The Role of TNF Receptor-Associated Factor 5 in the Formation of Germinal Centers by B Cells During the Primary Phase of the Immune Response in Mice
Abstract
:1. Introduction
2. Results
2.1. Reduced Antibody Response in Traf5−/− Mice
2.2. Decreased Germinal Center B Cell Response in Traf5−/− Mice
2.3. Defective Induction of CD40-Target Genes by B Cells in Traf5−/− Mice
2.4. Decreased Responsiveness of Traf5−/− B Cells to CD40L In Vitro
2.5. Impaired Generation of GC B Cells in Traf5−/− Mice upon Exposure to Antigen and CD40L
3. Discussion
4. Materials and Methods
4.1. Mice
4.2. Antibodies
4.3. Fc−CD40L and CD40−Fc Proteins
4.4. B Cells
4.5. Antigen
4.6. Immunization
4.7. Real-Time RT-PCR
4.8. Flow Cytometry
4.9. ELISPOT
4.10. ELISA
4.11. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | alkaline phosphatase |
APC | allophycocyanin |
BBS | borate buffered saline |
BCA | bicinchoninic acid |
BSA | bovine serum albumin |
CFA | complete Freund’s adjuvant |
dLN | draining lymph node |
ELISA | enzyme-linked immunosorbent assay |
ELISPOT | enzyme-linked immuno spot |
FCS | fetal calf serum |
FITC | fluorescein isothiocyanate |
GC | germinal center |
KLH | keyhole limpet hemocyanin |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide |
PBS | phosphate-buffered saline |
PE | phycoerythrin |
PECy7 | phycoerythrin/cyanine7 |
PEI | polyethyleneimine |
PI | propidium iodide |
PP | Peyer’s patch |
TD | T-dependent |
Tfh | follicular helper T cell |
Tfr | follicular regulatory T cells |
TI | T-independent |
TNF | tumor necrosis factor |
TNFR | tumor necrosis factor receptor |
TNP | 2,4,6-trinitrophenol |
TRAF | tumor necrosis factor receptor-associated factor |
References
- So, T. The immunological significance of tumor necrosis factor receptor-associated factors (TRAFs). Int. Immunol. 2022, 34, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka-Kuniishi, M.; Ishii, N.; So, T. Role of tumor necrosis factor receptor-associated factor 5 in B- and T-lymphocytes. Explor. Immunol. 2023, 3, 40–55. [Google Scholar] [CrossRef]
- Arkee, T.; Bishop, G.A. TRAF family molecules in T cells: Multiple receptors and functions. J. Leukoc. Biol. 2020, 107, 907–915. [Google Scholar] [CrossRef]
- Dhillon, B.; Aleithan, F.; Abdul-Sater, Z.; Abdul-Sater, A.A. The Evolving Role of TRAFs in Mediating Inflammatory Responses. Front. Immunol. 2019, 10, 104. [Google Scholar] [CrossRef] [PubMed]
- Park, H.H. Structure of TRAF Family: Current Understanding of Receptor Recognition. Front. Immunol. 2018, 9, 1999. [Google Scholar] [CrossRef]
- So, T.; Nagashima, H.; Ishii, N. TNF Receptor-Associated Factor (TRAF) Signaling Network in CD4(+) T-Lymphocytes. Tohoku J. Exp. Med. 2015, 236, 139–154. [Google Scholar] [CrossRef]
- Xie, P. TRAF molecules in cell signaling and in human diseases. J. Mol. Signal 2013, 8, 7. [Google Scholar] [CrossRef]
- Ha, H.; Han, D.; Choi, Y. TRAF-mediated TNFR-family signaling. Curr. Protoc. Immunol. 2009, 11, 11.9D.1–11.9D.19. [Google Scholar] [CrossRef]
- Bishop, G.A. The multifaceted roles of TRAFs in the regulation of B-cell function. Nat. Rev. Immunol. 2004, 4, 775–786. [Google Scholar] [CrossRef]
