Silencing Multiple Crustacean Hyperglycaemic Hormone-Encoding Genes in the Redclaw Crayfish Cherax quadricarinatus Induces Faster Molt Rates with Anomalies
Abstract
:1. Introduction
1.1. Global Aquaculture
1.2. Crustacean Aquaculture
1.3. Eyestalk Ablation
1.4. CHH Superfamily Neuropeptides
1.4.1. Type I: Crustacean Hyperglycaemic Hormone (CHH)
1.4.2. Type I: Ion Transport Peptide (ITP)
1.4.3. Type II: Molt-Inhibiting Hormone (MIH)
1.4.4. Type II: Gonad-Inhibiting Hormone (GIH)/Vitellogenesis-Inhibiting Hormone (VIH)
1.4.5. Type II: Mandibular Organ-Inhibiting Hormone (MOIH)
1.5. Gene Silencing in Decapods (RNA Interference; RNAi)
1.6. Multigene Silencing
1.7. Assessing the Effect of CHH Superfamily Silencing on Molt and Development in Juvenile Redclaw Crayfish (C. quadricarinatus)
2. Results
2.1. Highly Efficient Silencing Observed Using dsRNA Gene Blocks
2.2. No Significant Difference in Hyperglycaemic Activity and Molt Increment Between Groups
2.3. CHH Superfamily Silencing Leads to Shorter Molt Duration and Higher Levels of Molt Hormone in Juvenile C. quadricarinatus
2.4. Abnormal Phenotypes Observed in Treatment Group Individuals Who Died During Ecdysis
2.4.1. Growth of an Additional Set of Mandibles
2.4.2. Growth of an Additional Cephalothorax Cuticle
3. Discussion
4. Materials and Methods
4.1. C. quadricarinatus Animal Rearing and Husbandry
4.2. Gene Blocks: Double-Stranded RNA Design and Production
4.3. Gene Silencing by RNA Interference, Dissection, RNA Extraction, and Sequencing
4.4. Transcriptomic Analysis and Silencing Validation
4.5. Long-Term CHH Superfamily Silencing Trial
4.6. Hemolymph Extraction and Dissection
4.7. 20-Hydroxyecdysone (20E) Enzyme-Linked Immunosorbent Assay (ELISA)
4.8. Glucose Assay
4.9. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elem. Sci. Anthr. 2018, 6, 52. [Google Scholar] [CrossRef]
- Ertör-Akyazi, P. Contesting growth in marine capture fisheries: The case of small-scale fishing cooperatives in Istanbul. Sustain. Sci. 2020, 15, 45–62. [Google Scholar] [CrossRef]
- Longo, S.B.; Clark, B.; York, R.; Jorgenson, A.K. Aquaculture and the displacement of fisheries captures. Conserv. Biol. 2019, 33, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Béné, C.; Barange, M.; Subasinghe, R.; Pinstrup-Andersen, P.; Merino, G.; Hemre, G.-I.; Williams, M. Feeding 9 billion by 2050–Putting fish back on the menu. Food Secur. 2015, 7, 261–274. [Google Scholar] [CrossRef]
- Ahmed, N.; Thompson, S.; Glaser, M. Global Aquaculture Productivity, Environmental Sustainability, and Climate Change Adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Selly, S.L.C.; Martin, S.A.M.; Stevens, J.R.; Santos, E.M.; et al. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat. Rev. Genet. 2020, 21, 389–409. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2024: Blue Transformation in Action; FAO: Rome, Italy, 2024. [Google Scholar]
- Tacon, A.G.J. Trends in Global Aquaculture and Aquafeed Production: 2000–2017. Rev. Fish. Sci. Aquac. 2020, 28, 43–56. [Google Scholar] [CrossRef]
- Mauro, M.; Arizza, V.; Arculeo, M.; Attanzio, A.; Pinto, P.; Chirco, P.; Badalamenti, G.; Tesoriere, L.; Vazzana, M. Haemolymphatic Parameters in Two Aquaculture Crustacean Species Cherax destructor (Clark, 1836) and Cherax quadricarinatus (Von Martens, 1868). Animals 2022, 12, 543. [Google Scholar] [CrossRef]
