Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review
Abstract
:1. Introduction
2. Method
3. Information Source and Search Strategy
4. Eligibility Criteria and Selection Process
5. Data Extraction
6. Results
7. Characteristics of the Included Studies
8. The Effect of Purslane and Its Derivatives on Markers of Inflammation in Rodent Models of Diabetes
9. The Effect of Purslane and Its Derivatives on Markers of Oxidative Stress in Rodent Models of Diabetes
10. The Effect of Purslane and Its Derivatives on Markers of Inflammation in Diabetic Patients
11. The Effect of Purslane and Its Derivatives on Markers of Oxidative Stress in Diabetic Patients
12. Discussion
13. Strength and Limitations
14. Conclusions
15. Future Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giugliano, D.; Ceriello, A.; Esposito, K. Glucose Metabolism and Hyperglycemia 1-5. Am. J. Clin. Nutr. 2008, 87, 217S–222S. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Diabetes. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 8 May 2024).
- Sifunda, S.; Mbewu, A.D.; Mabaso, M.; Manyaapelo, T.; Sewpaul, R.; Morgan, J.W.; Harriman, N.W.; Williams, D.R.; Reddy, S.P. Prevalence and Psychosocial Correlates of Diabetes Mellitus in South Africa: Results from the South African National Health and Nutrition Examination Survey (SANHANES-1). Int. J. Environ. Res. Public Health 2023, 20, 5798. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2020, 21, 6275. [Google Scholar] [CrossRef] [PubMed]
- Halim, M.; Halim, A. The Effects of Inflammation, Aging and Oxidative Stress on the Pathogenesis of Diabetes Mellitus (Type 2 Diabetes). Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1165–1172. [Google Scholar] [CrossRef]
- Zaib, S.; Ahmad, S.; Khan, I.; Bin Jardan, Y.A.; Fentahun Wondmie, G. An Evaluation of Inflammatory and Endothelial Dysfunction Markers as Determinants of Peripheral Arterial Disease in Those with Diabetes Mellitus. Sci. Rep. 2024, 14, 15348. [Google Scholar] [CrossRef]
- Zimmerman, R.S. Diabetes Mellitus: Management of Microvascular and Macrovascular Complications. Available online: https://www.clevelandclinicmeded.com/medicalpubs/diseasemanagement/endocrinology/diabetes-mellitus/#top (accessed on 8 May 2024).
- Rangel, É.B.; Rodrigues, C.O.; de Sá, J.R. Micro- and Macrovascular Complications in Diabetes Mellitus: Preclinical and Clinical Studies. J. Diabetes Res. 2019, 2019, 2161085. [Google Scholar] [CrossRef]
- Singh, P.P.; Mahadi, F.; Roy, A.; Sharma, P. Reactive Oxygen Species, Reactive Nitrogen Species and Antioxidants in Etiopathogenesis of Diabetes Mellitus Type-2. Indian J. Clin. Biochem. 2009, 24, 324–342. [Google Scholar] [CrossRef]
- Rizwan, H.; Kumar, S.; Kumari, G.; Pal, A. High Glucose-Induced Increasing Reactive Nitrogen Species Accumulation Triggered Mitochondrial Dysfunction, Inflammation, and Apoptosis in Keratinocytes. Life Sci. 2023, 312, 121208. [Google Scholar] [CrossRef]
- Domingueti, C.P.; Dusse, L.M.S.A.; Carvalho, M.D.G.; De Sousa, L.P.; Gomes, K.B.; Fernandes, A.P. Diabetes Mellitus: The Linkage Between Oxidative Stress, Inflammation, Hypercoagulability and Vascular Complications. J. Diabetes Complicat. 2016, 30, 738–745. [Google Scholar] [CrossRef]
- Oguntibeju, O.O. Type 2 Diabetes Mellitus, Oxidative stress and Inflammation: Examining the Links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019, 11, 45–63. [Google Scholar] [PubMed]
