The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans
Abstract
:1. Introduction
2. JDPs Functionalize Chaperone Machinery and Are Structurally Diverse
3. The PkJDP Family Has Types I to IV and Potential Exported Members
3.1. There Is a Canonical and a Non-Canonical Type I PkJDP
3.2. The Type II PkJDPs Include a Potential Exported Member
3.3. Type III PkJDPs Are Highly Diverse
3.4. Type IV PkJDPs Have Unusual J Domains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, W.C.; Cheong, F.W.; Amir, A.; Lai, M.Y.; Tan, J.H.; Phang, W.K.; Shahari, S.; Lau, Y.L. Plasmodium knowlesi: The game changer for malaria eradication. Malar. J. 2022, 21, 140. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Khan, S.W.; Aqeel, S.; Khan, H.M. Plasmodium knowlesi: New threat to humans. J. Pure Appl. Microbiol. 2023, 17, 1289–1297. [Google Scholar] [CrossRef]
- Anstey, N.M.; Grigg, M.J.; Rajahram, G.S.; Cooper, D.J.; William, T.; Kho, S.; Barber, B.E. Knowlesi malaria: Human risk factors, clinical spectrum, and pathophysiology. Adv. Parasitol. 2021, 113, 1–43. [Google Scholar] [PubMed]
- Sargeant, T.J.; Marti, M.; Caler, E.; Carlton, J.M.; Simpson, K.; Speed, T.P.; Cowman, A.F. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 2006, 7, R12. [Google Scholar] [CrossRef]
- Acharya, P.; Kumar, R.; Tatu, U. Chaperoning a cellular upheaval in malaria: Heat shock proteins in Plasmodium falciparum. Mol. Biochem. Parasitol. 2007, 153, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Almaazmi, S.Y.; Singh, H.; Dutta, T.; Blatch, G.L. Exported J domain proteins of the human malaria parasite. Front. Mol. Biosci. 2022, 9, 978663. [Google Scholar] [CrossRef]
- Rug, M.; Maier, A.G. The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 2011, 63, 1081–1086. [Google Scholar] [CrossRef]
- Dutta, T.; Pesce, E.R.; Maier, A.G.; Blatch, G.L. Role of the J Domain Protein Family in the Survival and Pathogenesis of Plasmodium falciparum. Adv. Exp. Med. Biol. 2021, 1340, 97–123. [Google Scholar]
- Mitra, P.; Deshmukh, A.S. Proteostasis is a key driver of the pathogenesis in Apicomplexa. Biochim. Biophys. Acta. Mol. Cell. Res. 2024, 871, 119824. [Google Scholar] [CrossRef]
- Zininga, T.; Shonhai, A. Small Molecule Inhibitors Targeting the Heat Shock Protein System of Human Obligate Protozoan Parasites. Int. J. Mol. Sci. 2019, 20, 5930. [Google Scholar] [CrossRef]
- Barth, J.; Schach, T.; Przyborski, J.M. HSP70 and their co-chaperones in the human malaria parasite P. falciparum and their potential as drug targets. Front. Mol. Biosci. 2022, 9, 968248. [Google Scholar] [CrossRef]
- Ahmad, T.; Alhammadi, B.A.; Almaazmi, S.Y.; Arafa, S.; Blatch, G.L.; Dutta, T.; Gestwicki, J.E.; Keyzers, R.A.; Shonhai, A.; Singh, H. Plasmodium falciparum heat shock proteins as antimalarial drug targets: An update. Cell Stress Chaperones 2024, 29, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Njunge, J.M.; Ludewig, M.H.; Boshoff, A.; Pesce, E.R.; Blatch, G.L. Hsp70s and J proteins of Plasmodium parasites infecting rodents and primates: Structure, function, clinical relevance, and drug targets. Curr. Pharm. Des. 2013, 19, 387–403. [Google Scholar] [CrossRef] [PubMed]
- Oresegun, D.R.; Thorpe, P.; Benavente, E.D.; Campino, S.; Muh, F.; Moon, R.W.; Clark, T.G.; Cox-Singh, J. De Novo Assembly of Plasmodium knowlesi genomes from clinical samples explains the counterintuitive intrachromosomal organization of variant SICAvar and kir multiple gene family members. Front. Genet. 2022, 13, 855052. [Google Scholar] [CrossRef] [PubMed]
