Fed-Batch Strategy Achieves the Production of High Concentration Fermentable Sugar Solution and Cellulosic Ethanol from Pretreated Corn Stover and Corn Cob
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Compositions of Lignocellulosic Substrates
2.2. Fed-Batch Enzymatic Hydrolysis of Cellulosic Substates to Produce High Concentration Fermentable Sugar Solution
2.2.1. Fed-Batch Enzymatic Hydrolysis of ACSE-CS
Effect of Batch Feeding Strategy
Effect of Tween 80 Addition on Enzymatic Hydrolysis of ACSE-CS
2.2.2. Fed-Batch Enzymatic Hydrolysis of CCR
2.3. Fed-Batch SSCF of ACSE-CS and CCR for Ethanol Production
2.3.1. Selection of Fermentation Temperature
2.3.2. Fed-Batch SSCF of ACSE-CS for Producing Ethanol
2.3.3. Fed-Batch SSCF of CCR for Producing Ethanol
3. Materials and Methods
3.1. Materials and Strains
3.2. Analysis of Chemical Compositions of Lignocellulosic Materials
3.3. Fed-Batch Enzymatic Hydrolysis
3.4. Fed-Batch SSCF
3.5. Analytical Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, E.; Khan, T.S.; Alam, M.I.; Pant, K.K.; Haider, M.A. Understanding Reaction Kinetics, Deprotonation and Solvation of Brnsted Acidic Protons in Heteropolyacid Catalyzed Synthesis of Biorenewable Alkyl Levulinates. Chem. Eng. J. 2020, 400, 125916. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef] [PubMed]
- Varjani, S.; Shahbeig, H.; Popat, K.; Patel, Z.; Vyas, S.; Shah, A.V.; Barceló, D.; Ngo, H.H.; Sonne, C.; Lam, S.S.; et al. Sustainable management of municipal solid waste through waste-to-energy technologies. Bioresour. Technol. 2022, 355, 127247. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Rathore, S.S.; Singh, R.; Kumar, S.; Singh, V.K.; Yadav, S.; Yadav, V.; Raj, R.; Yadav, D.; Shekhawat, K.; et al. Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review. Bioresour. Technol. 2022, 360, 127566. [Google Scholar] [CrossRef]
- Veluchamy, C.; Kalamdhad, A.S.; Gilroyed, B.H. Advanced pretreatment strategies for bioenergy production from biomass and biowaste. In Handbook of Environmental Materials Management; Springer: Cham, Switzerland, 2019; pp. 1507–1524. [Google Scholar]
- Humbird, D.; Mohagheghi, A.; Dowe, N.; Schell, D.J. Economic impact of total solids loading on enzymatic hydrolysis of dilute acid pretreated corn stover. Biotechnol. Prog. 2010, 26, 1245–1251. [Google Scholar] [CrossRef]
- Shiva; Barba, F.C.; Rodríguez-Jasso, R.M.; Sukumaran, R.K.; Ruiz, H.A. High-solids loading processing for an integrated lignocellulosic biorefinery: Effects of transport phenomena and rheology—A review. Bioresour. Technol. 2022, 351, 127044. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Zhang, Y.; Yuan, Z.; Xie, J. Optimization of high solids fed-batch saccharification of sugarcane bagasse based on system viscosity changes. J. Biotechnol. 2015, 211, 5–9. [Google Scholar] [CrossRef]
- Dutta, S.K.; Chakraborty, S. Mixing effects on the kinetics and the dynamics of two-phase enzymatic hydrolysis of hemicellulose for biofuel production. Bioresour. Technol. 2018, 259, 276–285. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.M.; Lavenson, D.M.; Tozzi, E.J.; McCarthy, M.J.; Jeoh, T. The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings. Cellulose 2011, 18, 759–773. [Google Scholar] [CrossRef]