- Rigg, D.; Seymour, J.E.; Courtney, R.L.; Jones, C.M. A review of juvenile redclaw crayfish Cherax quadricarinatus (von Martens, 1898) Aquaculture: Global production practices and innovation. Freshw. Crayfish 2020, 25, 13–30. [Google Scholar] [CrossRef]
- Marín-Riffo, M.C.; Raadsma, H.W.; Jerry, D.R.; Coman, G.J.; Khatkar, M.S. Bioeconomic modelling of hatchery, grow-out and combined business of Australian black tiger shrimp Penaeus monodon farming. Rev. Aquac. 2021, 13, 1695–1708. [Google Scholar] [CrossRef]
- Norman-Lόpez, A.; Sellars, M.J.; Pascoe, S.; Coman, G.J.; Murphy, B.; Moore, N.; Preston, N. Productivity benefits of selectively breeding Black Tiger shrimp (Penaeus monodon) in Australia. Aquac. Res. 2016, 47, 3287–3296. [Google Scholar] [CrossRef]
- Schofield, R.; Lewis, S. Ross Lobegeiger Report to Farmers: Aquaculture Production Summary for Queensland 2021–22; Department of Agriculture and Fisheries: Brisbane, Australia, 2022.
- Trenaman, R.; Gippe, E.; Department of Primary Industries; Department of Regional NSW. Aquaculture Production Report 2021–2022; NSW Department of Primary Industries: Orange, Australia, 2023.
- Nankervis, L.; Jones, C. Recent advances and future directions in practical diet formulation and adoption in tropical Palinurid lobster aquaculture. Rev. Aquac. 2022, 14, 1830–1842. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; Subasinghe, R.P.; Josupeit, H.; Cai, J.; Zhou, X. The role of crustacean fisheries and aquaculture in global food security: Past, present and future. J. Invertebr. Pathol. 2012, 110, 158–165. [Google Scholar] [CrossRef]
- Drengstig, A.; Bergheim, A. Commercial land-based farming of European lobster (Homarus gammarus L.) in recirculating aquaculture system (RAS) using a single cage approach. Aquac. Eng. 2013, 53, 14–18. [Google Scholar] [CrossRef]
- Romano, N.; Zeng, C. Cannibalism of decapod crustaceans and implications for their aquaculture: A review of its prevalence, influencing factors, and mitigating methods. Rev. Fish. Sci. Aquac. 2017, 25, 42–69. [Google Scholar] [CrossRef]
- Shields, J.D.; Huchin-Mian, J.P.; Thiel, M.; Lovrich, G. Ecological factors in the emergence of pathogens in commercially important crustaceans. Fish. Aquac. 2020, 9, 367. [Google Scholar]
- Luo, S.; Li, X.; Onchari, M.M.; Li, W.; Bu, Y.; Lek, S.; Zhang, T.; Wang, Z.; Jin, S. High feeding level alters physiological status but does not improve feed conversion efficiency and growth performance of juvenile red swamp crayfish Procambarus clarkii (Girard, 1852). Aquaculture 2021, 537, 736507. [Google Scholar] [CrossRef]
- Ariadi, H.; Fadjar, M.; Mahmudi, M. The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. Aquac. Aquar. Conserv. Legis. 2019, 12, 2103–2116. [Google Scholar]
- Boyd, C.E. General relationship between water quality and aquaculture performance in ponds. In Fish Diseases; Elsevier: Amsterdam, The Netherlands, 2017; pp. 147–166. [Google Scholar]
- Racotta, I.S.; Palacios, E.; Ibarra, A.M. Shrimp larval quality in relation to broodstock condition. Aquaculture 2003, 227, 107–130. [Google Scholar] [CrossRef]
