Collateral Sensitivity to β-Lactam Antibiotics in Evolved Apramycin-Resistant MRSA
Abstract
:1. Introduction
2. Results
2.1. MIC Determinations of MRSA Clinical Isolates
2.2. Experimental Induction of Apramycin Resistance
2.3. Collateral Sensitivity Between Apramycin and β-Lactams
2.4. Collateral Sensitivity Associated with a Fitness Cost
2.5. Evaluation of β-Lactamase Activity
2.6. Relative Expression of mecA
2.7. Resistance in Evolved Strains Influences Proton Motive Force and Efflux Pumps
3. Discussion
4. Methods and Materials
4.1. Bacterial Strains and Background Information
4.2. Antimicrobial Susceptibility Tests
4.3. In Vitro Induction of Apramycin Resistance
4.4. Turbidimetric Assays
4.5. Biofilm Assays
4.6. Morphological Analysis by Transmission Electron Microscopy (TEM)
4.7. Evaluation of β-Lactamase Activity Using the Nitrocefin Test
4.8. DiSC3 (5) Assays
4.9. ROS and ΔpH Measurements
4.10. qRT-PCR Assays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bardiau, M.; Yamazaki, K.; Duprez, J.N.; Taminiau, B.; Mainil, J.G.; Ote, I. Genotypic and phenotypic characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolated from milk of bovine mastitis. Lett. Appl. Microbiol. 2013, 57, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Scott, G.M.; Thomson, R.; Malone-Lee, J.; Ridgway, G.L. Cross-Infection between animals and man: Possible feline transmission of Staphylococcus aureus infection in humans? J. Hosp. Infect. 1988, 12, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Chambers, H.F.; Deleo, F.R. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat. Rev. Microbiol. 2009, 7, 629–641. [Google Scholar] [CrossRef]
- Allison, K.R.; Brynildsen, M.P.; Collins, J.J. Metabolite-Enabled eradication of bacterial persisters by aminoglycosides. Nature 2011, 473, 216–220. [Google Scholar] [CrossRef]
- Zhen, X.; Lundborg, C.S.; Zhang, M.; Sun, X.; Li, Y.; Hu, X.; Gu, S.; Gu, Y.; Wei, J.; Dong, H. Clinical and economic impact of methicillin-resistant Staphylococcus aureus: A multicentre study in China. Sci. Rep. 2020, 10, 3900. [Google Scholar] [CrossRef]
- Miyakis, S.; Brentnall, S.; Masso, M.; Reynolds, G.; Byrne, M.K.; Newton, P.; Crawford, S.; Fish, J.; Nicholas, B.; Hill, T.; et al. Key predictors and burden of meticillin-Resistant Staphylococcus aureus infection in comparison with meticillin-susceptible S. aureus infection in an Australian hospital setting. J. Hosp. Infect. 2022, 129, 41–48. [Google Scholar] [CrossRef]
- Inagaki, K.; Lucar, J.; Blackshear, C.; Hobbs, C.V. Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Bacteremia: Nationwide Estimates of 30-Day Readmission, In-Hospital Mortality, Length of Stay, and Cost in the United States. Clin. Infect. Dis. 2019, 69, 2112–2118. [Google Scholar] [CrossRef]
- Kaushik, A.; Kest, H.; Sood, M.; Steussy, B.W.; Thieman, C.; Gupta, S. Biofilm Producing Methicillin-Resistant Staphylococcus aureus (MRSA) Infections in Humans: Clinical Implications and Management. Pathogens 2024, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers. 2018, 4, 18033. [Google Scholar] [CrossRef]
- Ali, A.B.; Al-Johani, I.; Al-Shamrani, J.M.; Musamed, A.H.; Al-Otaibi, B.G.; Almazmomi, K.; Yusnoraini, Y.N. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J. Biol. Sci. 2023, 30, 103604. [Google Scholar]
- Dharmaratne, P.; Wang, B.; Wong, R.; Chan, B.; Lau, K.M.; Ke, M.R.; Lau, C.; Ng, D.; Fung, K.P.; Ip, M. Monosubstituted tricationic Zn(II) phthalocyanine enhances antimicrobial photodynamic inactivation (aPDI) of methicillin-resistant Staphylococcus aureus (MRSA) and cytotoxicity evaluation for topical applications: In vitro and in vivo study. Emerg. Microbes. Infect. 2020, 9, 1628–1637. [Google Scholar] [CrossRef] [PubMed]
