Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Subjects
2.2. mRNA Signatures Contributing to AD Susceptibility via Logistic Regression
2.3. mRNAs Signatures Differentially Expressed Between Comparison Groups
2.4. mRNAs Signatures Modifying ADAOO
2.5. mRNAs Signatures Identified via ML
2.6. ML-Based Predictive Framework of AD Diagnosis
2.7. Feature Selection and Model Refinement for AD Diagnosis
2.8. ML-Based Predictive Framework for ADAOO
2.9. Refining the ML-Based Model for ADAOO Prediction
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Neuropsychological Assessment
4.3. RNA Isolation and Extraction
4.4. mRNA Microarray Study
4.4.1. Quality Control
4.4.2. Hybridization and Microarray Scanning
4.4.3. mRNA Microarray and Data Normalization
4.5. Identification of mRNAs Conferring Susceptibility to AD
4.6. mRNA Differentially Expressed Between AD Groups
4.7. mRNA Associated with ADAOO
4.8. Identification of mRNA Signatures Relevant to AD and ADAOO Using ML
4.9. ML-Based Predictive Framework with mRNA Signatures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Better, M.A. 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [Google Scholar] [CrossRef]
- Greene, A.N.; Solomon, M.B.; Privette Vinnedge, L.M. Novel Molecular Mechanisms in Alzheimer’s Disease: The Potential Role of DEK in Disease Pathogenesis. Front. Aging Neurosci. 2022, 14, 1018180. [Google Scholar] [CrossRef] [PubMed]
- Öztan, G.; İşsever, H. Molecular Mechanisms and Genetics of Alzheimer’s Disease. Turk. J. Biochem. 2023, 48, 218–229. [Google Scholar] [CrossRef]
- Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological Alterations in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2011, 1, a006189. [Google Scholar] [CrossRef]
- Suresh, S.; Singh, S.A.; Rushendran, R.; Vellapandian, C.; Prajapati, B. Alzheimer’s Disease: The Role of Extrinsic Factors in Its Development, an Investigation of the Environmental Enigma. Front. Neurol. 2023, 14, 1303111. [Google Scholar] [CrossRef]
- Ramos, C.; Aguillon, D.; Cordano, C.; Lopera, F. Genetics of Dementia: Insights from Latin America. Dement. Neuropsychol. 2020, 14, 223–236. [Google Scholar] [CrossRef]
- Vélez, J.I.; Lopera, F.; Silva, C.T.; Villegas, A.; Espinosa, L.G.; Vidal, O.M.; Mastronardi, C.A.; Arcos-Burgos, M. Familial Alzheimer’s Disease and Recessive Modifiers. Mol. Neurobiol. 2020, 57, 1035–1043. [Google Scholar] [CrossRef]
- Vélez, J.I.; Lopera, F.; Patel, H.R.; Johar, A.S.; Cai, Y.; Rivera, D.; Tobón, C.; Villegas, A.; Sepulveda-Falla, D.; Lehmann, S.G.; et al. Mutations Modifying Sporadic Alzheimer’s Disease Age of Onset. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016, 171, 1116–1130. [Google Scholar] [CrossRef]
- Fortea, J.; Pegueroles, J.; Alcolea, D.; Belbin, O.; Dols-Icardo, O.; Vaqué-Alcázar, L.; Videla, L.; Gispert, J.D.; Suárez-Calvet, M.; Johnson, S.C.; et al. APOE4 Homozygosity Represents a Distinct Genetic form of Alzheimer’s Disease. Nat. Med. 2024, 30, 1284–1291. [Google Scholar] [CrossRef]
- Sepulveda-Falla, D.; Chavez-Gutierrez, L.; Portelius, E.; Vélez, J.I.; Dujardin, S.; Barrera-Ocampo, A.; Dinkel, F.; Hagel, C.; Puig, B.; Mastronardi, C.; et al. A Multifactorial Model of Pathology for Age of Onset Heterogeneity in Familial Alzheimer’s Disease. Acta Neuropathol. 2021, 141, 217–233. [Google Scholar] [CrossRef]
- Quiroz, Y.T.; Aguillon, D.; Aguirre-Acevedo, D.C.; Vasquez, D.; Zuluaga, Y.; Baena, A.Y.; Madrigal, L.; Hincapié, L.; Sanchez, J.S.; Langella, S.; et al. APOE3 Christchurch Heterozygosity and Autosomal Dominant Alzheimer’s Disease. N. Engl. J. Med. 2024, 390, 2156–2164. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda-Falla, D.; Vélez, J.I.; Acosta-Baena, N.; Baena, A.; Moreno, S.; Krasemann, S.; Lopera, F.; Mastronardi, C.A.; Arcos-Burgos, M. Genetic Modifiers of Cognitive Decline in PSEN1 E280A Alzheimer’s Disease. Alzheimer’s Dement. 2024, 20, 2873–2885. [Google Scholar] [CrossRef] [PubMed]