- Bilio, M. Controlled reproduction and domestication in aquaculture. Aquac. Eur. 2007, 32, 5–14. [Google Scholar]
- Farhadi, A.; Cui, W.; Zheng, H.; Li, S.; Zhang, Y.; Ikhwanuddin, M.; Ma, H. The regulatory mechanism of sexual development in decapod crustaceans. Front. Mar. Sci. 2021, 8, 679687. [Google Scholar] [CrossRef]
- Choy, S.C. Growth and reproduction of eyestalk ablated Penaeus canaliculatus (Olivier, 1811) (Crustacea: Penaeidae). J. Exp. Mar. Biol. Ecol. 1987, 112, 93–107. [Google Scholar] [CrossRef]
- Chen, H.-Y.; Toullec, J.-Y.; Lee, C.-Y. The crustacean hyperglycemic hormone superfamily: Progress made in the past decade. Front. Endocrinol. 2020, 11, 578958. [Google Scholar] [CrossRef]
- Sun, D.; Lv, J.; Gao, B.; Liu, P.; Li, J. Crustacean hyperglycemic hormone of Portunus trituberculatus: Evidence of alternative splicing and potential roles in osmoregulation. Cell Stress Chaperones 2019, 24, 517–525. [Google Scholar] [CrossRef]
- Mykles, D.L. Signaling pathways that regulate the crustacean molting gland. Front. Endocrinol. 2021, 12, 674711. [Google Scholar] [CrossRef] [PubMed]
- Montagné, N.; Desdevises, Y.; Soyez, D.; Toullec, J.-Y. Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans. BMC Evol. Biol. 2010, 10, 62. [Google Scholar] [CrossRef]
- Chung, J.S.; Christie, A.; Flynn, E. Molecular cloning of crustacean hyperglycemic hormone (CHH) family members (CHH, molt-inhibiting hormone and mandibular organ-inhibiting hormone) and their expression levels in the Jonah crab, Cancer borealis. Gen. Comp. Endocrinol. 2020, 295, 113522. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Pan, L.; Zhang, X.; Wei, C. Effects of crustacean hyperglycemic hormone (CHH) on regulation of hemocyte intracellular signaling pathways and phagocytosis in white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2019, 93, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Liu, J.; Chen, X.; Lu, B.; Zeng, C.; Ye, H. A novel crustacean hyperglycemic hormone (CHH) from the mud crab Scylla paramamosain regulating carbohydrate metabolism. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 231, 49–55. [Google Scholar] [CrossRef]
- Sun, S.; Zhu, M.; Pan, F.; Feng, J.; Li, J. Identifying Neuropeptide and G protein-coupled receptors of juvenile oriental river prawn (Macrobrachium nipponense) in response to salinity acclimation. Front. Endocrinol. 2020, 11, 623. [Google Scholar] [CrossRef]
- Covi, J.A.; Chang, E.S.; Mykles, D.L. Conserved role of cyclic nucleotides in the regulation of ecdysteroidogenesis by the crustacean molting gland. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2009, 152, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Shyamal, S.; Das, S.; Guruacharya, A.; Mykles, D.; Durica, D. Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci. Rep. 2018, 8, 7307. [Google Scholar] [CrossRef]
- Treerattrakool, S.; Panyim, S.; Chan, S.M.; Withyachumnarnkul, B.; Udomkit, A. Molecular characterization of gonad-inhibiting hormone of Penaeus monodon and elucidation of its inhibitory role in vitellogenin expression by RNA interference. FEBS J. 2008, 275, 970–980. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Huang, M.; Sheng, N.; Chen, T.; Xu, R.; Luo, Z.; Huang, X.; Wan, Z.; Su, S.; Li, X. RNAi-mediated knockdown of the mandibular organ-inhibiting hormone (MOIH) gene stimulates vitellogenesis in the Chinese mitten crab Eriocheir sinensis. Fish. Sci. 2023, 89, 399–408. [Google Scholar] [CrossRef]