- Siau, A.; Ang, J.W.; Sheriff, O.; Hoo, R.; Loh, H.P.; Tay, D.; Huang, X.; Yam, X.Y.; Lai, S.K.; Meng, W.; et al. Comparative spatial proteomics of Plasmodium-infected erythrocytes. Cell Rep. 2023, 42, 113419. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.C.; Peterson, M.S.; Lapp, S.A.; Galinski, M.R. Proteomes of Plasmodium knowlesi early and late ring-stage parasites and infected host erythrocytes. J. Proteom. 2024, 302, 105197. [Google Scholar] [CrossRef]
- Edkins, A.L.; Boshoff, A. General structural and functional features of molecular chaperones. Adv. Exp. Med. Biol. 2021, 1340, 11–73. [Google Scholar]
- Malinverni, D.; Jost Lopez, A.; De Los Rios, P.; Hummer, G.; Barducci, A. Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis. Elife 2017, 6, e23471. [Google Scholar] [CrossRef]
- Kityk, R.; Kopp, J.; Mayer, M.P. Molecular mechanism of J-Domain-triggered ATP hydrolysis by Hsp70 chaperones. Mol. Cell. 2018, 69, 227–237.e4. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Picard, D. The Hsp70-Hsp90 go-between Hop/Stip1/Sti1 is a proteostatic switch and may be a drug target in cancer and neurodegeneration. Cell. Mol. Life Sci. 2021, 78, 7257–7273. [Google Scholar] [CrossRef]
- Cheetham, M.E.; Caplan, A.J. Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function. Cell Stress Chaperones 1998, 3, 28–36. [Google Scholar] [CrossRef]
- Walsh, P.; Bursać, D.; Law, Y.C.; Cyr, D.; Lithgow, T. The J-protein family: Modulating protein assembly, disassembly and translocation. EMBO Rep. 2004, 5, 567–571. [Google Scholar] [CrossRef]
- Kampinga, H.H.; Hageman, J.; Vos, M.J.; Kubota, H.; Tanguay, R.M.; Bruford, E.A.; Cheetham, M.E.; Chen, B.; Hightower, L.E. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 2009, 14, 105–111. [Google Scholar] [CrossRef]
- Malinverni, D.; Zamuner, S.; Rebeaud, M.E.; Barducci, A.; Nillegoda, N.B.; De Los Rios, P. Data-driven large-scale genomic analysis reveals an intricate phylogenetic and functional landscape in J-domain proteins. Proc. Natl. Acad. Sci. USA 2023, 120, e2218217120. [Google Scholar] [CrossRef]
- Zhang, R.; Malinverni, D.; Cyr, D.M.; Rios, P.L.; Nillegoda, N.B. J-domain protein chaperone circuits in proteostasis and disease. Trends Cell Biol. 2023, 33, 30–47. [Google Scholar] [CrossRef]
- Jonsdottir, T.K.; Gabriela, M.; Gilson, P.R. The Role of Malaria Parasite Heat Shock Proteins in Protein Trafficking and Remodelling of Red Blood Cells. Adv. Exp. Med. Biol. 2021, 1340, 141–167. [Google Scholar]
- Wickramaratne, A.C.; Liao, J.Y.; Doyle, S.M.; Hoskins, J.R.; Puller, G.; Scott, M.L.; Alao, J.P.; Obaseki, I.; Dinan, J.C.; Maity, T.K.; et al. J-domain proteins form binary complexes with Hsp90 and ternary complexes with Hsp90 and Hsp70. J. Mol. Biol. 2023, 435, 168184. [Google Scholar] [CrossRef]
- Kampinga, H.H.; Craig, E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol. 2010, 11, 579–592. [Google Scholar] [CrossRef]
- Rhiel, M.; Bittl, V.; Tribensky, A.; Charnaud, S.C.; Strecker, M.; Müller, S.; Lanzer, M.; Sanchez, C.; Schaeffer-Reiss, C.; Westermann, B.; et al. Trafficking of the exported P. falciparum chaperone PfHsp70x. Sci. Rep. 2016, 6, 36174. [Google Scholar] [CrossRef]
