Influence of the Nucleo-Shuttling of the ATM Protein on the Response of Skin Fibroblasts from Marfan Syndrome to Ionizing Radiation
Abstract
:1. Introduction
2. Results
2.1. Spontaneous and RI Micronuclei in MFS Fibroblasts
2.2. Aberrant Numbers of γH2AX Foci Following Radiation Exposure in MFS Fibroblasts
2.3. Abnormal Number of pATM Foci After Irradiation in MFS Fibroblasts
2.4. Abnormal Number of MRE11 Foci After Irradiation in MFS Fibroblasts
2.5. Subcellular Localization and Expression of the FBN1 Protein in MFS Fibroblasts
2.6. TGF-β Protein Interacts with ATM Abundantly in MFS Fibroblasts
2.7. Treatment with Statins and Bisphosphonates Protects MFS Fibroblasts from Radiation
3. Discussion
3.1. The MFS Fibroblasts Show Significant Molecular and Cellular Radiosensitivity
3.2. The FBN1 and the TGF-β Proteins Interact with ATM and May Influence the RIANS
4. Materials and Methods
4.1. Cell Culture
4.2. Treatment with Zoledronate and Pravastatin (ZOPRA)
4.3. Irradiation
4.4. Immunofluorescence
4.5. Micronuclei Assay
4.6. Cell Extracts and Immunoblotting
4.7. In Situ Proximity Ligation Assay (PLA)
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, Q.; Zhang, D.; Zhuang, Y.; Xia, Q.; Wen, T.; Jia, H. The Molecular Genetics of Marfan Syndrome. Int. J. Med. Sci. 2021, 18, 2752–2766. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, E.A. Marfan syndrome. J. Am. Acad. Nurse Pract. 2009, 21, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Agarwal, S. Marfan syndrome: An eyesight of syndrome. Meta Gene 2014, 2, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Milewicz, D.M.; Braverman, A.C.; De Backer, J.; Morris, S.A.; Boileau, C.; Maumenee, I.H.; Jondeau, G.; Evangelista, A.; Pyeritz, R.E. Marfan syndrome. Nat. Rev. Dis. Primers 2021, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Zeigler, S.M.; Sloan, B.; Jones, J.A. Pathophysiology and Pathogenesis of Marfan Syndrome. Adv. Exp. Med. Biol. 2021, 1348, 185–206. [Google Scholar]
- Blakaj, D.M.; Zhang, H.G.; Blakaj, A.; Mourad, W.F.; Clarke, B.; Spierer, M.; Kalnicki, S.; Guha, C. Clinical and molecular exploration of the impact of radiation therapy on Marfan syndrome patients. Pract. Radiat. Oncol. 2013, 3, e127–e130. [Google Scholar] [CrossRef]
- Comeglio, P.; Johnson, P.; Arno, G.; Brice, G.; Evans, A.; Aragon-Martin, J.; da Silva, F.P.; Kiotsekoglou, A.; Child, A. The importance of mutation detection in Marfan syndrome and Marfan-related disorders: Report of 193 FBN1 mutations. Hum. Mutat. 2007, 28, 928. [Google Scholar] [CrossRef]
- Sakai, L.Y.; Keene, D.R.; Renard, M.; De Backer, J. FBN1: The disease-causing gene for Marfan syndrome and other genetic disorders. Gene 2016, 591, 279–291. [Google Scholar] [CrossRef]
- Kaartinen, V.; Warburton, D. Fibrillin controls TGF-β activation. Nat. Genet. 2003, 33, 331–332. [Google Scholar] [CrossRef]
- Chaudhry, S.S.; Cain, S.A.; Morgan, A.; Dallas, S.L.; Shuttleworth, C.A.; Kielty, C.M. Fibrillin-1 regulates the bioavailability of TGFbeta1. J. Cell Biol. 2007, 176, 355–367. [Google Scholar] [CrossRef]
- Ayers, N.B.; Sun, C.M.; Chen, S.Y. Transforming growth factor-β signaling in systemic sclerosis. J. Biomed. Res. 2018, 32, 3–12. [Google Scholar] [PubMed]