- Sanchez-Rangel, E.; Inzucchi, S.E. Metformin: Clinical Use in Type 2 Diabetes. Diabetologia 2017, 60, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Hougen, I.; Whitlock, R.H.; Komenda, P.; Rigatto, C.; Clemens, K.K.; Tangri, N. Safety of Add-on Sulfonylurea Therapy in Patients with Type 2 Diabetes Using Metformin: A Population-Based Real-World Study. BMJ Open Diabetes Res. Care 2021, 9, e002352. [Google Scholar] [CrossRef]
- Wentling, G.; Kim, E.H. Glucophage® (Metformin Hydrochloride), the Wonder Drug: A Biguanide Class Treatment of Type 2 Diabetes. Monarch. Rev. 2017, 4, 112–128. [Google Scholar]
- Nabrdalik, K.; Hendel, M.; Irlik, K.; Kwiendacz, H.; Łoniewski, I.; Bucci, T.; Alam, U.; Lip, G.Y.H.; Gumprecht, J.; Skonieczna-Żydecka, K. Gastrointestinal Adverse Events of Metformin Treatment in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis with Meta-Regression of Observational Studies. BMC Endocr. Disord. 2024, 24, 206. [Google Scholar] [CrossRef] [PubMed]
- Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and Type 2 Diabetes Mellitus: Prevention and Treatment. Nutrients 2019, 11, 1837. [Google Scholar] [CrossRef]
- Pang, G.M.; Li, F.X.; Yan, Y.; Zhang, Y.; Kong, L.L.; Zhu, P.; Wang, K.F.; Zhang, F.; Liu, B.; Lu, C. Herbal Medicine in the Treatment of Patients with Type 2 Diabetes Mellitus. Chin. Med. J. 2019, 132, 78–85. [Google Scholar] [CrossRef]
- Kumar, S.; Mittal, A.; Babu, D.; Mittal, A. Herbal Medicines for Diabetes Management and Its Secondary Complications. Curr. Diabetes Rev. 2021, 17, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Mokgalaboni, K.; Lebelo, S.L.; Modjadji, P.; Ghaffary, S. Okra Ameliorates Hyperglycaemia in Pre-Diabetic and Type 2 Diabetic Patients: A Systematic Review and Meta-Analysis of the Clinical Evidence. Front. Pharmacol. 2023, 14, 1132650. [Google Scholar] [CrossRef]
- Taha Mohammed, M.; Hussein Alqaisi, Z.; Mohammed Kadhim, S.; Hussein JAL-Qaisi, Z. Positive influence of Portulaca Oleracea L. in rats with type 2 diabetes mellitus. Plant Arch. 2020, 20, 893–897. [Google Scholar]
- Uddin, M.K.; Juraimi, A.S.; Hossain, M.S.; Nahar, M.A.U.; Ali, M.E.; Rahman, M.M. Purslane Weed (Portulaca oleracea): A Prospective Plant Source of Nutrition, Omega-3 Fatty Acid, and Antioxidant Attributes. Sci. World J. 2014, 2014, 951019. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Karkanis, A.; Martins, N.; Ferreira, I.C.F.R. Phytochemical Composition and Bioactive Compounds of Common Purslane (Portulaca oleracea L.) as Affected by Crop Management Practices. Trends Food Sci. Technol. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Portulaca oleracea L.: A Review of Phytochemistry and Pharmacological Effects. BioMed Res. Int. 2015, 2015, 925631. [Google Scholar] [CrossRef]
- Dewanti, F.D.; Pujiasmanto, B.; Sukendah; Yunus, A. Analysis of Ascorbic Acid Content (Vitamin C) of Purslane (Portulaca oleracea L.) at Various Altitudes in East Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2021, 637, 012074. [Google Scholar] [CrossRef]
- Aini, N.S.; Ansori, A.N.M.; Kharisma, V.D.; Syadzha, M.F.; Widyananda, M.H.; Murtadlo, A.A.A.; Probojati, R.T.; Ullah, M.E.; Naw, S.W.; Jakhmola, V.; et al. Potential Roles of Purslane (Portulaca oleracea L.) as Antimetabolic Syndrome: A Review. Pharmacogn. J. 2022, 14, 710–714. [Google Scholar] [CrossRef]