- Mosquera-Heredia, M.I.; Vidal, O.M.; Morales, L.C.; Silvera-Redondo, C.; Barceló, E.; Allegri, R.; Arcos-Burgos, M.; Vélez, J.I.; Garavito-Galofre, P. Long Non-Coding RNAs and Alzheimer’s Disease: Towards Personalized Diagnosis. Int. J. Mol. Sci. 2024, 25, 7641. [Google Scholar] [CrossRef] [PubMed]
- Vélez, J.I.; Samper, L.A.; Arcos-Holzinger, M.; Espinosa, L.G.; Isaza-Ruget, M.A.; Lopera, F.; Arcos-Burgos, M. A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer’s Disease. Diagnostics 2021, 11, 887. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Mizuno, K.; Tiwari, S.S.; Proitsi, P.; Gomez Perez-Nievas, B.; Glennon, E.; Martinez-Nunez, R.T.; Giese, K.P. Alzheimer’s Disease-Related Dysregulation of MRNA Translation Causes Key Pathological Features with Ageing. Transl. Psychiatry 2020, 10, 192. [Google Scholar] [CrossRef]
- Riscado, M.; Baptista, B.; Sousa, F. New RNA-Based Breakthroughs in Alzheimer’s Disease Diagnosis and Therapeutics. Pharmaceutics 2021, 13, 1397. [Google Scholar] [CrossRef]
- Donaghy, P.C.; Cockell, S.J.; Martin-Ruiz, C.; Coxhead, J.; Kane, J.; Erskine, D.; Koss, D.; Taylor, J.-P.; Morris, C.M.; O’Brien, J.T.; et al. Blood MRNA Expression in Alzheimer’s Disease and Dementia with Lewy Bodies. Am. J. Geriatr. Psychiatry 2022, 30, 964–975. [Google Scholar] [CrossRef]
- van Bergeijk, P.; Seneviratne, U.; Aparicio-Prat, E.; Stanton, R.; Hasson, S.A. SRSF1 and PTBP1 Are Trans-Acting Factors That Suppress the Formation of a CD33 Splicing Isoform Linked to Alzheimer’s Disease Risk. Mol. Cell. Biol. 2019, 39, e00568-18. [Google Scholar] [CrossRef]
- Işık, M.; Beydemir, Ş. AChE MRNA Expression as a Possible Novel Biomarker for the Diagnosis of Coronary Artery Disease and Alzheimer’s Disease, and Its Association with Oxidative Stress. Arch. Physiol. Biochem. 2022, 128, 352–359. [Google Scholar] [CrossRef]
- Jakubauskienė, E.; Vilys, L.; Pečiulienė, I.; Kanopka, A. The Role of Hypoxia on Alzheimer’s Disease-Related APP and Tau MRNA Formation. Gene 2021, 766, 145146. [Google Scholar] [CrossRef]
- Toden, S.; Zhuang, J.; Acosta, A.D.; Karns, A.P.; Salathia, N.S.; Brewer, J.B.; Wilcock, D.M.; Aballi, J.; Nerenberg, M.; Quake, S.R.; et al. Noninvasive Characterization of Alzheimer’s Disease by Circulating, Cell-Free Messenger RNA next-Generation Sequencing. Sci. Adv. 2020, 6, eabb1654. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Pei, Y.; Shan, P.; Xiao, Q.; Zhou, F.; Huang, L.; Wang, S. Identification of MiRNA–MRNA Pairs in the Alzheimer’s Disease Expression Profile and Explore the Effect of MiR-26a-5p/PTGS2 on Amyloid-β Induced Neurotoxicity in Alzheimer’s Disease Cell Model. Front. Aging Neurosci. 2022, 14, 909222. [Google Scholar] [CrossRef] [PubMed]
- Noor Eddin, A.; Hamsho, K.; Adi, G.; Al-Rimawi, M.; Alfuwais, M.; Abdul Rab, S.; Alkattan, K.; Yaqinuddin, A. Cerebrospinal Fluid MicroRNAs as Potential Biomarkers in Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1210191. [Google Scholar] [CrossRef]
- Phu Pham, L.H.; Chang, C.-F.; Tuchez, K.; Chen, Y. Assess Alzheimer’s Disease via Plasma Extracellular Vesicle-Derived MRNA. medRxiv 2023, 16, e70006. [Google Scholar] [CrossRef]
- Karaglani, M.; Gourlia, K.; Tsamardinos, I.; Chatzaki, E. Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning. J. Clin. Med. 2020, 9, 3016. [Google Scholar] [CrossRef]
- Parra, M.A.; Orellana, P.; Leon, T.; Victoria, C.G.; Henriquez, F.; Gomez, R.; Avalos, C.; Damian, A.; Slachevsky, A.; Ibañez, A.; et al. Biomarkers for Dementia in Latin American Countries: Gaps and Opportunities. Alzheimer’s Dement. 2023, 19, 721–735. [Google Scholar] [CrossRef]
- Seto, M.; Weiner, R.L.; Dumitrescu, L.; Mahoney, E.R.; Hansen, S.L.; Janve, V.; Khan, O.A.; Liu, D.; Wang, Y.; Menon, V.; et al. RNASE6 Is a Novel Modifier of APOE-Ε4 Effects on Cognition. Neurobiol. Aging 2022, 118, 66–76. [Google Scholar] [CrossRef]