- Sant’Ana da Silva, A.; Fernandes de Souza, M.; Ballesteros, I.; Manzanares, P.; Ballesteros, M.; Bon, E.P. High-solids content enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse using a laboratory-made enzyme blend and commercial preparations. Process Biochem. 2016, 51, 1561–1567. [Google Scholar] [CrossRef]
- Sotaniemi, V.-H.; Taskila, S.; Ojamo, H.; Tanskanen, J. Controlled feeding of lignocellulosic substrate enhances the performance of fed-batch enzymatic hydrolysis in a stirred tank reactor. Biomass Bioenergy 2016, 91, 271–277. [Google Scholar] [CrossRef]
- Geng, W.; Jin, Y.; Jameel, H.; Park, S. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover. Bioresour. Technol. 2015, 187, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Park, H.M.; Jung, Y.H.; Sukyai, P.; Kim, K.H. Pretreatment and enzymatic saccharification of oak at high solids loadings to obtain high titers and high yields of sugars. Bioresour. Technol. 2019, 284, 391–397. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, X.; Yuan, W.; Wang, Y.; Zhou, W.; Wang, G.; Liu, Y. Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnol. Biofuels 2020, 13, 13. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, J.; Zhang, Y.; Guo, Y.; Xu, H.; Xu, J.; Wang, Z. Enhancement of high-solids enzymatic hydrolysis efficiency of alkali pretreated sugarcane bagasse at low cellulase dosage by fed-batch strategy based on optimized accessory enzymes and additives. Bioresour. Technol. 2019, 292, 121993. [Google Scholar] [CrossRef]
- Sun, W.; Li, X.; Zhao, J.; Qin, Y. Pretreatment Strategies to Enhance Enzymatic Hydrolysis and Cellulosic Ethanol Production for Biorefinery of Corn Stover. Int. J. Mol. Sci. 2022, 23, 13163. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.; Wang, J.; Fan, Y.; Shi, W.; Liu, X.; Shun, Q. Simultaneous saccharification and co-fermentation of corn stover pretreated by H2O2 oxidative degradation for ethanol production. Energy 2019, 168, 946–952. [Google Scholar] [CrossRef]
- Jin, M.; Lau, M.W.; Balan, V.; Dale, B.E. Two-step SSCF to convert AFEX-treated switchgrass to ethanol using commercial enzymes and Saccharomyces cerevisiae 424A(LNH-ST). Bioresour. Technol. 2010, 101, 8171–8178. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-H.; Chen, H.-Z. Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresour. Technol. 2016, 201, 15–26. [Google Scholar] [CrossRef]
- Koppram, R.; Nielsen, F.; Albers, E.; Lambert, A.; Wännström, S.; Welin, L.; Zacchi, G.; Olsson, L. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol. Biofuels 2013, 6, 2. [Google Scholar] [CrossRef]
- Olofsson, K.; Rudolf, A.; Lidén, G. Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J. Biotechnol. 2008, 134, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.D.; Tomás-Pejó, E.; Ibarra, D.; Ballesteros, M.; Olsson, L. Fed-batch SSCF using steam-exploded wheat straw at high dry matter consistencies and a xylose-fermenting Saccharomyces cerevisiae strain: Effect of laccase supplementation. Biotechnol. Biofuels 2013, 6, 160. [Google Scholar] [CrossRef] [PubMed]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Zhao, M.; Mofijur, M.; Awasthi, M.K.; Kalam, M.; Ragauskas, A.; Qi, X. Towards the sustainable conversion of corn stover into bioenergy and bioproducts through biochemical route: Technical, economic and strategic perspectives. J. Clean. Prod. 2023, 400, 136699. [Google Scholar] [CrossRef]
- Aghaei, S.; Alavijeh, M.K.; Shafiei, M.; Karimi, K. A comprehensive review on bioethanol production from corn stover: Worldwide potential, environmental importance, and perspectives. Biomass Bioenergy 2022, 161, 106447. [Google Scholar] [CrossRef]