- Tran, T.T.; Bui, P.H.; Thanh, N.P.T.; Hoang, D.M.; Minh, T.N.K. Bioactive Compounds from Portulaca oleracea L. Extract. Chem. Eng. Trans. 2023, 106, 637–642. [Google Scholar] [CrossRef]
- Liu, P.; Lan, X.; Tao, X.; Tian, J.; Ying, X.; Stien, D. A New Alkaloid and Two Organic Acids from Portulaca oleracea L. and Their Bioactivities. Nat. Prod. Res. 2022, 38, 68–77. [Google Scholar] [CrossRef]
- YouGuo, C.; ZongJi, S.; XiaoPing, C. Evaluation of Free Radicals Scavenging and Immunity-Modulatory Activities of Purslane Polysaccharides. Int. J. Biol. Macromol. 2009, 45, 448–452. [Google Scholar] [CrossRef]
- Okafor, I.A.; Ezejindu, D. Phytochemical studies on Portulaca oleraea (purslane) plant. GJBAHS 2014, 3, 132–136. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hassan, S.F.; Ghoneim, A.I.; Ghareeb, D.A.; Nematalla, H.A. Portulaca oleracea L. (Purslane) Improves the Anti-Inflammatory, Antioxidant and Autophagic Actions of Metformin in the Hippocampus of Diabetic Demented Rats. Fitoterapia 2023, 168, 105566. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Vijayakumar, M.; Rao, C.V.; Unnikrishnan, M.K.; Reddy, G.D. Action of Portulaca oleracea against Streptozotocin-Induced Oxidative Stress in Experimental Diabetic Rats. J. Complement. Integr. Med. 2009, 6, 12–18. [Google Scholar] [CrossRef]
- Samarghandian, S.; Borji, A.; Farkhondeh, T. Attenuation of Oxidative Stress and Inflammation by Portulaca oleracea in Streptozotocin-Induced Diabetic Rats. J. Evid. Based Complement. Altern. Med. 2017, 22, 562–566. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Zhou, C.; Zhang, H.; Cheong, M.S.; Tan, Y.; Wang, Y.; Zhang, X.; Yu, H.; Cheang, W.S. Portulaca oleracea L. (Purslane) Extract Protects Endothelial Function by Reducing Endoplasmic Reticulum Stress and Oxidative Stress through AMPK Activation in Diabetic Obese Mice. Antioxidants 2023, 12, 2132. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, B.K.; Schaalan, M.F.; Tolba, A.M. Hypoglycemic and Pancreatic Protective Effects of Portulaca oleracea Extract in Alloxan Induced Diabetic Rats. BMC Complement. Altern. Med. 2017, 17, 37. [Google Scholar] [CrossRef]
- Lee, A.S.; Lee, Y.J.; Lee, S.M.; Yoon, J.J.; Kim, J.S.; Kang, D.G.; Lee, H.S. An Aqueous Extract of Portulaca oleracea Ameliorates Diabetic Nephropathy Through Suppression of Renal Fibrosis and Inflammation in Diabetic Db/Db Mice. Am. J. Chin. Med. 2012, 40, 495–510. [Google Scholar] [CrossRef]
- Sharma, A.; Kaithwas, G.; Vijayakumar, M.; Unnikrishnan, M.K.; Rao, C.V. Antihyperglycemic and antioxidant potential of polysaccharide fraction from portulaca oleracea seeds against streptozotocin-induced diabetes in rats. J. Food Biochem. 2012, 36, 378–382. [Google Scholar] [CrossRef]
- Saad, E.A.; Hassan, H.A.; Ghoneum, M.H.; Alaa El-Dein, M. Edible Wild Plants, Chicory and Purslane, Alleviated Diabetic Testicular Dysfunction, and Insulin Resistance via Suppression 8OHdg and Oxidative Stress in Rats. PLoS ONE 2024, 19, e0301454. [Google Scholar] [CrossRef]
- Oyabambi, A.O.; Aindero, B.B.; Awolola, A.M.; Adebayo, A.Y.; Iluromi, I.B.; Olorunniyi, K.S. Portulaca oleracea (Purslane) Aqueous Extract Reduced the Adverse Metabolic Outcomes and Favored Liraglutide Activities in Streptozotocin-Induced Cardiometabolic Disorders of Male Wistar Rats. Endocr. Metab. Sci. 2024, 16, 100191. [Google Scholar] [CrossRef]