- Plumet, L.; Ahmad-Mansour, N.; Dunyach-Remy, C.; Kissa, K.; Sotto, A.; Lavigne, J.P.; Costechareyre, D.; Molle, V. Bacteriophage Therapy for Staphylococcus aureus Infections: A Review of Animal Models, Treatments, and Clinical Trials. Front. Cell Infect. Microbiol. 2022, 12, 907314. [Google Scholar] [CrossRef]
- Rose, W.; Fantl, M.; Geriak, M.; Nizet, V.; Sakoulas, G. Current Paradigms of Combination Therapy in Methicillin-Resistant Staphylococcus aureus (MRSA) Bacteremia: Does it Work, Which Combination, and For Which Patients? Clin. Infect. Dis. 2021, 73, 2353–2360. [Google Scholar] [CrossRef]
- Rand, K.H.; Houck, H.J. Synergy of daptomycin with oxacillin and other beta-lactams against methicillin-resistant Staphylococcus aureus Antimicrob. Agents Chemother. 2004, 48, 2871–2875. [Google Scholar] [CrossRef] [PubMed]
- Casapao, A.M.; Jacobs, D.M.; Bowers, D.R.; Beyda, N.D.; Dilworth, T.J. Early Administration of Adjuvant Beta-Lactam Therapy in Combination with Vancomycin among Patients with Methicillin-Resistant Staphylococcus aureus Bloodstream Infection: A Retrospective, Multicenter Analysis. Pharmacotherapy 2017, 37, 1347–1356. [Google Scholar] [CrossRef]
- Weigel, L.M.; Clewell, D.B.; Gill, S.R.; Clark, N.C.; Mcdougal, L.K.; Flannagan, S.E.; Kolonay, J.F.; Shetty, J.; Killgore, G.E.; Tenover, F.C. Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 2003, 302, 1569–1571. [Google Scholar] [CrossRef]
- Durao, P.; Balbontin, R.; Gordo, I. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance. Trends Microbiol. 2018, 26, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Diaz, A.C.; Stoebel, D.M.; Flynn, K.; Knapp, E.; Dillon, M.M.; Wunsche, A.; Hatcher, P.J.; Moore, F.B.; Cooper, V.S.; et al. Benefit of transferred mutations is better predicted by the fitness of recipients than by their ecological or genetic relatedness. Proc. Natl. Acad. Sci. USA 2016, 113, 5047–5052. [Google Scholar] [CrossRef] [PubMed]
- Szybalski, W.; Bryson, V. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 1952, 64, 489–499. [Google Scholar] [CrossRef]
- Lazar, V.; Pal, S.G.; Spohn, R.; Nagy, I.; Horvath, B.; Hrtyan, M.; Busa-Fekete, R.; Bogos, B.; Mehi, O.; Csorgo, B.; et al. Bacterial evolution of antibiotic hypersensitivity. Mol. Syst. Biol. 2013, 9, 700. [Google Scholar] [CrossRef]
- Ma, X.; Xi, W.; Yang, D.; Zhao, L.; Yu, W.; He, Y.; Ni, W.; Gao, Z. Collateral sensitivity between tetracyclines and aminoglycosides constrains resistance evolution in carbapenem-resistant Klebsiella pneumoniae. Drug Resist. Update 2023, 68, 100961. [Google Scholar] [CrossRef]
- Gonzales, P.R.; Pesesky, M.W.; Bouley, R.; Ballard, A.; Biddy, B.A.; Suckow, M.A.; Wolter, W.R.; Schroeder, V.A.; Burnham, C.A.; Mobashery, S.; et al. Synergistic, collaterally sensitive beta-lactam combinations suppress resistance in MRSA. Nat. Chem. Biol. 2015, 11, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Higgins, C.E.; Kastner, R.E. Nebramycin, a new broad-spectrum antibiotic complex. II. Description of Streptomyces tenebrarius. Antimicrob. Agents Chemother. 1967, 7, 324–331. [Google Scholar] [PubMed]
- Stark, W.M.; Hoehn, M.M.; Knox, N.G. Nebramycin, a new broad-spectrum antibiotic complex. I. Detection and biosynthesis. Antimicrob. Agents Chemother. 1967, 7, 314–323. [Google Scholar] [PubMed]
