Network Analysis of miRNA and Cytokine Landscape in Human Hematopoiesis
Abstract
:1. Introduction
2. Results
- Considering only the miRNA–cytokine pair correlations without considering the correlations inside each space;
- Limiting the analysis to significantly modified CD34+ miRNA species;
- Accepting only negative correlations (miRNAs exert direct inhibitory action on cytokines, the positive correlation being the consequence of indirect correlations stemming from the composition of two negative direct links);
- Limiting the analysis to the near-to-unity correlation (more negative than r = −0.9).
3. Discussion
4. Materials and Methods
4.1. Human Cord Blood CD34+ HSCs Purification
4.2. Unilineage Differentiation
4.3. Cell Growth and Viability
4.4. Morphology and Flow Cytometry Analysis
4.5. Cytokine Assays
4.6. RNA Extraction and Microarray Analysis
4.7. Statistical and Bioinformatics Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schwarzer, A.; Emmrich, S.; Schmidt, F.; Beck, D.; Ng, M.; Reimer, C.; Adams, F.F.; Grasedieck, S.; Witte, D.; Käbler, S.; et al. The non-coding RNA landscape of human hematopoiesis and leukemia. Nat. Commun. 2017, 8, 218. [Google Scholar] [CrossRef] [PubMed]
- Nassiri, S.M.; Ahmadi Afshar, N.; Almasi, P. Insight into microRNAs’ involvement in hematopoiesis: Current standing point of findings. Stem Cell Res. Ther. 2023, 14, 282. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Civin, C.I.; Kingsbury, T.J. MicroRNAs as regulators and effectors of hematopoietic transcription factors. Wiley Interdiscip. Rev. RNA 2019, 10, e1537. [Google Scholar] [CrossRef] [PubMed]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 2010, 11, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Saliminejad, K.; Khorram Khorshid, H.R.; Soleymani Fard, S.; Ghaffari, S.H. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J. Cell. Physiol. 2019, 234, 5451–5465. [Google Scholar] [CrossRef]
- Ivey, K.N.; Srivastava, D. microRNAs as developmental regulators. Cold Spring Harb. Perspect. Biol. 2015, 7, a008144. [Google Scholar] [CrossRef]
- Felli, N.; Cianetti, L.; Pelosi, E.; Carè, A.; Liu, C.G.; Calin, G.A.; Rossi, S.; Peschle, C.; Marziali, G.; Giuliani, A. Hematopoietic differentiation: A coordinated dynamical process towards attractor stable states. BMC Syst. Biol. 2010, 4, 85. [Google Scholar] [CrossRef]
- Giuliani, A.; Bui, T.T.; Helmy, M.; Selvarajoo, K. Identifying toggle genes from transcriptome-wide scatter: A new perspective for biological regulation. Genomics 2022, 114, 215–228. [Google Scholar] [CrossRef]
- Taguchi, Y.-H.; Oono, Y. Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics 2005, 21, 730–740. [Google Scholar] [CrossRef]
- Ziegler, B.; Testa, U.; Vitelli, L.; Valtieri, M.; Peschle, C.; Condorelli, G. Unilineage hematopoietic differentiation in bulk and single cell culture. Stem Cells 1998, 16, 51–73. [Google Scholar] [CrossRef]
- Testa, U.; Fossati, C.; Samoggia, P.; Masciulli, R.; Mariani, G.; Hassan, H.; Sposi, N.; Guerriero, R.; Rosato, V.; Gabbianelli, M. Expression of growth factor receptors in unilineage differentiation culture of purified hematopoietic progenitors. Blood 1996, 88, 3391–3406. [Google Scholar] [CrossRef]