- Tsai, A.P.; Lin, P.B.-C.; Dong, C.; Moutinho, M.; Casali, B.T.; Liu, Y.; Lamb, B.T.; Landreth, G.E.; Oblak, A.L.; Nho, K. INPP5D Expression Is Associated with Risk for Alzheimer’s Disease and Induced by Plaque-Associated Microglia. Neurobiol. Dis. 2021, 153, 105303. [Google Scholar] [CrossRef]
- da Silva, E.M.G.; Santos, L.G.C.; de Oliveira, F.S.; Freitas, F.C.D.P.; Parreira, V.D.S.C.; Dos Santos, H.G.; Tavares, R.; Carvalho, P.C.; Neves-Ferreira, A.G.d.C.; Haibara, A.S.; et al. Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer’s Disease Mouse Model. Cells 2021, 10, 1583. [Google Scholar] [CrossRef]
- Moiseeva, E.P.; Leyland, M.L.; Bradding, P. CADM1 Is Expressed as Multiple Alternatively Spliced Functional and Dysfunctional Isoforms in Human Mast Cells. Mol. Immunol. 2013, 53, 345–354. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, S.; Tang, D.; Yan, L.; Chen, Z.; Tao, W.; Wang, Y.; Huang, Z.; Chen, F. TNFRSF19 (TROY) as a Plasma Biomarker for Diagnosing and Monitoring Intracranial Aneurysms Progression; Research Square: Durham, NC, USA, 2022. [Google Scholar]
- Feng, X.; Zhang, Y.; Du, M.; Li, S.; Ding, J.; Wang, J.; Wang, Y.; Liu, P. Identification of Diagnostic Biomarkers and Therapeutic Targets in Peripheral Immune Landscape from Coronary Artery Disease. J. Transl. Med. 2022, 20, 399. [Google Scholar] [CrossRef] [PubMed]
- Chong, Z.X.; Ho, W.Y.; Yeap, S.K. Decoding the Tumour-Modulatory Roles of LIMK2. Life Sci. 2024, 347, 122609. [Google Scholar] [CrossRef] [PubMed]
- Mardilovich, K.; Baugh, M.; Crighton, D.; Kowalczyk, D.; Gabrielsen, M.; Munro, J.; Croft, D.R.; Lourenco, F.; James, D.; Kalna, G.; et al. LIM Kinase Inhibitors Disrupt Mitotic Microtubule Organization and Impair Tumor Cell Proliferation. Oncotarget 2015, 6, 38469–38486. [Google Scholar] [CrossRef]
- Villalonga, E.; Mosrin, C.; Normand, T.; Girardin, C.; Serrano, A.; Žunar, B.; Doudeau, M.; Godin, F.; Bénédetti, H.; Vallée, B. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells 2023, 12, 805. [Google Scholar] [CrossRef]
- Ben Zablah, Y.; Zhang, H.; Gugustea, R.; Jia, Z. LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases. Cells 2021, 10, 2079. [Google Scholar] [CrossRef]
- Kang, Y.J.; Diep, Y.N.; Tran, M.; Cho, H. Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 9591. [Google Scholar] [CrossRef]
- Nikhil, K.; Chang, L.; Viccaro, K.; Jacobsen, M.; McGuire, C.; Satapathy, S.R.; Tandiary, M.; Broman, M.M.; Cresswell, G.; He, Y.J.; et al. Identification of LIMK2 as a Therapeutic Target in Castration Resistant Prostate Cancer. Cancer Lett. 2019, 448, 182–196. [Google Scholar] [CrossRef]
- Shah, K.; Cook, M. LIMK2: A Multifaceted Kinase with Pleiotropic Roles in Human Physiology and Pathologies. Cancer Lett. 2023, 565, 216207. [Google Scholar] [CrossRef]
- Harutyunyan, A.; Jones, N.C.; Kwan, P.; Anderson, A. Network Preservation Analysis Reveals Dysregulated Synaptic Modules and Regulatory Hubs Shared Between Alzheimer’s Disease and Temporal Lobe Epilepsy. Front. Genet. 2022, 13, 821343. [Google Scholar] [CrossRef]
- Kong, W.; Mou, X.; Zhi, X.; Zhang, X.; Yang, Y. Dynamic Regulatory Network Reconstruction for Alzheimer’s Disease Based on Matrix Decomposition Techniques. Comput. Math. Methods Med. 2014, 2014, 891761. [Google Scholar] [CrossRef]
- Lau, P.; Bossers, K.; Janky, R.; Salta, E.; Frigerio, C.S.; Barbash, S.; Rothman, R.; Sierksma, A.S.R.; Thathiah, A.; Greenberg, D.; et al. Alteration of the MicroRNA Network During the Progression of Alzheimer’s Disease. EMBO Mol. Med. 2013, 5, 1613–1634. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-W.; Zhang, Q.; Cai, K.; Poliquin, S.; Shen, W.; Winters, N.; Yi, Y.-H.; Wang, J.; Hu, N.; Macdonald, R.L.; et al. Synaptic Clustering Differences due to Different GABRB3 Mutations Cause Variable Epilepsy Syndromes. Brain 2019, 142, 3028–3044. [Google Scholar] [CrossRef] [PubMed]