- Ishikawa, M.; Garcia-Mateo, N.; Cusak, A.; Lopez-Hernandez, I.; Fernandez-Martinez, M.; Muller, M.; Ruttiger, L.; Singer, W.; Lowenheim, H.; Kosec, G.; et al. Lower ototoxicity and absence of hidden hearing loss point to gentamicin C1a and apramycin as promising antibiotics for clinical use. Sci. Rep. 2019, 9, 2410. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Shi, X.; Lv, J.; Niu, S.; Cheng, S.; Du, H.; Yu, F.; Tang, Y.W.; Kreiswirth, B.N.; Zhang, H.; et al. In Vitro Activity of Apramycin Against Carbapenem-Resistant and Hypervirulen Klebsiella pneumoniae Isolates. Front. Microbiol. 2020, 11, 425. [Google Scholar] [CrossRef] [PubMed]
- Juhas, M.; Widlake, E.; Teo, J.; Huseby, D.L.; Tyrrell, J.M.; Polikanov, Y.S.; Ercan, O.; Petersson, A.; Cao, S.; Aboklaish, A.F.; et al. In vitro activity of apramycin against multidrug-, carbapenem- and aminoglycoside-resistant Enterobacteriaceae and Acinetobacter baumannii. J. Antimicrob. Chemother. 2019, 74, 944–952. [Google Scholar] [CrossRef]
- Truelson, K.A.; Brennan-Krohn, T.; Smith, K.P.; Kirby, J.E. Evaluation of apramycin activity against methicillin-resistant, methicillin-sensitive, and vancomycin-intermediate Staphylococcus aureus clinical isolates. Diagn. Microbiol. Infect Dis. 2018, 92, 168–171. [Google Scholar] [CrossRef]
- Kilic, U.; Koroglu, M.; Olmez, M.; Altindis, M. Investigation of the In Vitro Effectiveness of Aztreonam/Avibactam, Colistin/Apramycin, and Meropenem/Apramycin Combinations Against Carbapenemase-Producing, Extensively Drug-Resistant Klebsiella pneumoniae Strains. Microb. Drug Resist. 2020, 26, 1291–1297. [Google Scholar] [CrossRef]
- Costa, S.S.; Ferreira, C.; Ribeiro, R.; Fessler, A.T.; Schink, A.K.; Kadlec, K.; Kaspar, H.; Amaro, A.; Albuquerque, T.; Abrantes, P.; et al. Proposal of Epidemiological Cutoff Values for Apramycin 15 mug and Florfenicol 30 mug Disks Applicable to Staphylococcus aureus. Microb. Drug. Resist. 2021, 27, 1555–1559. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Skov, R.L. Evaluation of ceftiofur and cefquinome for phenotypic detection of methicillin resistance in Staphylococcus aureus using disk diffusion testing and MIC-determinations. Vet. Microbiol. 2010, 140, 176–179. [Google Scholar] [CrossRef]
- Farha, M.A.; Verschoor, C.P.; Bowdish, D.; Brown, E.D. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Chem. Biol. 2013, 20, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Styers, D.; Sheehan, D.J.; Hogan, P.; Sahm, D.F. Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States. Ann. Clin. Microbiol. Antimicrob. 2006, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.; Trebosc, V.; Kemmer, C.; Rosenstiel, P.; Beardmore, R.; Schulenburg, H.; Jansen, G. Alternative Evolutionary Paths to Bacterial Antibiotic Resistance Cause Distinct Collateral Effects. Mol. Biol. Evol. 2017, 34, 2229–2244. [Google Scholar] [CrossRef] [PubMed]
- Roemhild, R.; Andersson, D.I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 2021, 17, e1009172. [Google Scholar] [CrossRef]
- Baym, M.; Stone, L.K.; Kishony, R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 2016, 351, aad3292. [Google Scholar] [CrossRef]
- Yeh, P.J.; Hegreness, M.J.; Aiden, A.P.; Kishony, R. Drug interactions and the evolution of antibiotic resistance. Nat. Rev. Microbiol. 2009, 7, 460–466. [Google Scholar] [CrossRef]
- Drusano, G.L.; Liu, W.; Fregeau, C.; Kulawy, R.; Louie, A. Differing effects of combination chemotherapy with meropenem and tobramycin on cell kill and suppression of resistance of wild-type Pseudomonas aeruginosa PAO1 and its isogenic MexAB efflux pump-overexpressed mutant. Antimicrob. Agents Chemother. 2009, 53, 2266–2273. [Google Scholar] [CrossRef]