- Kim, D. Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules 2018, 23, 309. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.; Hu, J.; Saddler, J.N. What are the major components in steam pretreated lignocellulosic biomass that inhibit the efficacy of cellulase enzyme mixtures? ACS Sustain. Chem. Eng. 2016, 4, 3429–3436. [Google Scholar] [CrossRef]
- Chandra, R.P.; Bura, R.; Mabee, W.E.; Berlin, D.A.; Pan, X.; Saddler, J.N. Substrate pretreatment: The key to effective enzymatic hydrolysis of lignocellulosics? Biofuels 2007, 108, 67–93. [Google Scholar]
- Wang, F.; Dong, H.; Hassanpour, M.; Zhang, K.; Xie, H.; Zhang, H.; Song, A.; Zhang, Z. Glycerol-assisted one-step instant catapult steam explosion enhances enzymatic digestibility of corn stover. Ind. Crops Prod. 2020, 157, 112907. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, W.; Zhang, H.; Zhang, Q.; Huang, H. Screw extrude steam explosion: A promising pretreatment of corn stover to enhance enzymatic hydrolysis. Bioresour. Technol. 2014, 161, 230–235. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, X.; Wang, H.; Li, B.; Peng, H. Combined deacetylation and PFI refining pretreatment of corn cob for the improvement of a two-stage enzymatic hydrolysis. J. Agric. Food Chem. 2014, 62, 4661–4667. [Google Scholar] [CrossRef]
- Liu, C.; Li, B.; Du, H.; Lv, D.; Zhang, Y.; Yu, G.; Mu, X.; Peng, H. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods. Carbohydr. Polym. 2016, 151, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.; Liu, C.; Bi, Y.-H.; Yu, G.; Zhang, Y.; Wang, Z.; Li, B.; Cui, Q. A clean and effective potassium hydroxide pretreatment of corncob residue for the enhancement of enzymatic hydrolysis at high solids loading. RSC Adv. 2019, 9, 11558–11566. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Han, X.; Qian, Y.; Liu, G.; Yao, G.; Zhong, Y.; Qu, Y. Proteomic analysis of the biomass hydrolytic potentials of Penicillium oxalicum lignocellulolytic enzyme system. Biotechnol. Biofuels 2016, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, G.; Song, W.; Qu, Y. Production of sodium gluconate from delignified corn cob residue by on-site produced cellulase and co-immobilized glucose oxidase and catalase. Bioresour. Technol. 2018, 248, 248–257. [Google Scholar] [CrossRef]
- Liu, W.; Wu, R.; Wang, B.; Hu, Y.; Hou, Q.; Zhang, P.; Wu, R. Comparative study on different pretreatment on enzymatic hydrolysis of corncob residues. Bioresour. Technol. 2020, 295, 122244. [Google Scholar] [CrossRef]
- Zhu, J.; Shi, L.; Zhang, L.; Xu, Y.; Yong, Q.; Ouyang, J.; Yu, S. Difference analysis of the enzymatic hydrolysis performance of acid-catalyzed steam-exploded corn stover before and after washing with water. Bioprocess Biosyst. Eng. 2016, 39, 1619–1626. [Google Scholar] [CrossRef]
- Qin, L.; Liu, L.; Li, W.-C.; Zhu, J.-Q.; Li, B.-Z.; Yuan, Y.-J. Evaluation of soluble fraction and enzymatic residual fraction of dilute dry acid, ethylenediamine, and steam explosion pretreated corn stover on the enzymatic hydrolysis of cellulose. Bioresour. Technol. 2016, 209, 172–179. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, X.; Li, X.; Zhao, J. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water. Biotechnol. Biofuels 2016, 9, 118. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Yao, Y.; Xu, N.; Jia, H.; Li, X.; Zhao, J.; Chen, S.; Qu, Y. Pretreatment affects profits from xylanase during enzymatic saccharification of corn stover through changing the interaction between lignin and xylanase protein. Front. Microbiol. 2021, 12, 754593. [Google Scholar] [CrossRef]