- Dehghan, F.; Soori, R.; Gholami, K.; Abolmaesoomi, M.; Yusof, A.; Muniandy, S.; Heidarzadeh, S.; Farzanegi, P.; Ali azarbayjani, M. Purslane (Portulaca oleracea) Seed Consumption and Aerobic Training Improves Biomarkers Associated with Atherosclerosis in Women with Type 2 Diabetes (T2D). Sci. Rep. 2016, 6, 37819. [Google Scholar] [CrossRef]
- Zakizadeh, E.; Faghihimani, E.; Saneei, P.; Esmaillzadeh, A. The Effect of Purslane Seeds on Biomarkers of Oxidative Stress in Diabetic Patients: A Randomized Controlled Cross-over Clinical Trial. Int. J. Prev. Med. 2015, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Jafari, N.; Shoaibinobarian, N.; Dehghani, A.; Rad, A.; Mirmohammadali, S.N.; Alaeian, M.J.; Hamedi, Y.; Zamani, M.; Goudarzi, M.A.; Asbaghi, O. The Effects of Purslane Consumption on Glycemic Control and Oxidative Stress: A Systematic Review and Dose–Response Meta-analysis. Food Sci. Nutr. 2023, 11, 2530–2546. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zang, X.; Ma, J.; Xu, G. Anti-Diabetic Effect of Portulaca oleracea L. Polysaccharideandits Mechanism in Diabetic Rats. Int. J. Mol. Sci. 2016, 17, 1201. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Mo, F.; Ling, C.; Peng, H.; Gu, W.; Li, M.; Chen, Z. Portulaca oleracea L. Alleviates Liver Injury in Streptozotocin-Induced Diabetic Mice. Drug Des. Dev. Ther. 2018, 12, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Bhatti, J.S.; Bhatti, G.K.; Reddy, P.H. Mitochondrial Dysfunction and Oxidative Stress in Metabolic Disorders—A Step towards Mitochondria Based Therapeutic Strategies. Biochim. Biophys. Acta BBA Mol. Basis Dis. 2017, 1863, 1066–1077. [Google Scholar] [CrossRef]
- Vaziri, N.D. Causal Link between Oxidative Stress, Inflammation, and Hypertension. Iran. J. Kidney Dis. 2008, 2, 1–10. [Google Scholar]
- Lugrin, J.; Rosenblatt-Velin, N.; Parapanov, R.; Liaudet, L. The Role of Oxidative Stress during Inflammatory Processes. Biol. Chem. 2014, 395, 203–230. [Google Scholar] [CrossRef]
- Chatterjee, S. Chapter Two—Oxidative Stress, Inflammation, and Disease. In Oxidative Stress and Biomaterials; Dziubla, T., Butterfield, D.A., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 35–58. ISBN 978-0-12-803269-5. [Google Scholar]
- Saeed Majeed, H.M.; Abdul-Hassan Abbas, A.; Shakir Khudair, M. The Role of TNFα in Type2 Diabetes Mellitus. Bionatura 2022, 7, 32. [Google Scholar] [CrossRef]
- Rezaee, A.; Rahmanian, P.; Nemati, A.; Sohrabifard, F.; Karimi, F.; Elahinia, A.; Ranjbarpazuki, A.; Lashkarbolouki, R.; Dezfulian, S.; Zandieh, M.A.; et al. NF-ĸB Axis in Diabetic Neuropathy, Cardiomyopathy and Nephropathy: A Roadmap from Molecular Intervention to Therapeutic Strategies. Heliyon 2024, 10, e29871. [Google Scholar] [CrossRef]
- Kumar, A.; Negi, G.; Sharma, S.S. Suppression of NF-ΚB and NF-ΚB Regulated Oxidative Stress and Neuroinflammation by BAY 11-7082 (IκB Phosphorylation Inhibitor) in Experimental Diabetic Neuropathy. Biochimie 2012, 94, 1158–1165. [Google Scholar] [CrossRef]
- Hayden, M.S.; Ghosh, S. Regulation of NF-ΚB by TNF Family Cytokines. Semin. Immunol. 2014, 26, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, e17023. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Wang, L.; Guo, M.; He, J.; Deng, Y.; Liu, J.; Wei, Y.; Wang, C.; Zhou, J.; Ma, L.; et al. Clinically Relevant High Levels of Human C-Reactive Protein Induces Endothelial Dysfunction and Hypertension by Inhibiting the AMPK-ENOS Axis. Clin. Sci. 2020, 134, 1805–1819. [Google Scholar] [CrossRef]