- Chait, R.; Shrestha, S.; Shah, A.K.; Michel, J.B.; Kishony, R. A differential drug screen for compounds that select against antibiotic resistance. PLoS ONE 2010, 5, e15179. [Google Scholar] [CrossRef]
- Andersson, D.I.; Levin, B.R. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 1999, 2, 489–493. [Google Scholar] [CrossRef]
- Nagaev, I.; Bjorkman, J.; Andersson, D.I.; Hughes, D. Biological cost and compensatory evolution in fusidic acid-resistant Staphylococcus aureus. Mol. Microbiol. 2001, 40, 433–439. [Google Scholar] [CrossRef]
- Von Eiff, C. Staphylococcus aureus small colony variants: A challenge to microbiologists and clinicians. Int. J. Antimicrob. Agents 2008, 31, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef]
- Mikkelsen, K.; Sirisarn, W.; Alharbi, O.; Alharbi, M.; Liu, H.; Nohr-Meldgaard, K.; Mayer, K.; Vestergaard, M.; Gallagher, L.A.; Derrick, J.P.; et al. The Novel Membrane-Associated Auxiliary Factors AuxA and AuxB Modulate beta-lactam Resistance in MRSA by stabilizing Lipoteichoic Acids. Int. J. Antimicrob. Agents 2021, 57, 106283. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, A.; Thanert, R.; Burnham, C.D.; Dantas, G. In vitro activity of meropenem/piperacillin/tazobactam triple combination therapy against clinical isolates of Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus pseudintermedius and vancomycin-resistant Enterococcus spp. Int. J. Antimicrob. Agents 2020, 55, 105864. [Google Scholar] [CrossRef]
- Chambers, H.F. Methicillin resistance in staphylococci: Molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 1997, 10, 781–791. [Google Scholar] [CrossRef]
- Lade, H.; Kim, J.S. Molecular Determinants of Beta-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics 2023, 12, 1362. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Tiwari, A.; Varadwaj, P. An Extensive Review on Beta-Lactamase Enzymes and Their Inhibitors. Curr. Med. Chem. 2023, 30, 783–808. [Google Scholar] [CrossRef]
- Azimi, L.; Rastegar, L.A. Collateral sensitivity between aminoglycosides and beta-lactam antibiotics depends on active proton pumps. Microb. Pathog. 2017, 112, 122–125. [Google Scholar] [CrossRef]
- Yang, B.; Tong, Z.; Shi, J.; Wang, Z.; Liu, Y. Bacterial proton motive force as an unprecedented target to control antimicrobial resistance. Med Res Rev. 2023, 43, 1068–1090. [Google Scholar] [CrossRef]
- Mitchell, P. Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 1961, 191, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Mates, S.M.; Eisenberg, E.S.; Mandel, L.J.; Patel, L.; Kaback, H.R.; Miller, M.H. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 1982, 79, 6693–6697. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Wei, X.; Jin, Y.; Bai, F.; Cheng, Z.; Chen, S.; Pan, X.; Wu, W. Development of Resistance to Eravacycline by Klebsiella pneumoniae and Collateral Sensitivity-Guided Design of Combination Therapies. Microbiol. Spectr. 2022, 10, e0139022. [Google Scholar] [CrossRef] [PubMed]
- Fessler, A.T.; Kadlec, K.; Schwarz, S. Novel apramycin resistance gene apmA in bovine and porcine methicillin-resistant Staphylococcus aureus ST398 isolates. Antimicrob. Agents Chemother. 2011, 55, 373–375. [Google Scholar] [CrossRef]
- Li, S.M.; Zhou, Y.F.; Li, L.; Fang, L.X.; Duan, J.H.; Liu, F.R.; Liang, H.Q.; Wu, Y.T.; Gu, W.Q.; Liao, X.P.; et al. Characterization of the Multi-Drug Resistance Gene cfr in Methicillin-Resistant Staphylococcus aureus (MRSA) Strains Isolated from Animals and Humans in China. Front. Microbiol. 2018, 9, 2925. [Google Scholar] [CrossRef]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2024.
