-Based Extraction Procedures | DHPG | MHPG | VMA | ||||
---|---|---|---|---|---|---|---|
R ± SD (%) | EF | R ± SD (%) | EF | R ± SD (%) | EF | ||
Sorbent | Eluent | ||||||
HLB | MeOH | 59.5 ± 2.7 | - | no | - | 69.8 ± 6.3 | - |
Aceton | 86.8 ± 2.8 | - | no | - | 83.4 ± 2.8 | - | |
ACN:MeOH 50:50 | 18.2 ± 1.4 | - | no | - | 37.6 ± 2.5 | - | |
C18 | MeOH | 239.9 ± 8.6 | 2.4 | 153.2 ± 3.9 | 1.5 | 300.5 ± 12.7 | 3.0 |
Aceton | 120.4 ± 4.8 | 1.2 | 41.8 ± 2.9 | - | 152.4 ± 3.4 | 1.5 | |
ACN:MeOH 50:50 | 111.3 ± 6.3 | 1.1 | 62.2 ± 2.7 | - | 190.8 ± 9.5 | 1.9 | |
CN | Aceton | 121.6 ± 5.7 | 1.2 | 52.1 ± 4.0 | - | 67.8 ± 4.4 | - |
ABN | MeOH | 11.1 ± 1.3 | - | no | - | 21.2 ± 2.6 | - |
AX | MeOH:FA 98:2 | 9.1 ± 2.3 | - | no | - | 53.4 ± 3.7 | - |
CX | MeOH:NH4OH 25% 95:5 | no | - | 30.5 ± 3.9 | - | 12.8 ± 3.5 | - |
Styre DVB | Aceton | 140.4 ± 3.5 | 1.4 | 50.5 ± 2.9 | - | 67.5 ± 4.1 | - |
ACN:MeOH 50:50 | no | - | no | - | no | - | |
DCM:IPA:NH4OH | no | - | no | - | no | - |
3D-DSPE-Based Extraction Procedures | DHPG | MHPG | VMA | ||||
---|---|---|---|---|---|---|---|
R ± SD (%) | EF | R ± SD (%) | EF | R ± SD (%) | EF | ||
Sorbent | Eluent | ||||||
DVB 30 mg | Aceton | 350.6 ± 16.5 | 3.5 | 324.4 ± 7.1 | 3.2 | 228.9 ± 11.0 | 2.3 |
ACN:MeOH 50:50 | 292.2 ± 15.4 | 2.9 | 249.3 ± 11.2 | 2.5 | 214.9 ± 10.5 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, P.; Hermann, N.; Kroll, D.; Belka, M.; Bączek, T.; Olędzka, I. Signal Enhancement of Selected Norepinephrine Metabolites Extracted from Artificial Urine Samples by Capillary Electrophoretic Separation. Int. J. Mol. Sci. 2024, 25, 12227. https://doi.org/10.3390/ijms252212227
Kowalski P, Hermann N, Kroll D, Belka M, Bączek T, Olędzka I. Signal Enhancement of Selected Norepinephrine Metabolites Extracted from Artificial Urine Samples by Capillary Electrophoretic Separation. International Journal of Molecular Sciences. 2024; 25(22):12227. https://doi.org/10.3390/ijms252212227
Chicago/Turabian StyleKowalski, Piotr, Natalia Hermann, Dagmara Kroll, Mariusz Belka, Tomasz Bączek, and Ilona Olędzka. 2024. "Signal Enhancement of Selected Norepinephrine Metabolites Extracted from Artificial Urine Samples by Capillary Electrophoretic Separation" International Journal of Molecular Sciences 25, no. 22: 12227. https://doi.org/10.3390/ijms252212227
APA StyleKowalski, P., Hermann, N., Kroll, D., Belka, M., Bączek, T., & Olędzka, I. (2024). Signal Enhancement of Selected Norepinephrine Metabolites Extracted from Artificial Urine Samples by Capillary Electrophoretic Separation. International Journal of Molecular Sciences, 25(22), 12227. https://doi.org/10.3390/ijms252212227