- Salminen, A.; Hyttinen, J.M.T.; Kaarniranta, K. AMP-Activated Protein Kinase Inhibits NF-ΚB Signaling and Inflammation: Impact on Healthspan and Lifespan. J. Mol. Med. 2011, 89, 667–676. [Google Scholar] [CrossRef]
- Chen, X.; Li, X.; Zhang, W.; He, J.; Xu, B.; Lei, B.; Wang, Z.; Cates, C.; Rousselle, T.; Li, J. Activation of AMPK Inhibits Inflammatory Response during Hypoxia and Reoxygenation through Modulating JNK-Mediated NF-ΚB Pathway. Metabolism 2018, 83, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Mancini, S.J.; White, A.D.; Bijland, S.; Rutherford, C.; Graham, D.; Richter, E.A.; Viollet, B.; Touyz, R.M.; Palmer, T.M.; Salt, I.P. Activation of AMP-Activated Protein Kinase Rapidly Suppresses Multiple pro-Inflammatory Pathways in Adipocytes Including IL-1 Receptor-Associated Kinase-4 Phosphorylation. Mol. Cell. Endocrinol. 2017, 440, 44–56. [Google Scholar] [CrossRef]
- Miao, L.; Tao, H.; Peng, Y.; Wang, S.; Zhong, Z.; El-Seedi, H.; Dragan, S.; Zengin, G.; Cheang, W.S.; Wang, Y.; et al. The Anti-Inflammatory Potential of Portulaca oleracea L. (Purslane) Extract by Partial Suppression on NF-ΚB and MAPK Activation. Food Chem 2019, 290, 239–245. [Google Scholar] [CrossRef]
- Jafari, N.; Bahreini, N.; Dehghani, A.; Lak, Y.; Mirmohammadali, S.N.; Samavat, S.; Shami, A.; Karimizand, M.; Goudarzi, M.A.; Asbaghi, O. The Effects of Purslane Consumption on Lipid Profile and C-reactive Protein: A Systematic Review and Dose–Response Meta-analysis. Food Sci. Nutr. 2023, 11, 6728–6748. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Chapter 15—Analysis of Alkaloids (Indole Alkaloids, Isoquinoline Alkaloids, Tropane Alkaloids). In Recent Advances in Natural Products Analysis; Sanches Silva, A., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–567. ISBN 978-0-12-816455-6. [Google Scholar]
- Rodrigues, K.F.; Pietrani, N.T.; Bosco, A.A.; Campos, F.M.F.; Sandrim, V.C.; Gomes, K.B. IL-6, TNF-α, and IL-10 Levels/Polymorphisms and Their Association with Type 2 Diabetes Mellitus and Obesity in Brazilian Individuals. Arch. Endocrinol. Metab. 2017, 61, 438–446. [Google Scholar] [CrossRef]
- Yaghini, N.; Mahmoodi, M.; Asadikaram, G.R.; Hassanshahi, G.H.; Khoramdelazad, H.; Kazemi Arababadi, M. Serum Levels of Interleukin 10 (IL-10) in Patients with Type 2 Diabetes. Iran. Red Crescent Med. J. 2011, 13, 752. [Google Scholar] [CrossRef] [PubMed]
- Ghorani, V.; Saadat, S.; Khazdair, M.R.; Gholamnezhad, Z.; El-Seedi, H.; Boskabady, M.H. Phytochemical Characteristics and Anti-Inflammatory, Immunoregulatory, and Antioxidant Effects of Portulaca oleracea L.: A Comprehensive Review. Evid. Based Complement. Altern. Med. 2023, 2023, 2075444. [Google Scholar] [CrossRef] [PubMed]
- Charkhi Sahl Abad, A.; Gram, A.; Soori, R.; Akbarnejad, A.; Azizi Ghuchan, F.; Zare, M.M.; Hackney, A.C.; Hackney, A.C. Purslane Supplementation Lowers Oxidative Stress, Inflammatory and Muscle Damage Biomarkers after High-Intensity Intermittent Exercise in Female Runners. Balt. J. Health Phys. Act. 2021, 13, 17–27. [Google Scholar] [CrossRef]