- Govindpani, K.; Turner, C.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Impaired Expression of GABA Signaling Components in the Alzheimer’s Disease Middle Temporal Gyrus. Int. J. Mol. Sci. 2020, 21, 8704. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.A.; Gammie, S.C. Alzheimer’s Disease Large-Scale Gene Expression Portrait Identifies Exercise as the Top Theoretical Treatment. Sci. Rep. 2022, 12, 17189. [Google Scholar] [CrossRef]
- Kang, J.-Q. Epileptic Mechanisms Shared by Alzheimer’s Disease: Viewed via the Unique Lens of Genetic Epilepsy. Int. J. Mol. Sci. 2021, 22, 7133. [Google Scholar] [CrossRef]
- Posavi, M.; Diaz-Ortiz, M.; Liu, B.; Swanson, C.R.; Skrinak, R.T.; Hernandez-Con, P.; Amado, D.A.; Fullard, M.; Rick, J.; Siderowf, A.; et al. Characterization of Parkinson’s Disease Using Blood-Based Biomarkers: A Multicohort Proteomic Analysis. PLoS Med. 2019, 16, e1002931. [Google Scholar] [CrossRef]
- Shibuya, Y.; Niu, Z.; Bryleva, E.Y.; Harris, B.T.; Murphy, S.R.; Kheirollah, A.; Bowen, Z.D.; Chang, C.C.Y.; Chang, T.-Y. Acyl-Coenzyme A:Cholesterol Acyltransferase 1 Blockage Enhances Autophagy in the Neurons of Triple Transgenic Alzheimer’s Disease Mouse and Reduces Human P301L-Tau Content at the Presymptomatic Stage. Neurobiol. Aging 2015, 36, 2248–2259. [Google Scholar] [CrossRef]
- Luckett, E.S.; Zielonka, M.; Kordjani, A.; Schaeverbeke, J.; Adamczuk, K.; De Meyer, S.; Van Laere, K.; Dupont, P.; Cleynen, I.; Vandenberghe, R. Longitudinal APOE4- and Amyloid-Dependent Changes in the Blood Transcriptome in Cognitively Intact Older Adults. Alzheimers Res. Ther. 2023, 15, 121. [Google Scholar] [CrossRef]
- Hu, S.; Li, S.; Ning, W.; Huang, X.; Liu, X.; Deng, Y.; Franceschi, D.; Ogbuehi, A.C.; Lethaus, B.; Savkovic, V.; et al. Identifying Crosstalk Genetic Biomarkers Linking a Neurodegenerative Disease, Parkinson’s Disease, and Periodontitis Using Integrated Bioinformatics Analyses. Front. Aging Neurosci. 2022, 14, 1032401. [Google Scholar] [CrossRef]
- Watson, C.N.; Begum, G.; Ashman, E.; Thorn, D.; Yakoub, K.M.; Hariri, M.A.; Nehme, A.; Mondello, S.; Kobeissy, F.; Belli, A.; et al. Co-Expression Analysis of MicroRNAs and Proteins in Brain of Alzheimer’s Disease Patients. Cells 2022, 11, 163. [Google Scholar] [CrossRef]
- Fuchsberger, T. The Role of APC/C-Cdh1 in Alzheimer’s Disease; Universitat de Valencia Roderic: Valencia, Spain, 2016. [Google Scholar]
- Lapresa, R.; Agulla, J.; Bolaños, J.P.; Almeida, A. APC/C-Cdh1-Targeted Substrates as Potential Therapies for Alzheimer’s Disease. Front. Pharmacol. 2022, 13, 1086540. [Google Scholar] [CrossRef] [PubMed]
- Mihaescu, R.; Detmar, S.B.; Cornel, M.C.; van der Flier, W.M.; Heutink, P.; Hol, E.M.; Rikkert, M.G.M.O.; van Duijn, C.M.; Janssens, A.C.J.W. Translational Research in Genomics of Alzheimer’s Disease: A Review of Current Practice and Future Perspectives. J. Alzheimer’s Dis. 2010, 20, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Golriz Khatami, S.; Mubeen, S.; Hofmann-Apitius, M. Data Science in Neurodegenerative Disease: Its Capabilities, Limitations, and Perspectives. Curr. Opin. Neurol. 2020, 33, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Hampel, H.; Vergallo, A.; Perry, G.; Lista, S. The Alzheimer Precision Medicine Initiative. J. Alzheimer’s Disease 2019, 68, 1–24. [Google Scholar] [CrossRef]
- Duran-Aniotz, C.; Sanhueza, J.; Grinberg, L.T.; Slachevsky, A.; Valcour, V.; Robertson, I.; Lawlor, B.; Miller, B.; Ibáñez, A. The Latin American Brain Health Institute, a Regional Initiative to Reduce the Scale and Impact of Dementia. Alzheimer’s Dement. 2022, 18, 1696–1698. [Google Scholar] [CrossRef]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association Publishing: Washington, DC, USA, 2022; ISBN 0-89042-575-2. [Google Scholar]
- Folstein, M.F.; Robins, L.N.; Helzer, J.E. The Mini-Mental State Examination. Arch. Gen. Psychiatry 1983, 40, 812. [Google Scholar] [CrossRef]