Strains | MIC (mg/L) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AP | CEQ | AMP | CZ | CTR | CTX | CPM | OXA | |||||||||||||||||
W | A | F | W | A | F | W | A | F | W | A | F | W | A | F | W | A | F | W | A | F | W | A | F | |
N5 | 8 | 256 | 32 | 8 | 4 | −2 | 128 | 64 | −2 | 2 | 1 | −2 | 16 | 8 | −2 | 32 | 4 | −8 | 16 | 4 | −4 | 64 | 32 | −2 |
FS1Z21 | 4 | 256 | 64 | 8 | 2 | −4 | 64 | 16 | −4 | 2 | 0.5 | −4 | 32 | 1 | −32 | 8 | 4 | −2 | 8 | 16 | 2 | 64 | 64 | 0 |
161813 | 16 | 256 | 16 | 32 | 32 | 0 | 32 | 256 | 8 | 256 | 32 | −8 | 256 | 64 | −4 | 256 | 8 | −32 | 256 | 16 | −16 | 256 | 128 | −2 |
HB127 | 16 | 256 | 16 | 2 | 2 | 0 | 256 | 16 | −16 | 2 | 1 | −2 | 8 | 4 | −2 | 8 | 2 | −4 | 8 | 8 | 0 | 8 | 64 | 8 |
HB122 | 1 | 32 | 32 | 2 | 2 | 0 | 2 | 0.5 | −4 | 32 | 1 | −32 | 256 | 4 | −64 | 256 | 4 | −64 | 64 | 1 | −64 | 16 | 1 | −16 |
SZX7 | 16 | 256 | 16 | 16 | 32 | 2 | 256 | 64 | −4 | 32 | 4 | −8 | 128 | 256 | 2 | 32 | 32 | 0 | 32 | 32 | 0 | 64 | 32 | −2 |
2Z63 | 8 | 256 | 32 | 32 | 128 | 4 | 256 | 256 | 0 | 64 | 64 | 0 | 256 | 256 | 0 | 64 | 32 | −2 | 64 | 128 | 2 | 128 | 128 | 0 |
HB112 | 0.5 | 32 | 64 | 32 | 0.5 | −64 | 64 | 0.5 | −128 | 256 | 2 | −128 | 256 | 2 | −128 | 256 | 1 | −256 | 256 | 1 | −256 | 0.5 | 0.5 | 0 |
ATCC 43300 | 8 | 256 | 32 | 4 | 2 | −2 | 2 | 0.5 | −4 | 2 | 1 | −2 | 8 | 4 | −2 | 2 | 2 | 0 | 4 | 1 | −4 | 16 | 4 | −4 |
5ZX7 | 1 | 8 | 8 | 2 | 1 | −2 | 64 | 1 | −64 | 128 | 2 | −64 | 128 | 4 | −32 | 128 | 4 | −32 | 128 | 2 | −64 | 128 | 1 | −128 |
Gene | Primer |
---|---|
mecA | F: GGCCAATACAGGAACAGC |
R: GGAACGAAGGTATCATCTTGTAC | |
16S rRNA | F: GCTCGTGTCGTGAGATGTTGG |
R: TTTCGCTGCCCTTTGTATTGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Wu, S.; Liu, J.; Li, C.; Zheng, M.; Li, F.; Zhang, Y.; Wu, Y.; Yu, Y. Collateral Sensitivity to β-Lactam Antibiotics in Evolved Apramycin-Resistant MRSA. Int. J. Mol. Sci. 2024, 25, 12292. https://doi.org/10.3390/ijms252212292
Wu J, Wu S, Liu J, Li C, Zheng M, Li F, Zhang Y, Wu Y, Yu Y. Collateral Sensitivity to β-Lactam Antibiotics in Evolved Apramycin-Resistant MRSA. International Journal of Molecular Sciences. 2024; 25(22):12292. https://doi.org/10.3390/ijms252212292
Chicago/Turabian StyleWu, Jingjing, Shiqian Wu, Juan Liu, Changmin Li, Mei Zheng, Fuhao Li, Yan Zhang, Yashuang Wu, and Yang Yu. 2024. "Collateral Sensitivity to β-Lactam Antibiotics in Evolved Apramycin-Resistant MRSA" International Journal of Molecular Sciences 25, no. 22: 12292. https://doi.org/10.3390/ijms252212292
APA StyleWu, J., Wu, S., Liu, J., Li, C., Zheng, M., Li, F., Zhang, Y., Wu, Y., & Yu, Y. (2024). Collateral Sensitivity to β-Lactam Antibiotics in Evolved Apramycin-Resistant MRSA. International Journal of Molecular Sciences, 25(22), 12292. https://doi.org/10.3390/ijms252212292