- Aziz, W.M.; Ahmed, S.A.; Shaker, S.E.; Fayed, D.B.; Metwally, N.S.; Shawky, H. Portulaca Oleracea L Seed Extracts Counteract Diabetic Nephropathy through SDF-1/IL10/PPARγ–Mediated Tuning of Keap1/Nrf2 and NF-ΚB Transcription in Sprague Dawley Rats. Diabetol. Metab. Syndr. 2024, 16, 119. [Google Scholar] [CrossRef] [PubMed]
- Ning, K.; Duan, Y.; Tong, W.; Chen, Y.; Zhang, Q.; Xie, Q.; Xiang, H. Protective Effects of Different Molecular Weights of Purslane (Portulaca oleracea L.) Aqueous Extract on DSS-Induced Ulcerative Colitis in Mice. Antioxidants 2023, 12, 1400. [Google Scholar] [CrossRef]
- Aouacheri, O.; Saka, S.; Krim, M.; Messaadia, A.; Maidi, I. The Investigation of the Oxidative Stress-Related Parameters in Type 2 Diabetes Mellitus. Can. J. Diabetes 2015, 39, 44–49. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Several Lines of Antioxidant Defense against Oxidative Stress: Antioxidant Enzymes, Nanomaterials with Multiple Enzyme-Mimicking Activities, and Low-Molecular-Weight Antioxidants. Arch. Toxicol. 2024, 98, 1323–1367. [Google Scholar] [CrossRef]
- Endale, H.T.; Tesfaye, W.; Mengstie, T.A. ROS Induced Lipid Peroxidation and Their Role in Ferroptosis. Front. Cell Dev. Biol. 2023, 11, 1226044. [Google Scholar] [CrossRef]
- Soliman, G.Z.A. Blood Lipid Peroxidation (Superoxide Dismutase, Malondialdehyde, Glutathione) Levels in Egyptian Type 2 Diabetic Patients. Singap. Med. J. 2008, 49, 129–136. [Google Scholar]
- Niki, E.; Yoshida, Y.; Saito, Y.; Noguchi, N. Lipid Peroxidation: Mechanisms, Inhibition, and Biological Effects. Biochem. Biophys. Res. Commun. 2005, 338, 668–676. [Google Scholar] [CrossRef]
- Turk, H.M.; Sevinc, A.; Camci, C.; Cigli, A.; Buyukberber, S.; Savli, H.; Bayraktar, N. Plasma Lipid Peroxidation Products and Antioxidant Enzyme Activities in Patients with Type 2 Diabetes Mellitus. Acta Diabetol. 2002, 39, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.J. Study on Total Antioxidant Status in Relation to Oxidative Stress in Type 2 Diabetes Mellitus. J. Clin. Diagn. Res. 2014, 8, 108–110. [Google Scholar] [CrossRef] [PubMed]
Database | Exact Search | Retrieved Records |
---|---|---|
PubMed | ((portulaca oleracea[MeSH Terms]) OR (purslane[MeSH Terms])) AND (type 2 diabetes[MeSH Terms]) | 6 |
Scopus | -ABS-KEY (purslane) OR TITLE-ABS-KEY (portulaca AND oleracea) AND TITLE-ABS-KEY (type 2 diabetes AND mellitus) OR TITLEABS-KEY (type 2 diabetes)) AND (LIMIT-TO (DOCTYPE, “ar”)) | 24 |
Authors & Reference | Country | Experimental Model | Intervention and Duration | Summary of Findings |
---|---|---|---|---|
Hassan et al. [33] | Egypt | STZ-induced diabetes in adult male Sprague-Dawley rats. | Treated with 100 mg/kg ethanolic extract of purslane for 4 weeks. | TBARS level was decreased after treatment with purslane. Hippocampal GSH and IL-10 levels were increased after treatment with purslane. Reduced levels of TNF-α after treatment with purslane. |
Sharma et al. [34] | India | STZ-induced diabetes in Sprague-Dawley rats and albino mice. | Treated with 100 and 250 mg/kg ethanolic extract of purslane for 3 weeks. | Treatment with purslane returned the activity of enzymatic antioxidants SOD and CAT to normal. Treatment decreased TBARS and increased GSH in the liver and kidney. |
Samarghandian et al. [35] | Iran | STZ-induced Wistar albino rats. | Treated with either 100, 200 or 400 mg/kg aqueous extract of purslane for 4 weeks. | 400 mg of purslane decreased serum IL-6 and MDA and increased GSH and TAC. 200 mg of purslane reduced serum levels of TNF-α and increased GSH. |