- Nakano, H.; Oshima, H.; Chung, W.; Williams-Abbott, L.; Ware, C.F.; Yagita, H.; Okumura, K. TRAF5, an activator of NF-kappaB and putative signal transducer for the lymphotoxin-beta receptor. J. Biol. Chem. 1996, 271, 14661–14664. [Google Scholar] [CrossRef]
- Ishida, T.K.; Tojo, T.; Aoki, T.; Kobayashi, N.; Ohishi, T.; Watanabe, T.; Yamamoto, T.; Inoue, J. TRAF5, a novel tumor necrosis factor receptor-associated factor family protein, mediates CD40 signaling. Proc. Natl. Acad. Sci. USA 1996, 93, 9437–9442. [Google Scholar] [CrossRef] [PubMed]
- Nakano, H.; Sakon, S.; Koseki, H.; Takemori, T.; Tada, K.; Matsumoto, M.; Munechika, E.; Sakai, T.; Shirasawa, T.; Akiba, H.; et al. Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc. Natl. Acad. Sci. USA 1999, 96, 9803–9808. [Google Scholar] [CrossRef] [PubMed]
- Nagashima, H.; Okuyama, Y.; Asao, A.; Kawabe, T.; Yamaki, S.; Nakano, H.; Croft, M.; Ishii, N.; So, T. The adaptor TRAF5 limits the differentiation of inflammatory CD4(+) T cells by antagonizing signaling via the receptor for IL-6. Nat. Immunol. 2014, 15, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, E.; Azuma, M.; Nagashima, H.; Omori, K.; Akiyama, S.; Fujimori, Y.; Oishi, M.; Shibui, N.; Kawaguchi, K.; Morita, M.; et al. TNF Receptor-Associated Factor 5 Limits IL-27 Receptor Signaling in CD4(+) T Lymphocytes. J. Immunol. 2022, 208, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Yeh, W.C.; Shahinian, A.; Speiser, D.; Kraunus, J.; Billia, F.; Wakeham, A.; de la Pompa, J.L.; Ferrick, D.; Hum, B.; Iscove, N.; et al. Early lethality, functional NF-kappaB activation, and increased sensitivity to TNF-induced cell death in TRAF2-deficient mice. Immunity 1997, 7, 715–725. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Duncan, G.S.; Mirtsos, C.; Ng, M.; Speiser, D.E.; Shahinian, A.; Marino, M.W.; Mak, T.W.; Ohashi, P.S.; Yeh, W.C. TRAF2 deficiency results in hyperactivity of certain TNFR1 signals and impairment of CD40-mediated responses. Immunity 1999, 11, 379–389. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, G.; Baltimore, D. Targeted disruption of TRAF3 leads to postnatal lethality and defective T-dependent immune responses. Immunity 1996, 5, 407–415. [Google Scholar] [CrossRef]
- Piao, J.H.; Yoshida, H.; Yeh, W.C.; Doi, T.; Xue, X.; Yagita, H.; Okumura, K.; Nakano, H. TNF receptor-associated factor 2-dependent canonical pathway is crucial for the development of Peyer’s patches. J. Immunol. 2007, 178, 2272–2277. [Google Scholar] [CrossRef]
- So, T. [Immune Regulation by TNF Receptor-associated Factor 5]. Yakugaku Zasshi 2024, 144, 489–496. [Google Scholar] [CrossRef]
- Gissler, M.C.; Stachon, P.; Wolf, D.; Marchini, T. The Role of Tumor Necrosis Factor Associated Factors (TRAFs) in Vascular Inflammation and Atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 826630. [Google Scholar] [CrossRef]