- Grover, M.; Chaubey, S.; Ranade, S.; Tatu, U. Identification of an exported heat shock protein 70 in Plasmodium falciparum. Parasite 2013, 20, 2. [Google Scholar] [CrossRef]
- Acharya, P.; Chaubey, S.; Grover, M.; Tatu, U. An exported heat shock protein 40 associates with pathogenesis-related knobs in Plasmodium falciparum infected erythrocytes. PLoS ONE 2012, 7, e44605. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, C.; Oberli, A.; Zinz, A.; Engels, S.; Przyborski, J.M. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci. Rep. 2017, 7, 42188. [Google Scholar] [CrossRef]
- Diehl, M.; Roling, L.; Rohland, L.; Weber, S.; Cyrklaff, M.; Sanchez, C.P.; Beretta, C.A.; Simon, C.S.; Guizetti, J.; Hahn, J.; et al. Co-chaperone involvement in knob biogenesis implicates host-derived chaperones in malaria virulence. PLoS Pathog. 2021, 17, e1009969. [Google Scholar] [CrossRef]
- Sahu, W.; Bai, T.; Panda, P.K.; Mazumder, A.; Das, A.; Ojha, D.K.; Verma, S.K.; Elangovan, S.; Reddy, K.S. Plasmodium falciparum HSP40 protein eCiJp traffics to the erythrocyte cytoskeleton and interacts with the human HSP70 chaperone HSPA1. FEBS Lett. 2022, 596, 95–111. [Google Scholar] [CrossRef]
- Landry, S.J. Structure and energetics of an allele-specific genetic interaction between dnaJ and dnaK: Correlation of nuclear magnetic resonance chemical shift perturbations in the J-domain of Hsp40/DnaJ with binding affinity for the ATPase domain of Hsp70/DnaK. Biochemistry 2003, 42, 4926–4936. [Google Scholar] [CrossRef]
- Pain, A.; Böhme, U.; Berry, A.E.; Mungall, K.; Finn, R.D.; Jackson, A.P.; Mourier, T.; Mistry, J.; Pasini, E.M.; Aslett, M.A.; et al. The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature 2008, 455, 799–803. [Google Scholar] [CrossRef]
- Grüring, C.; Moon, R.W.; Lim, C.; Holder, A.A.; Blackman, M.J.; Duraisingh, M.T. Human red blood cell-adapted Plasmodium knowlesi parasites: A new model system for malaria research. Cell. Microbiol. 2014, 16, 612–620. [Google Scholar] [CrossRef]
- Anas, M.; Shukla, A.; Tripathi, A.; Kumari, V.; Prakash, C.; Nag, P.; Kumar, L.S.; Sharma, S.K.; Ramachandran, R.; Kumar, N. Structural-functional diversity of malaria parasite’s PfHSP70-1 and PfHSP40 chaperone pair gives an edge over human orthologs in chaperone-assisted protein folding. Biochem. J. 2020, 477, 3625–3643. [Google Scholar] [CrossRef]
- Watanabe, J. Cloning and characterization of heat shock protein DnaJ homologues from Plasmodium falciparum and comparison with ring infected erythrocyte surface antigen. Mol. Biochem. Parasitol. 1997, 88, 253–258. [Google Scholar] [CrossRef]
- Misra, G.; Ramachandran, R. Hsp70-1 from Plasmodium falciparum: Protein stability, domain analysis and chaperone activity. Biophys. Chem. 2009, 142, 55–64. [Google Scholar] [CrossRef]
- Kumar, A.; Tanveer, A.; Biswas, S.; Ram, E.V.; Gupta, A.; Kumar, B.; Habib, S. Nuclear-encoded DnaJ homologue of Plasmodium falciparum interacts with replication ori of the apicoplast genome. Mol. Microbiol. 2010, 75, 942–956. [Google Scholar] [CrossRef] [PubMed]
- Siau, A.; Huang, X.; Yam, X.Y.; Bob, N.S.; Sun, H.; Rajapakse, J.C.; Renia, L.; Preiser, P.R. Identification of a new export signal in Plasmodium yoelii: Identification of a new exportome. Cell. Microbiol. 2014, 16, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Hiller, N.L.; Bhattacharjee, S.; van Ooij, C.; Liolios, K.; Harrison, T.; Lopez-Estraño, C.; Haldar, K. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 2004, 306, 1934–1937. [Google Scholar] [CrossRef] [PubMed]