- Lu, X.; Feng, X.; Li, X.; Zhao, J. The adsorption properties of endoglucanase to lignin and their impact on hydrolysis. Bioresour. Technol. 2018, 267, 110–116. [Google Scholar] [CrossRef]
- Pino, M.S.; Rodríguez-Jasso, R.M.; Michelin, M.; Ruiz, H.A. Enhancement and modeling of enzymatic hydrolysis on cellulose from agave bagasse hydrothermally pretreated in a horizontal bioreactor. Carbohydr. Polym. 2019, 211, 349–359. [Google Scholar] [CrossRef] [PubMed]
- dos Santos-Rocha, M.S.R.; Pratto, B.; Corrêa, L.J.; Badino, A.C.; Almeida, R.M.R.G.; Cruz, A.J.G. Assessment of different biomass feeding strategies for improving the enzymatic hydrolysis of sugarcane straw. Ind. Crops Prod. 2018, 125, 293–302. [Google Scholar] [CrossRef]
- Wang, C.; Lu, X.; Gao, J.; Li, X.; Zhao, J. Xylo-oligosaccharides inhibit enzymatic hydrolysis by influencing enzymatic activity of cellulase from Penicillium oxalicum. Energy Fuels 2018, 32, 9427–9437. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, B.; Yan, B.; Gao, P. Mechanism of cellobiose inhibition in cellulose hydrolysis by cellobiohydrolase. Sci. China Life Sci. 2004, 47, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.S.; Patel, A.K.; Chen, C.-W.; Dong, C.-D.; Singhania, R.R. Strategies for Overcoming the Inhibition of Cellulose Hydrolysis. In Handbook of Biorefinery Research and Technology: Biomass Logistics to Saccharification; Springer: Dordrecht, The Netherlands, 2024. [Google Scholar]
- Kristensen, J.B.; Felby, C.; Jørgensen, H. Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnol. Biofuels 2009, 2, 11. [Google Scholar] [CrossRef]
- Hou, S.; Shen, B.; Zhang, D.; Li, R.; Xu, X.; Wang, K.; Lai, C.; Yong, Q. Understanding of promoting enzymatic hydrolysis of combined hydrothermal and deep eutectic solvent pretreated poplars by Tween 80. Bioresour. Technol. 2022, 362, 127825. [Google Scholar] [CrossRef]
- Mukasekuru, M.R.; Hu, J.; Zhao, X.; Sun, F.F.; Pascal, K.; Ren, H.; Zhang, J. Enhanced high-solids fed-batch enzymatic hydrolysis of sugar cane bagasse with accessory enzymes and additives at low cellulase loading. ACS Sustain. Chem. Eng. 2018, 6, 12787–12796. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, X.; Zheng, Y.; Lin, W.; Lai, C.; Yong, Q.; Ragauskas, A.J.; Meng, X. Revealing the mechanism of surfactant-promoted enzymatic hydrolysis of dilute acid pretreated bamboo. Bioresour. Technol. 2022, 360, 127524. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Xie, J.; Qin, Y. Effects of NaOH-catalyzed organosolv pretreatment and surfactant on the sugar production from sugarcane bagasse. Bioresour. Technol. 2020, 312, 123601. [Google Scholar] [CrossRef]
- Dai, M.; Dong, Y.; Ma, S.; Gan, L.; Lin, L.; Liu, J. Efficient enzymatic hydrolysis of active oxygen and solid alkali/dilute sulfuric acid-pretreated corn cob. Ind. Crops Prod. 2024, 220, 119202. [Google Scholar] [CrossRef]
- Li, P.; Cai, D.; Luo, Z.; Qin, P.; Chen, C.; Wang, Y.; Zhang, C.; Wang, Z.; Tan, T. Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresour. Technol. 2016, 206, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Zanuso, E.; Ruiz, H.A.; Domingues, L.; Teixeira, J.A. Oscillatory flow bioreactor operating at high solids loading for enzymatic hydrolysis of lignocellulosic biomass. Biochem. Eng. J. 2022, 187, 108632. [Google Scholar] [CrossRef]