- Noelle, R.J.; Roy, M.; Shepherd, D.M.; Stamenkovic, I.; Ledbetter, J.A.; Aruffo, A. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc. Natl. Acad. Sci. USA 1992, 89, 6550–6554. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, T.; Naka, T.; Yoshida, K.; Tanaka, T.; Fujiwara, H.; Suematsu, S.; Yoshida, N.; Kishimoto, T.; Kikutani, H. The immune responses in CD40-deficient mice: Impaired immunoglobulin class switching and germinal center formation. Immunity 1994, 1, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Foy, T.M.; Laman, J.D.; Elliott, E.A.; Dunn, J.J.; Waldschmidt, T.J.; Elsemore, J.; Noelle, R.J.; Flavell, R.A. Mice deficient for the CD40 ligand. Immunity 1994, 1, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Renshaw, B.R.; Fanslow, W.C., 3rd; Armitage, R.J.; Campbell, K.A.; Liggitt, D.; Wright, B.; Davison, B.L.; Maliszewski, C.R. Humoral immune responses in CD40 ligand-deficient mice. J. Exp. Med. 1994, 180, 1889–1900. [Google Scholar] [CrossRef] [PubMed]
- Pullen, S.S.; Miller, H.G.; Everdeen, D.S.; Dang, T.T.; Crute, J.J.; Kehry, M.R. CD40-tumor necrosis factor receptor-associated factor (TRAF) interactions: Regulation of CD40 signaling through multiple TRAF binding sites and TRAF hetero-oligomerization. Biochemistry 1998, 37, 11836–11845. [Google Scholar] [CrossRef]
- Leo, E.; Welsh, K.; Matsuzawa, S.; Zapata, J.M.; Kitada, S.; Mitchell, R.S.; Ely, K.R.; Reed, J.C. Differential requirements for tumor necrosis factor receptor-associated factor family proteins in CD40-mediated induction of NF-kappaB and Jun N-terminal kinase activation. J. Biol. Chem. 1999, 274, 22414–22422. [Google Scholar] [CrossRef]
- Lu, Y.; Chiang, J.; Zhang, R.; Roche, P.A.; Hodes, R.J. TRAF6 and TRAF2/3 Binding Motifs in CD40 Differentially Regulate B Cell Function in T-Dependent Antibody Responses and Dendritic Cell Function in Experimental Autoimmune Encephalomyelitis. J. Immunol. 2023, 211, 1814–1822. [Google Scholar] [CrossRef]
- Yasui, T.; Muraoka, M.; Takaoka-Shichijo, Y.; Ishida, I.; Takegahara, N.; Uchida, J.; Kumanogoh, A.; Suematsu, S.; Suzuki, M.; Kikutani, H. Dissection of B cell differentiation during primary immune responses in mice with altered CD40 signals. Int. Immunol. 2002, 14, 319–329. [Google Scholar] [CrossRef]
- Jabara, H.; Laouini, D.; Tsitsikov, E.; Mizoguchi, E.; Bhan, A.; Castigli, E.; Dedeoglu, F.; Pivniouk, V.; Brodeur, S.; Geha, R. The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated immunoglobulin class switching. Immunity 2002, 17, 265–276. [Google Scholar] [CrossRef]
- Vinuesa, C.G.; Linterman, M.A.; Yu, D.; MacLennan, I.C. Follicular Helper T Cells. Annu. Rev. Immunol. 2016, 34, 335–368. [Google Scholar] [CrossRef]
- Mesin, L.; Ersching, J.; Victora, G.D. Germinal Center B Cell Dynamics. Immunity 2016, 45, 471–482. [Google Scholar] [CrossRef]
- Foy, T.M.; Aruffo, A.; Bajorath, J.; Buhlmann, J.E.; Noelle, R.J. Immune regulation by CD40 and its ligand GP39. Annu. Rev. Immunol. 1996, 14, 591–617. [Google Scholar] [CrossRef]
- Elgueta, R.; Benson, M.J.; de Vries, V.C.; Wasiuk, A.; Guo, Y.; Noelle, R.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol. Rev. 2009, 229, 152–172. [Google Scholar] [CrossRef]