- Shabalina, S.A.; Koonin, E.V. Origins and evolution of eukaryotic RNA interference. Trends Ecol. Evol. 2008, 23, 578–587. [Google Scholar] [CrossRef]
- Ali, N.; Datta, S.K.; Datta, K. RNA interference in designing transgenic crops. GM Crops 2010, 1, 207–213. [Google Scholar] [CrossRef]
- Sagi, A.; Manor, R.; Ventura, T. Gene silencing in crustaceans: From basic research to biotechnologies. Genes 2013, 4, 620–645. [Google Scholar] [CrossRef]
- Banks, T.M.; Wang, T.; Fitzgibbon, Q.P.; Smith, G.G.; Ventura, T. Double-Stranded RNA Binding Proteins in Serum Contribute to Systemic RNAi Across Phyla—Towards Finding the Missing Link in Achelata. Int. J. Mol. Sci. 2020, 21, 6967. [Google Scholar] [CrossRef]
- Banks, T.M.; Wang, T.; Fitzgibbon, Q.P.; Smith, G.G.; Ventura, T. A Tale of Two Lobsters—Transcriptomic Analysis Reveals a Potential Gap in the RNA Interference Pathway in the Tropical Rock Lobster Panulirus ornatus. Int. J. Mol. Sci. 2022, 23, 11752. [Google Scholar] [CrossRef]
- Tran, N.A.H.; Glendinning, S.; Ventura, T. A refined roadmap to decapod sexual manipulation. Rev. Aquac. 2023, 15, 1654–1663. [Google Scholar]
- Christiaens, O.; Delbare, D.; Van Neste, C.; Cappelle, K.; Yu, N.; De Wilde, R.; Van Nieuwerburgh, F.; Deforce, D.; Cooreman, K.; Smagghe, G. Differential transcriptome analysis of the common shrimp Crangon crangon: Special focus on the nuclear receptors and RNAi-related genes. Gen. Comp. Endocrinol. 2015, 212, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Hauton, C. Recent progress toward the identification of anti-viral immune mechanisms in decapod crustaceans. J. Invertebr. Pathol. 2017, 147, 111–117. [Google Scholar] [CrossRef]
- Ventura, T.; Sagi, A. The insulin-like androgenic gland hormone in crustaceans: From a single gene silencing to a wide array of sexual manipulation-based biotechnologies. Biotechnol. Adv. 2012, 30, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Pham, T.P.; Neupane, S. Delivery methods for CRISPR/Cas9 gene editing in crustaceans. Mar. Life Sci. Technol. 2020, 2, 1–5. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Christiaens, O.; Bossier, P.; Smagghe, G. RNA interference in shrimp and potential applications in aquaculture. Rev. Aquac. 2018, 10, 573–584. [Google Scholar] [CrossRef]
- Alenton, R.R.R.; Mai, H.N.; Dhar, A.K. Engineering a replication-incompetent viral vector for the delivery of therapeutic RNA in crustaceans. PNAS Nexus 2023, 2, pgad278. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.; Li, A.; Zhang, Y.; Diao, P.; Zhao, Q.; Yan, T.; Zhou, Z.; Duan, H.; Li, X.; Wuriyanghan, H. Improvement of host-induced gene silencing efficiency via polycistronic-tRNA-amiR expression for multiple target genes and characterization of RNAi mechanism in Mythimna separata. Plant Biotechnol. J. 2021, 19, 1370–1385. [Google Scholar] [CrossRef]