- Marti, M.; Good, R.T.; Rug, M.; Knuepfer, E.; Cowman, A.F. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 2004, 306, 1930–1933. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef]
- Stothard, P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 2000, 28, 1102–1104. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Greene, M.K.; Maskos, K.; Landry, S.J. Role of the J-domain in the cooperation of Hsp40 with Hsp70. Proc. Natl. Acad. Sci. USA 1998, 95, 6108–6113. [Google Scholar] [CrossRef]
- Berjanskii, M.V.; Riley, M.I.; Xie, A.; Semenchenko, V.; Folk, W.R.; Van Doren, S.R. NMR structure of the N-terminal J domain of murine polyomavirus T antigens. Implications for DnaJ-like domains and for mutations of T antigens. J. Biol. Chem. 2000, 275, 36094–36103. [Google Scholar] [CrossRef]
- Genevaux, P.; Schwager, F.; Georgopoulos, C.; Kelley, W.L. Scanning mutagenesis identifies amino acid residues essential for the in vivo activity of the Escherichia coli DnaJ (Hsp40) J-domain. Genetics 2000, 162, 1045–1053. [Google Scholar] [CrossRef]
- Whalen, K.A.; de Jesus, R.; Kean, J.A.; Schaffhausen, B.S. Genetic analysis of the polyomavirus DnaJ domain. J. Virol. 2005, 79, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Singh, H.; Gestwicki, J.E.; Blatch, G.L. Exported plasmodial J domain protein, PFE0055c, and PfHsp70-x form a specific co-chaperone-chaperone partnership. Cell Stress Chaperones 2021, 26, 355–366. [Google Scholar] [CrossRef]
- Daniyan, M.O.; Boshoff, A.; Prinsloo, E.; Pesce, E.R.; Blatch, G.L. The Malarial Exported PFA0660w Is an Hsp40 Co-Chaperone of PfHsp70-x. PLoS ONE 2016, 11, e0148517. [Google Scholar] [CrossRef] [PubMed]
- Charnaud, S.C.; Dixon, M.W.A.; Nie, C.Q.; Chappell, L.; Sanders, P.R.; Nebl, T.; Hanssen, E.; Berriman, M.; Chan, J.A.; Blanch, A.J.; et al. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites. PLoS ONE 2017, 12, e0181656. [Google Scholar] [CrossRef]
- Petersen, W.; Külzer, S.; Engels, S.; Zhang, Q.; Ingmundson, A.; Rug, M.; Maier, A.G.; Przyborski, J.M. J-dot targeting of an exported HSP40 in Plasmodium falciparum-infected erythrocytes. Int. J. Parasitol. 2016, 46, 519–525. [Google Scholar] [CrossRef]
- Behl, A.; Kumar, V.; Bisht, A.; Panda, J.J.; Hora, R.; Mishra, P.C. Cholesterol bound Plasmodium falciparum co-chaperone ‘PFA0660w’ complexes with major virulence factor ‘PfEMP1’ via chaperone ‘PfHsp70-x’. Sci. Rep. 2019, 9, 2664. [Google Scholar] [CrossRef] [PubMed]
- Osipiuk, J.; Walsh, M.A.; Freeman, B.C.; Morimoto, R.I.; Joachimiak, A. Structure of a new crystal form of human Hsp70 ATPase domain. Acta Crystallogr. D Biol. Crystallogr. 1999, 55, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- Hughes, S.J.; Antoshchenko, T.; Chen, Y.; Lu, H.; Pizarro, J.C.; Park, H.W. Probing the ATP site of GRP78 with nucleotide triphosphate analogs. PLoS ONE 2016, 11, e0154862. [Google Scholar] [CrossRef]
- Day, J.; Passecker, A.; Beck, H.P.; Vakonakis, I. The Plasmodium falciparum Hsp70-x chaperone assists the heat stress response of the malaria parasite. FASEB J. 2019, 33, 14611–14624. [Google Scholar] [CrossRef]
- Njunge, J.M.; Mandal, P.; Przyborski, J.M.; Boshoff, A.; Pesce, E.R.; Blatch, G.L. PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity. Int. J. Biochem. Cell Biol. 2015, 62, 47–53. [Google Scholar] [CrossRef]