- Allegri, R.F.; Villavicencio, A.F.; Taragano, F.E.; Rymberg, S.; Mangone, C.A.; Baumann, D. Spanish Boston Naming Test Norms. Clin. Neuropsychol. 1997, 11, 416–420. [Google Scholar] [CrossRef]
- Fernández, A.L.; Fulbright, R.L. Construct and Concurrent Validity of the Spanish Adaptation of the Boston Naming Test. Appl. Neuropsychol. Adult 2015, 22, 355–362. [Google Scholar] [CrossRef]
- Osterrieth, P.A. The Test of Copying a Complex Figure: A Contribution to the Study of Perception and Memory. Arch. Psychol. 1944, 30, 206–356. [Google Scholar]
- Bean, J. Rey Auditory Verbal Learning Test, Rey AVLT. In Encyclopedia of Clinical Neuropsychology; Springer: New York, NY, USA, 2011; pp. 2174–2175. [Google Scholar]
- Reitan, R.M. The Relation of the Trail Making Test to Organic Brain Damage. J. Consult. Psychol. 1955, 19, 393. [Google Scholar] [CrossRef] [PubMed]
- Reitan, R.M. Validity of the Trail Making Test as an Indicator of Organic Brain Damage. Percept. Mot. Skills 1958, 8, 271–276. [Google Scholar] [CrossRef]
- Smith, A. Symbol Digit Modalities Test. Clin. Neuropsychol. 1973. [Google Scholar] [CrossRef]
- Golden, C.J. Stroop Color and Word Test; Stoelting, Co.: Wood Dale, IL, USA, 1978. [Google Scholar]
- de Renzi, E.; Vignolo, L.A. The token test: A sensitive test to detect receptive disturbances in aphasics. Brain 1962, 85, 665–678. [Google Scholar] [CrossRef]
- Benton, A.L. Visuospatial Judgment: A Clinical Test. Arch. Neurol. 1978, 35, 364. [Google Scholar] [CrossRef]
- Aprahamian, I.; Martinelli, J.E.; Neri, A.L.; Yassuda, M.S. The Clock Drawing Test A Review of Its Accuracy in Screening for Dementia. Dement. Neuropsychol. 2009, 3, 74–80. [Google Scholar] [CrossRef]
- Grant, D.A.; Berg, E. A Behavioral Analysis of Degree of Reinforcement and Ease of Shifting to New Responses in a Weigl-Type Card-Sorting Problem. J. Exp. Psychol. 1948, 38, 404–411. [Google Scholar] [CrossRef]
- Brink, T.L.; Yesavage, J.A.; Lum, O.; Heersema, P.H.; Adey, M.; Rose, T.L. Screening Tests for Geriatric Depression. Clin. Gerontol. 1982, 1, 37–43. [Google Scholar] [CrossRef]
- Reisberg, B.; Ferris, S.H.; De Leon, M.J.; Crook, T. The Global Deterioration Scale for Assessment of Primary Degenerative Dementia. Am. J. Psychiatry 1982, 139, 1136–1139. [Google Scholar]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The barthel index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Cummings, J. The Neuropsychiatric Inventory: Development and Applications. J. Geriatr. Psychiatry Neurol. 2020, 33, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Naj, A.C.; Jun, G.; Reitz, C.; Kunkle, B.W.; Perry, W.; Park, Y.S.; Beecham, G.W.; Rajbhandary, R.A.; Hamilton-Nelson, K.L.; Wang, L.-S.; et al. Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurol. 2014, 71, 1394. [Google Scholar] [CrossRef] [PubMed]
- Saad, M.; Brkanac, Z.; Wijsman, E.M. Family-based Genome Scan for Age at Onset of Late-onset Alzheimer’s Disease in Whole Exome Sequencing Data. Genes Brain Behav. 2015, 14, 607–617. [Google Scholar] [CrossRef]
- Dunn, P.K.; Smyth, G.K. Generalized Linear Models with Examples in R; Springer: New York, NY, USA, 2018; ISBN 978-1-4419-0117-0. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling The False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Vélez, J.I.; Correa, J.C.; Arcos-Burgos, M. A New Method for Detecting Significant p-Values with Applications to Genetic Data. Rev. Colomb. Estad. 2014, 37, 67–76. [Google Scholar] [CrossRef]
- Holte, R.C. Very Simple Classification Rules Perform Well on Most Commonly Used Datasets. Mach. Learn. 1993, 11, 63–90. [Google Scholar] [CrossRef]
- von Jouanne-Diedrich, H. OneR: One Rule Machine Learning Classification Algorithm with Enhancements. R Package Version 2.2. 2017. Available online: https://CRAN.R-project.org/package=OneR (accessed on 10 November 2024).