- Hatfield, D.L.; Xu, X.-M.; Yoo, M.-H.; Carlson, B.A.; Gladyshev, V.N. Simultaneous knockdown of the expression of two genes using multiple shRNAs and subsequent knock-in of their expression. Nat. Protoc. 2009, 4, 1338–1348. [Google Scholar]
- Koch, A.; Biedenkopf, D.; Furch, A.; Weber, L.; Rossbach, O.; Abdellatef, E.; Linicus, L.; Johannsmeier, J.; Jelonek, L.; Goesmann, A.; et al. An RNAi-Based Control of Fusarium graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLoS Pathog. 2016, 12, e1005901. [Google Scholar] [CrossRef]
- Koch, A.; Kumar, N.; Weber, L.; Keller, H.; Imani, J.; Kogel, K.-H. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase–encoding genes confers strong resistance to Fusarium species. Proc. Natl. Acad. Sci. USA 2013, 110, 19324–19329. [Google Scholar] [CrossRef]
- Statello, L.; Maugeri, M.; Garre, E.; Nawaz, M.; Wahlgren, J.; Papadimitriou, A.; Lundqvist, C.; Lindfors, L.; Collén, A.; Sunnerhagen, P.; et al. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS ONE 2018, 13, e0195969. [Google Scholar] [CrossRef] [PubMed]
- Miki, D.; Itoh, R.; Shimamoto, K. RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 2005, 138, 1903–1913. [Google Scholar] [CrossRef]
- Sharif, M.N.; Iqbal, M.S.; Alam, R.; Awan, M.F.; Tariq, M.; Ali, Q.; Nasir, I.A. Silencing of multiple target genes via ingestion of dsRNA and PMRi affects development and survival in Helicoverpa armigera. Sci. Rep. 2022, 12, 10405. [Google Scholar] [CrossRef]
- Wang, K.; Cheng, H.; Chen, J.; Zhu, G.; Tang, P.; Han, Z. Chimeric Double-Stranded RNAs Could Act as Tailor-Made Pesticides for Controlling Storage Insects. J. Agric. Food Chem. 2021, 69, 6166–6171. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Ilouz, O.; Manor, R.; Sagi, A.; Khalaila, I. Transcriptional silencing of vitellogenesis-inhibiting and molt-inhibiting hormones in the giant freshwater prawn, Macrobrachium rosenbergii, and evaluation of the associated effects on ovarian development. Aquaculture 2021, 538, 736540. [Google Scholar] [CrossRef]
- Saoud, I.P.; Ghanawi, J.; Thompson, K.R.; Webster, C.D. A review of the culture and diseases of redclaw crayfish Cherax quadricarinatus (von Martens 1868). J. World Aquac. Soc. 2013, 44, 1–29. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Cummins, S.F.; Elizur, A.; Ventura, T. Transcriptomic characterization and curation of candidate neuropeptides regulating reproduction in the eyestalk ganglia of the Australian crayfish, Cherax quadricarinatus. Sci. Rep. 2016, 6, 38658. [Google Scholar] [CrossRef] [PubMed]
- Manfrin, C.; Peruzza, L.; Bonzi, L.C.; Pallavicini, A.; Giulianini, P.G. Silencing two main isoforms of crustacean hyperglycemic hormone (CHH) induces compensatory expression of two CHH-like transcripts in the red swamp crayfish Procambarus clarkii. Invertebr. Surviv. J. 2015, 12, 29–37. [Google Scholar]
- Li, W.; Chiu, K.-H.; Tien, Y.-C.; Tsai, S.-F.; Shih, L.-J.; Lee, C.-H.; Toullec, J.-Y.; Lee, C.-Y. Differential effects of silencing crustacean hyperglycemic hormone gene expression on the metabolic profiles of the muscle and hepatopancreas in the crayfish Procambarus clarkii. PLoS ONE 2017, 12, e0172557. [Google Scholar] [CrossRef]