- Laidlaw, B.J.; Cyster, J.G. Transcriptional regulation of memory B cell differentiation. Nat. Rev. Immunol. 2021, 21, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Reboldi, A.; Cyster, J.G. Peyer’s patches: Organizing B-cell responses at the intestinal frontier. Immunol. Rev. 2016, 271, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Tanaka, S.; Chu, F.; Nurieva, R.I.; Martinez, G.J.; Rawal, S.; Wang, Y.H.; Lim, H.; Reynolds, J.M.; Zhou, X.H.; et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 2011, 17, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, I.; Agua-Doce, A.; Hernandez, A.; Almeida, C.; Oliveira, V.G.; Faro, J.; Graca, L. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 2011, 187, 4553–4560. [Google Scholar] [CrossRef] [PubMed]
- Lesley, R.; Kelly, L.M.; Xu, Y.; Cyster, J.G. Naive CD4 T cells constitutively express CD40L and augment autoreactive B cell survival. Proc. Natl. Acad. Sci. USA 2006, 103, 10717–10722. [Google Scholar] [CrossRef]
- Worm, M.; Geha, R.S. CD40 ligation induces lymphotoxin alpha gene expression in human B cells. Int. Immunol. 1994, 6, 1883–1890. [Google Scholar] [CrossRef]
- Schattner, E.J.; Elkon, K.B.; Yoo, D.H.; Tumang, J.; Krammer, P.H.; Crow, M.K.; Friedman, S.M. CD40 ligation induces Apo-1/Fas expression on human B lymphocytes and facilitates apoptosis through the Apo-1/Fas pathway. J. Exp. Med. 1995, 182, 1557–1565. [Google Scholar] [CrossRef]
- Yoshino, T.; Kondo, E.; Cao, L.; Takahashi, K.; Hayashi, K.; Nomura, S.; Akagi, T. Inverse expression of bcl-2 protein and Fas antigen in lymphoblasts in peripheral lymph nodes and activated peripheral blood T and B lymphocytes. Blood 1994, 83, 1856–1861. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Fu, Y.X.; Molina, H.; Chaplin, D.D. Lymphotoxin-alpha-deficient and TNF receptor-I-deficient mice define developmental and functional characteristics of germinal centers. Immunol. Rev. 1997, 156, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Sato, A.; Azuma, M.; Nagai, H.; Imai, W.; Kawaguchi, K.; Morita, M.; Okuyama, Y.; Ishii, N.; So, T. OX40 Ligand-Mannose-Binding Lectin Fusion Protein Induces Potent OX40 Cosignaling in CD4(+) T Cells. Biol. Pharm. Bull. 2022, 45, 1798–1804. [Google Scholar] [CrossRef] [PubMed]
- Merz, C.; Sykora, J.; Marschall, V.; Richards, D.M.; Heinonen, K.; Redondo Muller, M.; Thiemann, M.; Schnyder, T.; Fricke, H.; Hill, O.; et al. The Hexavalent CD40 Agonist HERA-CD40L Induces T-Cell-mediated Antitumor Immune Response Through Activation of Antigen-presenting Cells. J. Immunother. 2018, 41, 385–398. [Google Scholar] [CrossRef]
- Ceglia, V.; Zurawski, S.; Montes, M.; Kroll, M.; Bouteau, A.; Wang, Z.; Ellis, J.; Igyarto, B.Z.; Levy, Y.; Zurawski, G. Anti-CD40 Antibody Fused to CD40 Ligand Is a Superagonist Platform for Adjuvant Intrinsic DC-Targeting Vaccines. Front. Immunol. 2021, 12, 786144. [Google Scholar] [CrossRef]
- Zhu, Z.; Shukla, A.; Ramezani-Rad, P.; Apgar, J.R.; Rickert, R.C. The AKT isoforms 1 and 2 drive B cell fate decisions during the germinal center response. Life Sci. Alliance 2019, 2, e201900506. [Google Scholar] [CrossRef]