- Hsu, C.W.; Wang, J.C.; Liao, W.I.; Chien, W.C.; Chung, C.H.; Tsao, C.H.; Wu, Y.F.; Liao, M.T.; Tsai, S.H. Association between malignancies and Marfan syndrome: A population-based, nested case-control study in Taiwan. BMJ Open 2017, 7, e017243. [Google Scholar] [CrossRef] [PubMed]
- Suarez, E.M.; Knackstedt, R.J.; Jenrette, J.M. Significant fibrosis after radiation therapy in a patient with Marfan syndrome. Radiat. Oncol. J. 2014, 32, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Finlay, M.; Laperriere, N.; Bristow, R.G. Radiotherapy and Marfan syndrome: A report of two cases. Clin. Oncol. (R. Coll. Radiol.) 2005, 17, 54–56. [Google Scholar] [CrossRef]
- Berthel, E.; Foray, N.; Ferlazzo, M.L. The Nucleoshuttling of the ATM Protein: A Unified Model to Describe the Individual Response to High- and Low-Dose of Radiation? Cancers 2019, 11, 905. [Google Scholar] [CrossRef]
- Foray, N.; Bourguignon, M.; Hamada, N. Individual response to ionizing radiation. Mutat. Res. Rev. Mutat. Res. 2016, 770, 369–386. [Google Scholar] [CrossRef]
- Al-Choboq, J.; Ferlazzo, M.L.; Sonzogni, L.; Granzotto, A.; El-Nachef, L.; Maalouf, M.; Berthel, E.; Foray, N. Usher Syndrome Belongs to the Genetic Diseases Associated with Radiosensitivity: Influence of the ATM Protein Kinase. Int. J. Mol. Sci. 2022, 23, 1570. [Google Scholar] [CrossRef]
- Krupina, K.; Goginashvili, A.; Cleveland, D.W. Causes and consequences of micronuclei. Curr. Opin. Cell Biol. 2021, 70, 91–99. [Google Scholar] [CrossRef]
- Le Reun, E.; Bodgi, L.; Granzotto, A.; Sonzogni, L.; Ferlazzo, M.L.; Al-Choboq, J.; El-Nachef, L.; Restier-Verlet, J.; Berthel, E.; Devic, C.; et al. Quantitative Correlations between Radiosensitivity Biomarkers Show That the ATM Protein Kinase Is Strongly Involved in the Radiotoxicities Observed after Radiotherapy. Int. J. Mol. Sci. 2022, 23, 10434. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Chiang, Y.J.; Huang, F.; Li, Y.; Li, X.; Ning, Y.; Zhang, W.; Deng, H.; Chen, Y.G. DNA Damage Activates TGF-β Signaling via ATM-c-Cbl-Mediated Stabilization of the Type II Receptor TβRII. Cell Rep. 2019, 28, 735–745.e4. [Google Scholar] [CrossRef]
- Ferlazzo, M.; Berthel, E.; Granzotto, A.; Devic, C.; Sonzogni, L.; Bachelet, J.T.; Pereira, S.; Bourguignon, M.; Sarasin, A.; Mezzina, M.; et al. Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated with a delayed radiation-induced ATM nuclear localization. Int. J. Radiat. Biol. 2020, 96, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Varela, I.; Pereira, S.; Ugalde, A.P.; Navarro, C.L.; Suarez, M.F.; Cau, P.; Cadinanos, J.; Osorio, F.G.; Foray, N.; Cobo, J.; et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat. Med. 2008, 14, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Maya-González, C.; Delgado-Vega, A.M.; Taylan, F.; Lagerstedt Robinson, K.; Hansson, L.; Pal, N.; Fagman, H.; Puls, F.; Wessman, S.; Stenman, J.; et al. Occurrence of cancer in Marfan syndrome: Report of two patients with neuroblastoma and review of the literature. Am. J. Med. Genet. A 2024, e63812. [Google Scholar] [CrossRef] [PubMed]
- Chaosuwannakit, N.; Aupongkaroon, P.; Makarawate, P. Determine Cumulative Radiation Dose and Lifetime Cancer Risk in Marfan Syndrome Patients Who Underwent Computed Tomography Angiography of the Aorta in Northeast Thailand: A 5-Year Retrospective Cohort Study. Tomography 2022, 8, 120–130. [Google Scholar] [CrossRef]