- Pesce, E.R.; Acharya, P.; Tatu, U.; Nicoll, W.S.; Shonhai, A.; Hoppe, H.C.; Blatch, G.L. The Plasmodium falciparum heat shock protein 40, Pfj4, associates with heat shock protein 70 and shows similar heat induction and localisation patterns. Int. J. Biochem. Cell Biol. 2008, 40, 2914–2926. [Google Scholar] [CrossRef] [PubMed]
- Khosh-Naucke, M.; Becker, J.; Mesén-Ramírez, P.; Kiani, P.; Birnbaum, J.; Fröhlke, U.; Jonscher, E.; Schlüter, H.; Spielmann, T. Identification of novel parasitophorous vacuole proteins in P. falciparum parasites using BioID. Int. J. Med. Microbiol. 2018, 308, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Cobb, D.W.; Kudyba, H.M.; Villegas, A.; Hoopmann, M.R.; Baptista, R.P.; Bruton, B.; Krakowiak, M.; Moritz, R.L.; Muralidharan, V. A redox-active crosslinker reveals an essential and inhibitable oxidative folding network in the endoplasmic reticulum of malaria parasites. PLoS Pathog. 2021, 17, e1009293. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, A.; Lang, S.; Sicking, M.; Zimmermann, R.; Jung, M. Co-chaperones of the human endoplasmic reticulum: An update. Subcell. Biochem. 2023, 101, 247–291. [Google Scholar]
- Tuteja, R. Unraveling the components of protein translocation pathway in human malaria parasite Plasmodium falciparum. Arch. Biochem. Biophys. 2007, 467, 249–260. [Google Scholar] [CrossRef]
- Pavithra, S.R.; Kumar, R.; Tatu, U. Systems analysis of chaperone networks in the malarial parasite Plasmodium falciparum. PLoS Comput. Biol. 2007, 3, 1701–1715. [Google Scholar] [CrossRef]
- Cortés, G.T.; Wiser, M.F.; Gómez-Alegría, C.J. Identification of Plasmodium falciparum HSP70-2 as a resident of the Plasmodium export compartment. Heliyon 2020, 6, e04037. [Google Scholar] [CrossRef]
- Shonhai, A. The Role of Hsp70s in the development and pathogenicity of Plasmodium falciparum. Adv. Exp. Med. Biol. 2021, 1340, 75–95. [Google Scholar]
- Marszalek, J.; Craig, E.A.; Tomiczek, B. J-domain proteins orchestrate the multifunctionality of Hsp70s in mitochondria: Insights from mechanistic and evolutionary analyses. Subcell. Biochem. 2023, 101, 293–318. [Google Scholar]
- Silva, M.D.; Cooke, B.M.; Guillotte, M.; Buckingham, D.W.; Sauzet, J.P.; Le Scanf, C.; Contamin, H.; David, P.; Mercereau-Puijalon, O.; Bonnefoy, S. A role for the Plasmodium falciparum RESA protein in resistance against heat shock demonstrated using gene disruption. Mol. Microbiol. 2005, 56, 990–1003. [Google Scholar] [CrossRef]
- Diez-Silva, M.; Park, Y.; Huang, S.; Bow, H.; Mercereau-Puijalon, O.; Deplaine, G.; Lavazec, C.; Perrot, S.; Bonnefoy, S.; Feld, M.S.; et al. Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Sci. Rep. 2012, 2, 614. [Google Scholar] [CrossRef] [PubMed]
- Maier, A.G.; Rug, M.; O’Neill, M.T.; Brown, M.; Chakravorty, S.; Szestak, T.; Chesson, J.; Wu, Y.; Hughes, K.; Coppel, R.L.; et al. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 2008, 134, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-C.; Shahari, S.; Nguee, S.Y.T.; Lau, Y.-L.; Rénia, L. Cytoadherence properties of Plasmodium knowlesi-infected erythrocytes. Front. Microbiol. 2022, 12, 804417. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Blanch, A.J.; Namvar, A.; Carmo, O.; Tiash, S.; Andrew, D.; Hanssen, E.; Rajagopal, V.; Dixon, M.W.A.; Tilley, L. Multimodal analysis of Plasmodium knowlesi-infected erythrocytes reveals large invaginations, swelling of the host cell, and rheological defects. Cell Microbiol. 2019, 21, e13005. [Google Scholar] [CrossRef]