- Kuhn, M. Package ‘caret’—Classification and Regression Training; R Package Version 6.0-86; 2020. Available online: https://cran.r-project.org/web/packages/caret/index.html (accessed on 10 November 2024).
- Kuhn, M. Building Predictive Models in R Using the Caret Package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Ramezan, C.A.; Warner, T.A.; Maxwell, A.E. Evaluation of Sampling and Cross-Validation Tuning Strategies for Regional-Scale Machine Learning Classification. Remote Sens. 2019, 11, 185. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9781461468493. [Google Scholar]
- Naidu, G.; Zuva, T.; Sibanda, E.M. A Review of Evaluation Metrics in Machine Learning Algorithms; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2023; Volume 724. [Google Scholar]
- Gauthier, S.; Leuzy, A.; Racine, E.; Rosa-Neto, P. Diagnosis and Management of Alzheimer’s Disease: Past, Present and Future Ethical Issues. Prog. Neurobiol. 2013, 110, 102–113. [Google Scholar] [CrossRef]
- Tan, M.S.; Yang, Y.X.; Xu, W.; Wang, H.F.; Tan, L.; Zuo, C.T.; Dong, Q.; Tan, L.; Suckling, J.; Yu, J.T. Associations of Alzheimer’s Disease Risk Variants with Gene Expression, Amyloidosis, Tauopathy, and Neurodegeneration. Alzheimers Res. Ther. 2021, 13, 15. [Google Scholar] [CrossRef]
Variable | All (n = 30) | Cases (n = 15) | Controls (n = 15) | p |
---|---|---|---|---|
Mean (SD) | ||||
Age (years) | 79.8 (8.7) | 77.5 (8.5) | 82.1 (8.6) | 0.261 |
Age of onset (years) | 72.1 (7.2) | 72.1 (7.2) | - | - |
MMSE | 19.6 (9.6) | 13.9 (9.5) | 25.2 (5.6) | 0.001 |
MoCA | 15.3 (11.2) | 5.5 (5.3) | 25.9 (3) | <0.001 |
Frequency (%) | ||||
Sex | 1 | |||
Female | 22 (73.3%) | 11 (73.3%) | 11 (73.3%) | |
Male | 8 (26.7%) | 4 (26.7%) | 4 (26.7%) |
Chr | Transcript ID | Position a | Gene | p | pFDR | |
---|---|---|---|---|---|---|
11 | ENST00000382160 | 1,718,425 | KRTAP5-6 | 5.27 (1.97) | 0.007 | 0.999 |
11 | MICT00000062561 | 68,830,976 | TPCN2 | 2.74 (1.03) | 0.007 | 0.999 |
2 | ENST00000272252 | 38,893,052 | GALM | 3.18 (1.20) | 0.008 | 0.999 |
19 | ENST00000263372 | 38,810,484 | KCNK6 | 4.52 (1.71) | 0.008 | 0.999 |
11 | ENST00000292174 | 118,754,475 | CXCR5 | 3.76 (1.45) | 0.009 | 0.999 |
19 | ENST00000601440 | 20,802,867 | ZNF626 | 2.38 (0.92) | 0.009 | 0.999 |
2 | ENST00000406226 | 48,757,325 | STON1 | 3.74 (1.46) | 0.010 | 0.999 |
3 | ENST00000318225 | 126,268,516 | C3orf22 | 7.84 (3.07) | 0.010 | 0.999 |
9 | ENST00000307564 | 117,096,436 | AKNA | 2.34 (0.92) | 0.010 | 0.999 |
17 | ENST00000537494 | 73,632,675 | SMIM5 | 2.16 (0.85) | 0.010 | 0.999 |
Chr | Transcript | Position | Gene | p | pFDR | |
---|---|---|---|---|---|---|
11 | ENST00000331581 | 115,047,015 | CADM1 | 0.97 (0.16) | 3.34 × 10−6 | 0.027 |
13 | ENST00000382258 | 24,153,499 | TNFRSF19 | 0.40 (0.06) | 2.24 × 10−6 | 0.027 |
3 | ENST00000318225 | 126,268,516 | C3orf22 | 0.71 (0.14) | 2.32 × 10−5 | 0.128 |
17 | ENCT00000175321 | 42,030,339 | PYY | 0.82 (0.18) | 1.74 × 10−4 | 0.692 |
19 | ENST00000358491 | 21,688,366 | ZNF429 | 0.83 (0.19) | 2.16 × 10−4 | 0.692 |