- Granzotto, A.; Benadjaoud, M.A.; Vogin, G.; Devic, C.; Ferlazzo, M.L.; Bodgi, L.; Pereira, S.; Sonzogni, L.; Forcheron, F.; Viau, M.; et al. Influence of Nucleoshuttling of the ATM Protein in the Healthy Tissues Response to Radiation Therapy: Toward a Molecular Classification of Human Radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 450–460. [Google Scholar] [CrossRef]
- Ristic, M.; Brockly, F.; Piechaczyk, M.; Bossis, G. Detection of Protein-Protein Interactions and Posttranslational Modifications Using the Proximity Ligation Assay: Application to the Study of the SUMO Pathway. Methods Mol. Biol. 2016, 1449, 279–290. [Google Scholar]
- Fredriksson, S.; Gullberg, M.; Jarvius, J.; Olsson, C.; Pietras, K.; Gústafsdóttir, S.M.; Ostman, A.; Landegren, U. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 2002, 20, 473–477. [Google Scholar] [CrossRef]
DMD Cell Line | Phenotypic Data | Identified Mutation |
---|---|---|
GM21939 | Bilateral lens dislocation. Adult height of 186 cm with long arms and legs, narrow highly arched palate, dental crowding, chest asymmetry and pectus deformity, arthritis: thin fragile skin, myopia, glaucoma. | DEL EX42-43 of the FBN1 gene |
GM21988 | Dolichostenomelia, severe pectus carinatum, high narrow palate, dental crowding, contractures, myopia, bilateral ectopia lentis, ascending aortic aneurysm, aortic dissection. | 6185insA of the FBN1 gene |
GM21972 | Scoliosis, high narrow palate, dental crowding, hypermobile small joints, hypermobile large joints, arachnodactyly, myopia, bilateral ectopia lentis, ascending aortic aneurysm at age 42 years, severe mitral valve prolapse; mitral regurgitation; incisional hernia; striae. | 2399delC of the FBN1 gene |
GM21944 | Pectus carinatum, high narrow palate, hypermobile small joints, hypermobile large joints, positive wrist sign, positive thumb sign; arachnodactyly; myopia; ectopia lentis; ascending aortic aneurysm; aortic root replacement at age 7 years; mitral valve prolapse; mitral regurgitation; pneumothorax | CYS1326ARG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubowska, D.; Al-Choboq, J.; Sonzogni, L.; Bourguignon, M.; Slonina, D.; Foray, N. Influence of the Nucleo-Shuttling of the ATM Protein on the Response of Skin Fibroblasts from Marfan Syndrome to Ionizing Radiation. Int. J. Mol. Sci. 2024, 25, 12313. https://doi.org/10.3390/ijms252212313
Jakubowska D, Al-Choboq J, Sonzogni L, Bourguignon M, Slonina D, Foray N. Influence of the Nucleo-Shuttling of the ATM Protein on the Response of Skin Fibroblasts from Marfan Syndrome to Ionizing Radiation. International Journal of Molecular Sciences. 2024; 25(22):12313. https://doi.org/10.3390/ijms252212313
Chicago/Turabian StyleJakubowska, Dagmara, Joëlle Al-Choboq, Laurène Sonzogni, Michel Bourguignon, Dorota Slonina, and Nicolas Foray. 2024. "Influence of the Nucleo-Shuttling of the ATM Protein on the Response of Skin Fibroblasts from Marfan Syndrome to Ionizing Radiation" International Journal of Molecular Sciences 25, no. 22: 12313. https://doi.org/10.3390/ijms252212313
APA StyleJakubowska, D., Al-Choboq, J., Sonzogni, L., Bourguignon, M., Slonina, D., & Foray, N. (2024). Influence of the Nucleo-Shuttling of the ATM Protein on the Response of Skin Fibroblasts from Marfan Syndrome to Ionizing Radiation. International Journal of Molecular Sciences, 25(22), 12313. https://doi.org/10.3390/ijms252212313