- Patrick, D.M.; Zhang, C.C.; Tao, Y.; Yao, H.; Qi, X.; Schwartz, R.J.; Huang, L.J.-S.; Olson, E.N. Defective erythroid differentiation in miR-451 mutant mice mediated by 14-3-3ζ. Genes Dev. 2010, 24, 1614–1619. [Google Scholar] [CrossRef]
- Pase, L.; Layton, J.E.; Kloosterman, W.P.; Carradice, D.; Waterhouse, P.M.; Lieschke, G.J. miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood J. Am. Soc. Hematol. 2009, 113, 1794–1804. [Google Scholar] [CrossRef]
- Bianchi, E.; Bulgarelli, J.; Ruberti, S.; Rontauroli, S.; Sacchi, G.; Norfo, R.; Pennucci, V.; Zini, R.; Salati, S.; Prudente, Z. MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF. Cell Death Differ. 2015, 22, 1906–1921. [Google Scholar] [CrossRef]
- Weiss, C.N.; Ito, K. microRNA-22 promotes megakaryocyte differentiation through repression of its target, GFI1. Blood Adv. 2019, 3, 33–46. [Google Scholar] [CrossRef]
- Zapilko, V.; Fish, R.J.; Garcia, A.; Reny, J.-L.; Dunoyer-Geindre, S.; Lecompte, T.; Neerman-Arbez, M.; Fontana, P. MicroRNA-126 is a regulator of platelet-supported thrombin generation. Platelets 2020, 31, 746–755. [Google Scholar] [CrossRef]
- Fontana, L.; Pelosi, E.; Greco, P.; Racanicchi, S.; Testa, U.; Liuzzi, F.; Croce, C.M.; Brunetti, E.; Grignani, F.; Peschle, C. MicroRNAs 17-5p–20a–106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat. Cell Biol. 2007, 9, 775–787. [Google Scholar] [CrossRef]
- Poitz, D.M.; Augstein, A.; Gradehand, C.; Ende, G.; Schmeisser, A.; Strasser, R.H. Regulation of the Hif-system by micro-RNA 17 and 20a–role during monocyte-to-macrophage differentiation. Mol. Immunol. 2013, 56, 442–451. [Google Scholar] [CrossRef]
- Su, R.; Lin, H.; Zhang, X.; Yin, X.; Ning, H.; Liu, B.; Zhai, P.; Gong, J.; Shen, C.; Song, L. MiR-181 family: Regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets. Oncogene 2015, 34, 3226–3239. [Google Scholar] [CrossRef]
- Benakanakere, M.R.; Li, Q.; Eskan, M.A.; Singh, A.V.; Zhao, J.; Galicia, J.C.; Stathopoulou, P.; Knudsen, T.B.; Kinane, D.F. Modulation of TLR2 protein expression by miR-105 in human oral keratinocytes. J. Biol. Chem. 2009, 284, 23107–23115. [Google Scholar] [CrossRef]
- Eichler, G.S.; Huang, S.; Ingber, D.E. Gene Expression Dynamics Inspector (GEDI): For integrative analysis of expression profiles. Bioinformatics 2003, 19, 2321–2322. [Google Scholar] [CrossRef]
- Murtagh, F.; Hernández-Pajares, M. The Kohonen self-organizing map method: An assessment. J. Classif. 1995, 12, 165–190. [Google Scholar] [CrossRef]
- Lange, O.F.; Grubmüller, H. Generalized correlation for biomolecular dynamics. Proteins Struct. Funct. Bioinform. 2006, 62, 1053–1061. [Google Scholar] [CrossRef]
- Fletcher, S.; Islam, M.Z. Comparing sets of patterns with the Jaccard index. Australas. J. Inf. Syst. 2018, 22. [Google Scholar] [CrossRef]
- Hennig, C. Cluster-wise assessment of cluster stability. Comput. Stat. Data Anal. 2007, 52, 258–271. [Google Scholar] [CrossRef]
- Mohamed, E.-M.; Agouti, T.; Tikniouine, A.; El Adnani, M. A comprehensive literature review on community detection: Approaches and applications. Procedia Comput. Sci. 2019, 151, 295–302. [Google Scholar]