- Nakae, S.; Asano, M.; Horai, R.; Sakaguchi, N.; Iwakura, Y. IL-1 enhances T cell-dependent antibody production through induction of CD40 ligand and OX40 on T cells. J. Immunol. 2001, 167, 90–97. [Google Scholar] [CrossRef]
- Tang, T.; Cheng, X.; Truong, B.; Sun, L.; Yang, X.; Wang, H. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol. Ther. 2021, 219, 107709. [Google Scholar] [CrossRef]
- De Silva, N.S.; Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 2015, 15, 137–148. [Google Scholar] [CrossRef]
- Gardam, S.; Turner, V.M.; Anderton, H.; Limaye, S.; Basten, A.; Koentgen, F.; Vaux, D.L.; Silke, J.; Brink, R. Deletion of cIAP1 and cIAP2 in murine B lymphocytes constitutively activates cell survival pathways and inactivates the germinal center response. Blood 2011, 117, 4041–4051. [Google Scholar] [CrossRef]
- Woolaver, R.A.; Wang, X.; Dollin, Y.; Xie, P.; Wang, J.H.; Chen, Z. TRAF2 Deficiency in B Cells Impairs CD40-Induced Isotype Switching That Can Be Rescued by Restoring NF-kappaB1 Activation. J. Immunol. 2018, 201, 3421–3430. [Google Scholar] [CrossRef] [PubMed]
- Tada, K.; Okazaki, T.; Sakon, S.; Kobarai, T.; Kurosawa, K.; Yamaoka, S.; Hashimoto, H.; Mak, T.W.; Yagita, H.; Okumura, K.; et al. Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J. Biol. Chem. 2001, 276, 36530–36534. [Google Scholar] [CrossRef]
- Phung, H.T.; Nagashima, H.; Kobayashi, S.; Asano, N.; Machiyama, T.; Sakurai, T.; Tayama, S.; Asao, A.; Imatani, A.; Kawabe, T.; et al. TRAF5 Deficiency Ameliorates the Severity of Dextran Sulfate Sodium Colitis by Decreasing TRAF2 Expression in Nonhematopoietic Cells. Immunohorizons 2020, 4, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Buchta, C.M.; Bishop, G.A. TRAF5 negatively regulates TLR signaling in B lymphocytes. J. Immunol. 2014, 192, 145–150. [Google Scholar] [CrossRef]
- Nagashima, H.; Ishii, N.; So, T. Regulation of Interleukin-6 Receptor Signaling by TNF Receptor-Associated Factor 2 and 5 During Differentiation of Inflammatory CD4(+) T Cells. Front. Immunol. 2018, 9, 1986. [Google Scholar] [CrossRef]
- Potter, C.; Eyre, S.; Cope, A.; Worthington, J.; Barton, A. Investigation of association between the TRAF family genes and RA susceptibility. Ann. Rheum. Dis. 2007, 66, 1322–1326. [Google Scholar] [CrossRef]
- Xu, S.; Gao, X.; Ma, Y.; Deng, J.; Xu, S.; Pan, F. Association of methylation level and transcript level in TRAF5 gene with ankylosing spondylitis: A case-control study. Genes Immun. 2021, 22, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Chen, L.; Fang, J.; Hou, S.; Wei, L.; Bai, L.; Liu, Y.; Zhou, Y.; Kijlstra, A.; Yang, P. TNF receptor-associated factor 5 gene confers genetic predisposition to acute anterior uveitis and pediatric uveitis. Arthritis Res. Ther. 2013, 15, R113. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Chen, L.; Hou, S.; Fang, J.; Zhou, Y.; Bai, L.; Liu, Y.; Kijlstra, A.; Yang, P. TRAF5 and TRAF3IP2 gene polymorphisms are associated with Behcet’s disease and Vogt-Koyanagi-Harada syndrome: A case-control study. PLoS ONE 2014, 9, e84214. [Google Scholar] [CrossRef]