2 | ENST00000406226 | 48,757,325 | STON1 | 0.72 (0.17) | 2.50 × 10−4 | 0.692 |
19 | ENST00000263372 | 38,810,484 | KCNK6 | 0.82 (0.20) | 3.52 × 10−4 | 0.833 |
7 | ENCT00000407904 | 1,214,597 | ZFAND2A | 0.60 (0.15) | 6.07 × 10−4 | 0.985 |
1 | ENST00000427500 | 155,204,350 | GBA | 0.83 (0.22) | 7.12 × 10−4 | 0.985 |
5 | ENST00000509437 | 132,333,792 | ZCCHC10 | 0.72 (0.18) | 6.33 × 10−4 | 0.985 |
Chr | Transcript | Position | Gene | p | pFDR | |
---|---|---|---|---|---|---|
22 | ENST00000340552 | 31,644,473 | LIMK2 | −12.6 (1.06) | 3.04 × 10−7 | 0.005 |
22 | ENST00000215730 | 21,213,271 | SNAP29 | −5.59 (0.76) | 2.50 × 10−5 | 0.096 |
22 | ENST00000216139 | 51,176,624 | ACR | −7.21 (1.27) | 2.14 × 10−4 | 0.096 |
5 | ENST00000230658 | 50,679,225 | ISL1 | −11.05 (1.49) | 2.29 × 10−5 | 0.096 |
4 | ENST00000248706 | 53,728,457 | RASL11B | −6.18 (1.09) | 2.15 × 10−4 | 0.096 |
7 | ENST00000257696 | 128,095,945 | HILPDA | 4.34 (0.76) | 2.00 × 10−4 | 0.096 |
8 | ENST00000263851 | 79,645,007 | IL7 | −17.31 (2.96) | 1.61 × 10−4 | 0.096 |
13 | ENST00000282397 | 28,874,481 | FLT1 | −6.21 (1.01) | 1.07 × 10−4 | 0.096 |
19 | ENST00000304060 | 11,925,099 | ZNF440 | 4.79 (0.79) | 1.15 × 10−4 | 0.096 |
3 | ENST00000320211 | 48,488,137 | ATRIP | −6.93 (1.08) | 7.47 × 10−4 | 0.096 |
Target Variable | Chr | Transcript | Position | Gene | Accuracy |
---|---|---|---|---|---|
AD | 11 | ENST00000331581 | 115,047,015 | CADM1 | 0.954 |
1 | ENST00000372572 | 42,642,210 | FOXJ3 | 0.954 | |
15 | ENST00000311550 | 26,788,693 | GABRB3 | 0.954 | |
17 | ENST00000293190 | 72,838,162 | GRIN2C | 0.904 | |
21 | ENST00000311124 | 46,933,690 | SLC19A1 | 0.904 | |
2 | MICT00000202802 | 171,678,607 | GAD1 | 0.904 | |
3 | ENCT00000296543 | 161,062,306 | SPTSSB | 0.904 | |
1 | ENST00000427500 | 155,204,350 | GBA | 0.904 | |
16 | ENST00000571688 | 11,641,578 | LITAF | 0.904 | |
3 | ENST00000636358 | 52,017,294 | ACY1 | 0.904 | |
ADAOO | 1 | ENST00000640218 | 245,013,602 | HNRNPU | 1.000 |
14 | ENST00000261245 | 61,201,480 | MNAT1 | 1.000 | |
2 | ENST00000339562 | 157,180,944 | NR4A2 | 1.000 | |
14 | ENST00000304677 | 21,249,210 | RNASE6 | 1.000 | |
2 | ENST00000263736 | 45,615,819 | SRBD1 | 1.000 | |
17 | ENST00000394001 | 39,533,902 | KRT34 | 0.900 | |
3 | ENST00000264735 | 192,958,914 | HRASLS | 0.900 | |
20 | ENCT00000265279 | 20,349,595 | INSM1 | 0.900 | |
8 | ENST00000313269 | 145,064,226 | GRINA | 0.900 | |
5 | ENST00000257430 | 112,073,585 | APC | 0.900 |
Algorithm | Accuracy | ||
---|---|---|---|
Mean | Standard Deviation | Coefficient of Variation | |
avNNet | 0.780 | 0.237 | 30.354 |
hdda | 0.783 | 0.243 | 31.072 |
knn | 0.783 | 0.234 | 29.858 |
LDA | 0.857 | 0.238 | 27.796 |
lda2 | 0.857 | 0.238 | 27.796 |
rf | 0.947 | 0.148 | 15.683 |
rpart | 0.847 | 0.295 | 34.862 |
rpart1SE | 0.847 | 0.295 | 34.862 |
rpart2 | 0.847 | 0.295 | 34.862 |
svmLinear | 0.787 | 0.238 | 30.278 |
svmLinear2 | 0.787 | 0.238 | 30.278 |
svmPoly | 0.820 | 0.228 | 27.802 |
svmRadial | 0.807 | 0.227 | 28.113 |