- Girvan, M.; Newman, M.E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Cumbo, F.; Paci, P.; Santoni, D.; Di Paola, L.; Giuliani, A. GIANT: A cytoscape plugin for modular networks. PLoS ONE 2014, 9, e105001. [Google Scholar] [CrossRef]
- Guimera, R.; Nunes Amaral, L.A. Functional cartography of complex metabolic networks. Nature 2005, 433, 895–900. [Google Scholar] [CrossRef]
- Barthelemy, M. Betweenness centrality in large complex networks. Eur. Phys. J. B 2004, 38, 163–168. [Google Scholar] [CrossRef]
- Huang, S. Reprogramming cell fates: Reconciling rarity with robustness. Bioessays 2009, 31, 546–560. [Google Scholar] [CrossRef]
- Mikulecky, D.C. The circle that never ends: Can complexity be made simple? In Complexity in Chemistry, Biology, and Ecology; Bonchev, D., Rouvray, D.H., Eds.; Springer: Boston, MA, USA, 2005; pp. 97–153. [Google Scholar]
- Mojtahedi, M.; Skupin, A.; Zhou, J.; Castaño, I.G.; Leong-Quong, R.Y.; Chang, H.; Trachana, K.; Giuliani, A.; Huang, S. Cell fate decision as high-dimensional critical state transition. PLoS Biol. 2016, 14, e2000640. [Google Scholar] [CrossRef]
- Edfors, F.; Danielsson, F.; Hallström, B.M.; Käll, L.; Lundberg, E.; Pontén, F.; Forsström, B.; Uhlén, M. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol. Syst. Biol. 2016, 12, 883. [Google Scholar] [CrossRef]
- Gorban, A.N.; Smirnova, E.V.; Tyukina, T.A. Correlations, risk and crisis: From physiology to finance. Phys. A Stat. Mech. Appl. 2010, 389, 3193–3217. [Google Scholar] [CrossRef]
- Karsenti, E. Self-organization in cell biology: A brief history. Nat. Rev. Mol. Cell Biol. 2008, 9, 255–262. [Google Scholar] [CrossRef]
- Jani, P.K.; Petkau, G.; Kawano, Y.; Klemm, U.; Guerra, G.M.; Heinz, G.A.; Heinrich, F.; Durek, P.; Mashreghi, M.-F.; Melchers, F. The miR-221/222 cluster regulates hematopoietic stem cell quiescence and multipotency by suppressing both Fos/AP-1/IEG pathway activation and stress-like differentiation to granulocytes. PLoS Biol. 2023, 21, e3002015. [Google Scholar] [CrossRef]
- Karnati, H.K.; Raghuwanshi, S.; Sarvothaman, S.; Gutti, U.; Saladi, R.G.V.; Komati, J.K.; Tummala, P.R.; Gutti, R.K. microRNAs: Key players in hematopoiesis. In microRNA: Basic Science: From Molecular Biology to Clinical Practice; Springer: Cham, Switzerland, 2015; pp. 171–211. [Google Scholar]
- Kurkewich, J.L.; Boucher, A.; Klopfenstein, N.; Baskar, R.; Kapur, R.; Dahl, R. The mirn23a and mirn23b microrna clusters are necessary for proper hematopoietic progenitor cell production and differentiation. Exp. Hematol. 2018, 59, 14–29. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, M.; Heo, H.-R.; Ha, K.-S.; Han, E.-T.; Park, W.S.; Yang, S.-R.; Hong, S.-H. Inhibition of microRNA-221 and 222 enhances hematopoietic differentiation from human pluripotent stem cells via c-KIT upregulation. Mol. Cells 2018, 41, 971–978. [Google Scholar]
- Letelier, P.; Riquelme, I.; Hernández, A.H.; Guzmán, N.; Farías, J.G.; Roa, J.C. Circulating microRNAs as biomarkers in biliary tract cancers. Int. J. Mol. Sci. 2016, 17, 791. [Google Scholar] [CrossRef]
- Pons, A.; Nomdedeu, B.; Navarro, A.; Gaya, A.; Gel, B.; Diaz, T.; Valera, S.; Rozman, M.; Belkaid, M.; Montserrat, E. Hematopoiesis-related microRNA expression in myelodysplastic syndromes. Leuk. Lymphoma 2009, 50, 1854–1859. [Google Scholar] [CrossRef]