Miao et al. [36] | China | HFD induced Male C57BL/6J mice and Sprague Dawley rats. | Treated with 400 mg/kg ethanolic extract of purslane for 4 weeks. | Purslane extract hindered high ROS levels in the aorta. |
Ramadan et al. [37] | Egypt | Alloxan monohydrate induced diabetes in Wistar rats. | Treated with 250 mg/kg aqueous extract of purslane for 4 weeks. | Purslane extract reduced TNF-α and IL-6 levels. |
Taha Mohammed et al. [22] | Iraq | STZ-induced diabetes in Wistar albino rats. | Treated with 200 mg/kg of aqueous extract of purslane for 3 weeks. | Purslane extract increased the activity of enzymatic antioxidants SOD and CAT. |
Lee et al. [38] | Republic of Korea | Male C57BL/KsJ-db/db mice and wild-type C57BL/6J mice. | Treated with 300 mg/kg of aqueous extract of purslane for 10 weeks. | Purslane extract reduced concentration levels of NF-κβ p65. NF-κβ-DNA binding in renal nuclear extracts was reduced after treatment. |
Sharma et al. [39] | India | STZ-induced diabetes in Sprague Dawley rats. | Treated with 25 and 50 mg/kg ethanolic extract of purslane polysaccharide fraction (PPF) for 3 weeks. | PPF decreased tissue TBARS and increased tissue GSH and GPx activity. PPFT increased the activity of enzymatic antioxidants CAT and SOD. |
Saad et al. [40] | Egypt | STZ-induced diabetes in Wistar rats. | Treated with 200 mg/kg ethanolic extract of purslane for 30 days. | Purslane decreased MDA and increased GSH, TAC, SOD, and CAT activity. Reduced CRP, IL-6, and TNF-α levels. |
Oyabambi et al. [41] | Nigeria | STZ-induced diabetes in Wistar rats. | Treated with 400 mg/k ethanolic extract of purslane for 4 weeks. | Purslane decreased TNF-α and IL-6 and increased GSH levels. |
Author | Study Design | Country | Population | Age (Years) | BMI | Intervention and Duration | Summary of Findings |
---|---|---|---|---|---|---|---|
Zakizadeh et al. [43] | Cross-over randomised controlled clinical trial | Iran | 40 T2D patients. | 35–65 | Not reported | 10 g of purslane seed powder daily with 240 cc low-fat yoghurt for 5 weeks. | Purslane showed no significant effect on plasma TAC and MDA levels after treatment. |
Dehghan et al. [42] | Double-blind study | Iran | 196 T2D patients. | 52.08 ± 3.45 | 29.5 ± 6.5 | Patients consumed 2.5 g of purslane seed powder with lunch and 5 g with dinner for 16 weeks. | The protein and mRNA concentration levels of NF-κβ and CRP decreased after 16 weeks of treatment. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nkhumeleni, Z.; Phoswa, W.N.; Mokgalaboni, K. Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 12276. https://doi.org/10.3390/ijms252212276
Nkhumeleni Z, Phoswa WN, Mokgalaboni K. Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review. International Journal of Molecular Sciences. 2024; 25(22):12276. https://doi.org/10.3390/ijms252212276
Chicago/Turabian StyleNkhumeleni, Zikho, Wendy N. Phoswa, and Kabelo Mokgalaboni. 2024. "Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review" International Journal of Molecular Sciences 25, no. 22: 12276. https://doi.org/10.3390/ijms252212276
APA StyleNkhumeleni, Z., Phoswa, W. N., & Mokgalaboni, K. (2024). Purslane Ameliorates Inflammation and Oxidative Stress in Diabetes Mellitus: A Systematic Review. International Journal of Molecular Sciences, 25(22), 12276. https://doi.org/10.3390/ijms252212276