treebag | 0.927 | 0.224 | 24.147 |
xgbLinear | 0.980 | 0.141 | 14.431 |
xgbTree | 0.990 | 0.071 | 7.142 |
Performance Metric | Dataset | |
---|---|---|
Training (n = 21) | Testing (n = 9) | |
AUC | 1 | 0.875 |
Accuracy | 1 | 0.875 |
Sensitivity | 1 | 1 |
Specificity | 1 | 0.75 |
Precision | 1 | 1 |
Algorithm | Performance Measure | ||
---|---|---|---|
RMSE | R2 | MAE | |
avNNet | 71.518 | - | 71.510 |
gamLoess | 29.955 | 1 | 28.094 |
glm | 29.955 | 1 | 28.094 |
knn | 6.817 | 1 | 6.761 |
mlp | 7.606 | - | 7.530 |
pls | 6.519 | 1 | 6.459 |
rf | 7.227 | 1 | 7.190 |
ridge | 7.834 | 1 | 7.802 |
rpart | 7.576 | - | 7.497 |
rpart1SE | 7.576 | - | 7.497 |
svmLinear | 10.067 | 1 | 10.060 |
svmPoly | 6.969 | 1 | 6.887 |
svmRadial | 7.234 | 1 | 7.168 |
treebag | 7.587 | - | 7.506 |
xgbLinear | 10.306 | 1 | 10.235 |
xgbTree | 8.250 | 1 | 8.155 |
Algorithm | Model | mRNAs Combination | RMSE | R2 | MAE |
---|---|---|---|---|---|
rf | 1 | HBMT00001385713, ENCT00000265279 | 2.701 | 0.743 | 2.156 |
2 | HBMT00001385713, ENST00000370332 | 1.698 | 0.894 | 1.569 | |
3 | HBMT00001385713, ENST00000257430 | 0.974 | 0.975 | 0.840 | |
xgbLinear | 1 | HBMT00001385713, ENST00000263736 | 3.484 | 0.656 | 1.747 |
2 | HBMT00001385713, ENST00000304677 | 5.500 | 0.303 | 2.750 | |
3 | HBMT00001385713, ENST00000640218 | 2.554 | 0.815 | 1.278 | |
xgbTree | 1 | ENST00000304677, ENST00000640218 | 1.564 | 0.979 | 1.218 |
2 | ENST00000304677, ENST00000602017 | 0.462 | 0.993 | 0.392 | |
3 | ENST00000304677, ENST00000224950 | 0.740 | 0.999 | 0.613 | |
4 | ENST00000304677, ENST00000322088 | 2.054 | 0.983 | 1.719 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolívar, D.A.; Mosquera-Heredia, M.I.; Vidal, O.M.; Barceló, E.; Allegri, R.; Morales, L.C.; Silvera-Redondo, C.; Arcos-Burgos, M.; Garavito-Galofre, P.; Vélez, J.I. Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer’s Disease. Int. J. Mol. Sci. 2024, 25, 12293. https://doi.org/10.3390/ijms252212293
Bolívar DA, Mosquera-Heredia MI, Vidal OM, Barceló E, Allegri R, Morales LC, Silvera-Redondo C, Arcos-Burgos M, Garavito-Galofre P, Vélez JI. Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer’s Disease. International Journal of Molecular Sciences. 2024; 25(22):12293. https://doi.org/10.3390/ijms252212293
Chicago/Turabian StyleBolívar, Daniel A., María I. Mosquera-Heredia, Oscar M. Vidal, Ernesto Barceló, Ricardo Allegri, Luis C. Morales, Carlos Silvera-Redondo, Mauricio Arcos-Burgos, Pilar Garavito-Galofre, and Jorge I. Vélez. 2024. "Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer’s Disease" International Journal of Molecular Sciences 25, no. 22: 12293. https://doi.org/10.3390/ijms252212293
APA StyleBolívar, D. A., Mosquera-Heredia, M. I., Vidal, O. M., Barceló, E., Allegri, R., Morales, L. C., Silvera-Redondo, C., Arcos-Burgos, M., Garavito-Galofre, P., & Vélez, J. I. (2024). Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer’s Disease. International Journal of Molecular Sciences, 25(22), 12293. https://doi.org/10.3390/ijms252212293