- Shaham, L.; Binder, V.; Gefen, N.; Borkhardt, A.; Izraeli, S. MiR-125 in normal and malignant hematopoiesis. Leukemia 2012, 26, 2011–2018. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E. MicroRNAs expressed in hematopoietic stem/progenitor cells are deregulated in acute myeloid leukemias. Leuk. Lymphoma 2015, 56, 1466–1474. [Google Scholar] [CrossRef]
- Belmonte, M.; Cabrera-Cosme, L.; Øbro, N.F.; Li, J.; Grinfeld, J.; Milek, J.; Bennett, E.; Irvine, M.; Shepherd, M.S.; Cull, A.H. Increased CXCL10 (IP-10) is associated with advanced myeloproliferative neoplasms and its loss dampens erythrocytosis in mouse models. Exp. Hematol. 2024, 135, 104246. [Google Scholar] [CrossRef]
- Chavakis, T.; Wielockx, B.; Hajishengallis, G. Inflammatory modulation of hematopoiesis: Linking trained immunity and clonal hematopoiesis with chronic disorders. Annu. Rev. Physiol. 2022, 84, 183–207. [Google Scholar] [CrossRef]
- Igarashi, K.; Hori, T.; Yamamoto, M.; Sohma, H.; Suzuki, N.; Tsutsumi, H.; Kawasaki, Y.; Kokai, Y. CCL8 deficiency in the host abrogates early mortality of acute graft-versus-host disease in mice with dysregulated IL-6 expression. Exp. Hematol. 2022, 106, 47–57. [Google Scholar] [CrossRef]
- Liu, S.-S.; Liu, Y.-S.; Guo, X.-Y.; Murakami, Y.; Yang, G.; Gao, X.-D.; Kinoshita, T.; Fujita, M. A knockout cell library of GPI biosynthetic genes for functional studies of GPI-anchored proteins. Commun. Biol. 2021, 4, 777. [Google Scholar] [CrossRef]
- Ma, D.; Liu, P.; Hu, C.; Zhou, Z.; Wang, P.; Wang, Y.; Zhang, Y.; Ran, Y.; Li, P.; Zhao, J. Intracellular angiopoietin-1 promotes TKI-resistance via activation of JAK/STAT5 pathway in chronic myeloid leukemia. Oncogene 2023, 42, 124–137. [Google Scholar] [CrossRef]
- Mamand, D.R.; Bazaz, S.; Mohammad, D.K.; Liang, X.; Pavlova, S.; Mim, C.; Gabrielsson, S.; Nordin, J.Z.; Wiklander, O.P.; Abedi-Valugerdi, M. Extracellular vesicles originating from melanoma cells promote dysregulation in haematopoiesis as a component of cancer immunoediting. J. Extracell. Vesicles 2024, 13, e12471. [Google Scholar] [CrossRef]
- Polosukhina, D.; Singh, K.; Asim, M.; Barry, D.P.; Allaman, M.M.; Hardbower, D.M.; Piazuelo, M.B.; Washington, M.K.; Gobert, A.P.; Wilson, K.T. CCL11 exacerbates colitis and inflammation-associated colon tumorigenesis. Oncogene 2021, 40, 6540–6546. [Google Scholar] [CrossRef]
- Pelosi, E.; Valtieri, M.; Coppola, S.; Botta, R.; Gabbianelli, M.; Lulli, V.; Marziali, G.; Masella, B.; Müller, R.; Sgadari, C. Identification of the hemangioblast in postnatal life. Blood J. Am. Soc. Hematol. 2002, 100, 3203–3208. [Google Scholar] [CrossRef]
- Rossi, S.; Cordella, M.; Tabolacci, C.; Nassa, G.; D’Arcangelo, D.; Senatore, C.; Pagnotto, P.; Magliozzi, R.; Salvati, A.; Weisz, A. TNF-alpha and metalloproteases as key players in melanoma cells aggressiveness. J. Exp. Clin. Cancer Res. 2018, 37, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, R.; Kruisselbrink, J. Flexible self-organizing maps in kohonen 3.0. J. Stat. Softw. 2018, 87, 1–18. [Google Scholar] [CrossRef]
- Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. 2018. Available online: https://mfcovington.github.io/r_club/downloads/VennDiagram_vignette.pdf (accessed on 2 October 2024).