- Jenks, S.A.; Cashman, K.S.; Zumaquero, E.; Marigorta, U.M.; Patel, A.V.; Wang, X.; Tomar, D.; Woodruff, M.C.; Simon, Z.; Bugrovsky, R.; et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 2018, 49, 725–739.e726. [Google Scholar] [CrossRef]
- Suda, T.; Nagata, S. Purification and characterization of the Fas-ligand that induces apoptosis. J. Exp. Med. 1994, 179, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, S.; Nagata, S. pEF-BOS, a powerful mammalian expression vector. Nucleic Acids Res. 1990, 18, 5322. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Yamamura, K.; Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 1991, 108, 193–199. [Google Scholar] [CrossRef]
- Good, A.; Wofsy, L.; Henry, C.; Kimura, J. Preparation of hapten-modified protein antigens. In Selected Methods in Cellular Immunology; Mishel, B.B., Shiigi, S.M., Eds.; Freeman: San Francisco, CA, USA, 1980; pp. 343–350. [Google Scholar]
- Hikosaka, M.; Murata, A.; Yoshino, M.; Hayashi, S.I. Correlation between cell aggregation and antibody production in IgE-producing plasma cells. Biochem. Biophys. Rep. 2017, 10, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Kanda, Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Hikosaka-Kuniishi, M.; Iwata, C.; Ozawa, Y.; Ogawara, S.; Wakaizumi, T.; Sato, A.; Itaya, R.; Kobayashi, S.; Sunakawa, R.; Morita, M.; et al. Impaired germinal center formation and antibody production by CD40 in Traf5-deficient mice. In Proceedings of the Cytokine 2024 & KAI 2024, Seoul, Republic of Korea, 20–23 October 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hikosaka-Kuniishi, M.; Iwata, C.; Ozawa, Y.; Ogawara, S.; Wakaizumi, T.; Itaya, R.; Sunakawa, R.; Sato, A.; Nagai, H.; Morita, M.; et al. The Role of TNF Receptor-Associated Factor 5 in the Formation of Germinal Centers by B Cells During the Primary Phase of the Immune Response in Mice. Int. J. Mol. Sci. 2024, 25, 12331. https://doi.org/10.3390/ijms252212331
Hikosaka-Kuniishi M, Iwata C, Ozawa Y, Ogawara S, Wakaizumi T, Itaya R, Sunakawa R, Sato A, Nagai H, Morita M, et al. The Role of TNF Receptor-Associated Factor 5 in the Formation of Germinal Centers by B Cells During the Primary Phase of the Immune Response in Mice. International Journal of Molecular Sciences. 2024; 25(22):12331. https://doi.org/10.3390/ijms252212331
Chicago/Turabian StyleHikosaka-Kuniishi, Mari, Chieri Iwata, Yusuke Ozawa, Sayaka Ogawara, Tomomi Wakaizumi, Riho Itaya, Ren Sunakawa, Ayaka Sato, Hodaka Nagai, Masashi Morita, and et al. 2024. "The Role of TNF Receptor-Associated Factor 5 in the Formation of Germinal Centers by B Cells During the Primary Phase of the Immune Response in Mice" International Journal of Molecular Sciences 25, no. 22: 12331. https://doi.org/10.3390/ijms252212331
APA StyleHikosaka-Kuniishi, M., Iwata, C., Ozawa, Y., Ogawara, S., Wakaizumi, T., Itaya, R., Sunakawa, R., Sato, A., Nagai, H., Morita, M., & So, T. (2024). The Role of TNF Receptor-Associated Factor 5 in the Formation of Germinal Centers by B Cells During the Primary Phase of the Immune Response in Mice. International Journal of Molecular Sciences, 25(22), 12331. https://doi.org/10.3390/ijms252212331