- Cai, X.; Hu, C.-H.; Wang, J.; Zeng, X.-H.; Luo, J.-X.; Li, M.; Liu, Z.-Q.; Zheng, Y.-G. Efficient high-solids enzymatic hydrolysis of corncobs by an acidic pretreatment and a fed-batch feeding mode. Bioresour. Technol. 2021, 326, 124768. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.-Q.; Qin, L.; Li, W.-C.; Zhang, J.; Bao, J.; Huang, Y.-D.; Li, B.-Z.; Yuan, Y.-J. Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: Overcoming the inhibitors by non-tolerant yeast. Bioresour. Technol. 2015, 198, 39–46. [Google Scholar] [CrossRef]
- Yu, H.; Guo, J.; Chen, Y.; Fu, G.; Li, B.; Guo, X.; Xiao, D. Efficient utilization of hemicellulose and cellulose in alkali liquor-pretreated corncob for bioethanol production at high solid loading by Spathaspora passalidarum U1-58. Bioresour. Technol. 2017, 232, 168–175. [Google Scholar] [CrossRef]
- Su, R.; Ma, Y.; Qi, W.; Zhang, M.; Wang, F.; Du, R.; Yang, J.; Zhang, M.; He, Z. Ethanol production from high-solid SSCF of alkaline-pretreated corncob using recombinant Zymomonas mobilis CP4. BioEnergy Res. 2013, 6, 292–299. [Google Scholar] [CrossRef]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass; Report No. TP-510-42618; National Renewable Energy Laboratory: Golden, CO, USA, 2008. [Google Scholar]
- Gao, L.; He, X.; Guo, Y.; Wu, Z.; Zhao, J.; Liu, G.; Qu, Y. Combinatorial engineering of transcriptional activators in Penicillium oxalicum for improved production of corn-fiber-degrading enzymes. J. Agric. Food Chem. 2021, 69, 2539–2548. [Google Scholar] [CrossRef]
Materials | Glucan | Xylan | Lignin |
---|---|---|---|
ACSE-CS | 37.8 ± 0.7 | 18.6 ± 0.3 | 14.7 ± 0.3 |
CCR | 75.1 ± 0.1 | 16.7 ± 4.6 | 8.67 ± 0.05 |
Feeding Strategies | Hydrolysis Time (h) | Solid Loading (%) | Enzyme Dosage (FPU) |
---|---|---|---|
Strategy 1 | 0–8 | 10 | 20 |
8–16 | 17 | 34 | |
16–24 | 24 | 48 | |
24–72 | 30 | 60 | |
Strategy 2 | 0–3 | 15 | 30 |
3–6 | 23 | 46 | |
6–72 | 30 | 60 | |
Strategy 3 | 0–3 | 15 | 60 |
3–6 | 23 | 60 | |
6–72 | 30 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Li, X.; Zhao, J.; Qu, Y. Fed-Batch Strategy Achieves the Production of High Concentration Fermentable Sugar Solution and Cellulosic Ethanol from Pretreated Corn Stover and Corn Cob. Int. J. Mol. Sci. 2024, 25, 12306. https://doi.org/10.3390/ijms252212306
Huang J, Li X, Zhao J, Qu Y. Fed-Batch Strategy Achieves the Production of High Concentration Fermentable Sugar Solution and Cellulosic Ethanol from Pretreated Corn Stover and Corn Cob. International Journal of Molecular Sciences. 2024; 25(22):12306. https://doi.org/10.3390/ijms252212306
Chicago/Turabian StyleHuang, Jiamin, Xuezhi Li, Jian Zhao, and Yinbo Qu. 2024. "Fed-Batch Strategy Achieves the Production of High Concentration Fermentable Sugar Solution and Cellulosic Ethanol from Pretreated Corn Stover and Corn Cob" International Journal of Molecular Sciences 25, no. 22: 12306. https://doi.org/10.3390/ijms252212306
APA StyleHuang, J., Li, X., Zhao, J., & Qu, Y. (2024). Fed-Batch Strategy Achieves the Production of High Concentration Fermentable Sugar Solution and Cellulosic Ethanol from Pretreated Corn Stover and Corn Cob. International Journal of Molecular Sciences, 25(22), 12306. https://doi.org/10.3390/ijms252212306