- Csárdi, G.; Nepusz, T.; Traag, V.; Horvát, S.; Zanini, F.; Noom, D.; Müller, K. Igraph: Network Analysis and Visualization in R. 2023. R Package Version 1. Available online: https://CRAN.R-project.org/package=igraph (accessed on 2 October 2024).
A | B | |||
---|---|---|---|---|
Lineage | Pearson r | Lineage | Pearson r | |
Erytrocytes | 0.78 | Erytrocytes | 0.80 | |
Monocytes | 0.54 | Monocytes | 0.93 | |
Granulocytes | 0.74 | Granulocytes | 0.79 | |
Megakaryocytes | 0.70 | Megakaryocytes | 0.96 |
A | B | |||||
---|---|---|---|---|---|---|
Lineage 1 | Lineage 2 | Pearson r | Lineage 1 | Lineage 2 | Pearson r | |
Erytrocytes | Monocytes | 0.66 | Erytrocytes | Monocytes | 0.85 | |
Erytrocytes | Granulocytes | 0.91 | Erytrocytes | Granulocytes | 0.67 | |
Erytrocytes | Megakaryocytes | 0.98 | Erytrocytes | Megakaryocytes | 0.92 | |
Monocytes | Granulocytes | 0.56 | Monocytes | Granulocytes | 0.95 | |
Monocytes | Megakaryocytes | 0.63 | Monocytes | Megakaryocytes | 0.82 | |
Granulocytes | Megakaryocytes | 0.96 | Granulocytes | Megakaryocytes | 0.62 |
Contrasting Factors | F-Value | Pr(>F) |
---|---|---|
within/between lineages | 7.46 | 0.007 |
miRNA/cytokine spaces | 5.69 | 0.01 |
Lineage | Edge Density | Diameter | Centrality Degree | Centrality Closeness | Centrality Betweenness |
---|---|---|---|---|---|
Erytrocytes | 0.07 | 16 | 0.14 | 0.09 | 0.49 |
Monocytes | 0.05 | 20 | 0.23 | 0.08 | 0.44 |
Granulocytes | 0.10 | 8 | 0.10 | 0.29 | 0.04 |
Megakaryocytes | 0.07 | 13 | 0.13 | 0.07 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vici, A.; Castelli, G.; Francescangeli, F.; Cerio, A.; Pelosi, E.; Screnci, M.; Rossi, S.; Morsilli, O.; Felli, N.; Pasquini, L.; et al. Network Analysis of miRNA and Cytokine Landscape in Human Hematopoiesis. Int. J. Mol. Sci. 2024, 25, 12305. https://doi.org/10.3390/ijms252212305
Vici A, Castelli G, Francescangeli F, Cerio A, Pelosi E, Screnci M, Rossi S, Morsilli O, Felli N, Pasquini L, et al. Network Analysis of miRNA and Cytokine Landscape in Human Hematopoiesis. International Journal of Molecular Sciences. 2024; 25(22):12305. https://doi.org/10.3390/ijms252212305
Chicago/Turabian StyleVici, Alessandro, Germana Castelli, Federica Francescangeli, Annamaria Cerio, Elvira Pelosi, Maria Screnci, Stefania Rossi, Ornella Morsilli, Nadia Felli, Luca Pasquini, and et al. 2024. "Network Analysis of miRNA and Cytokine Landscape in Human Hematopoiesis" International Journal of Molecular Sciences 25, no. 22: 12305. https://doi.org/10.3390/ijms252212305
APA StyleVici, A., Castelli, G., Francescangeli, F., Cerio, A., Pelosi, E., Screnci, M., Rossi, S., Morsilli, O., Felli, N., Pasquini, L., Truglio, G. I., De Angelis, M. L., D’Andrea, V., Rossi, R., Verachi, P., Vila, F., Marziali, G., Giuliani, A., & Zeuner, A. (2024). Network Analysis of miRNA and Cytokine Landscape in Human Hematopoiesis. International Journal of Molecular Sciences, 25(22), 12305. https://doi.org/10.3390/ijms252212305