- Nakatsuji, T.; Keino, H.; Tamura, K.; Yoshimura, S.; Kawakami, T.; Aimoto, S.; Sonobe, H. Changes in the amounts of the molt-inhibiting hormone in sinus glands during the molt cycle of the American crayfish, Procambarus clarkii. Zool. Sci. 2000, 17, 1129–1136. [Google Scholar] [CrossRef]
- Pamuru, R.R.; Rosen, O.; Manor, R.; Chung, J.S.; Zmora, N.; Glazer, L.; Aflalo, E.D.; Weil, S.; Tamone, S.L.; Sagi, A. Stimulation of molt by RNA interference of the molt-inhibiting hormone in the crayfish Cherax quadricarinatus. Gen. Comp. Endocrinol. 2012, 178, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Liu, Y.; Zhou, T.T.; Li, X.; Li, B.; Chan, S.F. Molecular characterization, RNA interference and recombinant protein approach to study the function of the putative Molt Inhibiting Hormone (FmMIH1) gene from the shrimp Fenneropenaeus merguiensis. Peptides 2019, 122, 169854. [Google Scholar] [CrossRef] [PubMed]
- Vrinda, S.; Reshmi, C.; Jose, S.; Reynold, P.; Vijayan, K.; Philip, R.; Singh, I.B. Crustacean hyperglycemic hormone family gene silencing in Penaeus monodon mediated through dsRNA synthesized in vitro from genomic and cDNA. Indian J. Biotechnol. 2017, 16, 37–43. [Google Scholar]
- Das, R.; Krishna, G.; Priyadarshi, H.; Gireesh-Babu, P.; Pavan-Kumar, A.; Rajendran, K.; Reddy, A.; Makesh, M.; Chaudhari, A. Captive maturation studies in Penaeus monodon by GIH silencing using constitutively expressed long hairpin RNA. Aquaculture 2015, 448, 512–520. [Google Scholar] [CrossRef]
- Shahroom, A.; Shapawi, R.; Mustafa, S.; Abd Halid, N.F.; Estim, A.; Tuzan, A.D. Effects of eggshell and seashell powder as natural dietary calcium supplements on growth, molting frequency, and carapace calcium composition of juvenile red claw crayfish, Cherax quadricarinatus. PeerJ 2023, 11, e15449. [Google Scholar] [CrossRef]
- Chen, S.-M.; Chen, J.-C. Effects of pH on survival, growth, molting and feeding of giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 2003, 218, 613–623. [Google Scholar] [CrossRef]
- Hartnoll, R.G. Growth in Crustacea—Twenty years on. In Advances in Decapod Crustacean Research, Proceedings of the 7th Colloquium Crustacea Decapoda Mediterranea, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal, 6–9 September 1999; Springer: Dordrecht, The Netherlands, 2001; pp. 111–122. [Google Scholar]
- Anger, K. The D0 threshold: A critical point in the larval development of decapod crustaceans. J. Exp. Mar. Biol. Ecol. 1987, 108, 15–30. [Google Scholar] [CrossRef]
- Anger, K. Salinity as a key parameter in the larval biology of decapod crustaceans. Invertebr. Reprod. Dev. 2003, 43, 29–45. [Google Scholar] [CrossRef]
- Weis, J.S.; Cristini, A.; Ranga Rao, K. Effects of pollutants on molting and regeneration in Crustacea. Am. Zool. 1992, 32, 495–500. [Google Scholar] [CrossRef]
- Luquet, G. Biomineralizations: Insights and prospects from crustaceans. Zookeys 2012, 176, 103–121. [Google Scholar] [CrossRef]
- Hyde, C.J.; Elizur, A.; Ventura, T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J. Steroid Biochem. Mol. Biol. 2019, 185, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Benrabaa, S.A.M.; Chang, S.A.; Chang, E.S.; Mykles, D.L. Effects of molting on the expression of ecdysteroid biosynthesis genes in the Y-organ of the blackback land crab, Gecarcinus lateralis. Gen. Comp. Endocrinol. 2023, 340, 114304. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, E.H.; Hunter, C.P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 2003, 301, 1545–1547. [Google Scholar] [CrossRef]