Gene ID 1 | Localization iRBCs 2 | PfJDP Homologs 3 | Type JDP 4 |
---|---|---|---|
PKNH_0307500 | Parasite/Parasite | PFD0462w/PF3D7_0409400/Pfj1 | I |
PKNH_0424600 | Parasite/Parasite | PF14_0359/PF3D7_1437900/PfHsp40 | I |
PKNH_0216100 | HCC and Vesicle/Vesicle and HCC | PFE0055c/PF3D7_0501100; PFB0595w/PF3D7_0213100/PfSis1; PFB0090c/PF3D7_0201800; PFA0660w/PF3D7_0113700 | II |
PKNH_0407900 | Parasite/Parasite | PFB0595w/PF3D7_0213100/PfSis1 | II |
PKNH_0906300 | Parasite/Parasite | PF11_0099/PF3D7_1108700/Pfj2 | II |
PKNH_1114800 | ND | MAL13P1.277/PF3D7_1356700 | II |
PKNH_1120300 | Parasite/Parasite | PFF1415c/PF3D7_0629200 | II |
PKNH_1246700 (alternative start 1) | Vesicle/HCC and Vesicle | PFB0595w/PF3D7_0213100/PfSis1; PFE0055c/PF3D7_0501100; PFB0090c/PF3D7_0201800; PFA0660w/PF3D7_0113700 | II |
PKNH_1311500 | Parasite/Parasite | PFL0565w/PF3D7_1211400/Pfj4 | II |
PKNH_1344400 | Parasite/Parasite | PF14_0137/PF3D7_1413900 | II |
PKNH_0112400 | Parasite/Parasite | PF08_0115/PF3D7_0806500; MAL8P1.204/PF3D7_0831200; PFB0920w/PF3D7_0220100; PF10_0378/PF3D7_1038800/Pfj3; PFL0055c/PF3D7_1201100 | III |
PKNH_0319800 | Parasite/Parasite | PF07_0103/PF3D7_0724400/PfTIM14 | III |
PKNH_0717100 | PVM/Parasite | PFI0935w/PF3D7_0919100 | III |
PKNH_0718100 | ND | PFI0985c/PF3D7_0920100/PfJac1 | III |
PKNH_0801600 | ND | PF10_0032/PF3D7_1002800 | III |
PKNH_0804300 | ND | PF10_0057a/PF3D7_1005600/PfJjj1 | III |
PKNH_0924200 | ND | PF11_0273/PF3D7_1126300 | III |
PKNH_0935000 | Vesicle/HCC and PVM | PF11_0380/PF3D7_1136800 | III |
PKNH_0939900 | Parasite/Parasite | PF11_0433/PF3D7_1142100 | III |
PKNH_1009500 | PVM and Parasite/Parasite | PFE1170w/PF3D7_0523400 | III |
PKNH_1031100 | ND | PFE0135w/PF3D7_0502800/PfJjj3 | III |
PKNH_1207800 | Parasite/Parasite | PF14_0700/PF3D7_1473200 | III |
PKNH_1270100 | ND | MAL13P1.162/PF3D7_1330300 | III |
PKNH_1317800 | Parasite and PVM/Parasite | PF08_0032/PF3D7_0823800 | III |
PKNH_1335700 | Parasite/Parasite | PF14_0213/PF3D7_1422300 | III |
PKNH_1347000 | Parasite/Parasite | PF14_0111/PF3D7_1411300 | III |
PKNH_1407500 | Parasite/Parasite | PF13_0036/PF3D7_1307200 | III |
PKNH_1419600 | PVM/PV | PF13_0102/PF3D7_1318800/PfSec63 | III |
PKNH_1436500 | Parasite/Parasite | PFL0815w/PF3D7_1216900/PfZuo1 | III |
PKNH_0941100 | Parasite/Parasite | PF11_0443/PF3D7_1143200 | IV |
PKNH_1129500 | Parasite/Parasite | PFF1010c/PF3D7_0620700 | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daniyan, M.O.; Singh, H.; Blatch, G.L. The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans. Int. J. Mol. Sci. 2024, 25, 12302. https://doi.org/10.3390/ijms252212302
Daniyan MO, Singh H, Blatch GL. The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans. International Journal of Molecular Sciences. 2024; 25(22):12302. https://doi.org/10.3390/ijms252212302
Chicago/Turabian StyleDaniyan, Michael O., Harpreet Singh, and Gregory L. Blatch. 2024. "The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans" International Journal of Molecular Sciences 25, no. 22: 12302. https://doi.org/10.3390/ijms252212302
APA StyleDaniyan, M. O., Singh, H., & Blatch, G. L. (2024). The J Domain Proteins of Plasmodium knowlesi, a Zoonotic Malaria Parasite of Humans. International Journal of Molecular Sciences, 25(22), 12302. https://doi.org/10.3390/ijms252212302