- Wynant, N.; Santos, D.; Van Wielendaele, P.; Vanden Broeck, J. Scavenger receptor-mediated endocytosis facilitates RNA interference in the desert locust, Schistocerca gregaria. Insect Mol. Biol. 2014, 23, 320–329. [Google Scholar] [CrossRef]
- Hyde, C.J.; Fitzgibbon, Q.P.; Elizur, A.; Smith, G.G.; Ventura, T. Transcriptional profiling of spiny lobster metamorphosis reveals three new additions to the nuclear receptor superfamily. BMC Genom. 2019, 20, 531. [Google Scholar]
- Ventura, T.; Chandler, J.C.; Nguyen, T.V.; Hyde, C.J.; Elizur, A.; Fitzgibbon, Q.P.; Smith, G.G. Multi-tissue transcriptome analysis identifies key sexual development-related genes of the ornate spiny lobster (Panulirus ornatus). Genes 2020, 11, 1150. [Google Scholar] [CrossRef] [PubMed]
- Abuhagr, A.M.; Blindert, J.L.; Nimitkul, S.; Zander, I.A.; LaBere, S.M.; Chang, S.A.; MacLea, K.S.; Chang, E.S.; Mykles, D.L. Molt regulation in green and red color morphs of the crab Carcinus maenas: Gene expression of molt-inhibiting hormone signaling components. J. Exp. Biol. 2014, 217, 796–808. [Google Scholar] [CrossRef]
- Riegel, J. Blood glucose in crayfishes in relation to moult and handling. Nature 1960, 186, 727. [Google Scholar] [CrossRef]
Group | Sample Size (n) | Mean ± SEM (mg/mL) |
---|---|---|
Treatment Group | 5 | 0.28 ± 0.02 |
Negative Control | 8 | 0.29 ± 0.01 |
Group | Sample Size (n) | Mean Molt Increment ± SEM (%) |
---|---|---|
Treatment Group | 16 | 36.51 ± 2.65 |
Negative Control | 14 | 38.91 ± 3.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Black, N.; Banks, T.M.; Glendinning, S.; Chowdhury, G.; Mykles, D.L.; Ventura, T. Silencing Multiple Crustacean Hyperglycaemic Hormone-Encoding Genes in the Redclaw Crayfish Cherax quadricarinatus Induces Faster Molt Rates with Anomalies. Int. J. Mol. Sci. 2024, 25, 12314. https://doi.org/10.3390/ijms252212314
Black N, Banks TM, Glendinning S, Chowdhury G, Mykles DL, Ventura T. Silencing Multiple Crustacean Hyperglycaemic Hormone-Encoding Genes in the Redclaw Crayfish Cherax quadricarinatus Induces Faster Molt Rates with Anomalies. International Journal of Molecular Sciences. 2024; 25(22):12314. https://doi.org/10.3390/ijms252212314
Chicago/Turabian StyleBlack, Nickolis, Thomas M. Banks, Susan Glendinning, Gourab Chowdhury, Donald L. Mykles, and Tomer Ventura. 2024. "Silencing Multiple Crustacean Hyperglycaemic Hormone-Encoding Genes in the Redclaw Crayfish Cherax quadricarinatus Induces Faster Molt Rates with Anomalies" International Journal of Molecular Sciences 25, no. 22: 12314. https://doi.org/10.3390/ijms252212314
APA StyleBlack, N., Banks, T. M., Glendinning, S., Chowdhury, G., Mykles, D. L., & Ventura, T. (2024). Silencing Multiple Crustacean Hyperglycaemic Hormone-Encoding Genes in the Redclaw Crayfish Cherax quadricarinatus Induces Faster Molt Rates with Anomalies. International Journal of Molecular Sciences, 25(22), 12314. https://doi.org/10.3390/ijms252212314