Insights into the Identification of iPSC- and Monocyte-Derived Macrophage-Polarizing Compounds by AI-Fueled Cell Painting Analysis Tools
Abstract
:1. Introduction
2. Results
2.1. Frozen iPSC-Derived MΦs Are Suitable as a Screening Surrogate of Monocyte-Derived MΦs Generated from Frozen PBMCs
2.2. The Compound-Induced Polarization of IDMs and MDMs Is Indicated by Cell Shape Changes
2.3. Heterogeneity of Morphological Changes Can Occur upon Compound Treatment and Biological Stimulation of MΦ Polarization
2.4. Cell Painting Features Describe the Phenotypic Spectrum of MΦ Polarization upon Compound Treatment and Biological Stimulation
2.5. Compound-Induced MΦ Polarization Effects Are Identified and Quantified by Feature-Based Cell Painting Analysis
2.6. Compound-Induced MΦ Reprogramming Effects Are Identified and Quantified by Feature-Based Cell Painting Analysis
2.7. Cell Roundness Is Not Scored as the Relevant Morphological Feature to Discriminate Compound-Induced M1(-like) from M2(-like) Polarization
2.8. Deep Learning-Based Cell Painting Analysis Confirms Feature-Based Identified MΦ (Re-)Polarization Effects
3. Discussion
4. Materials and Methods
4.1. Isolation of Human Monocytes from Leukapheresis Products and Differentiation Towards MΦs
4.2. Differentiation of Human 201B7 iPSC Line CD14+- or CD34+-Derived Progenitors Towards MΦs
4.3. Flow Cytometry
4.4. LDH Assay
4.5. Compound Treatment and Biological Stimulation
4.6. Cell Painting and High-Content Imaging
4.7. Cell Roundness Analysis
4.8. Feature-Based Cell Painting Analysis
4.9. Deep Learning-Based Cell Painting Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ginhoux, F.; Schultze, J.L.; Murray, P.J.; Ochando, J.; Biswas, S.K. New Insights into the Multidimensional Concept of Macrophage Ontogeny, Activation and Function. Nat. Immunol. 2016, 17, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Mosser, D.M.; Edwards, J.P. Exploring the Full Spectrum of Macrophage Activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef] [PubMed]
- Sanin, D.E.; Ge, Y.; Marinkovic, E.; Kabat, A.M.; Castoldi, A.; Caputa, G.; Grzes, K.M.; Curtis, J.D.; Thompson, E.A.; Willenborg, S.; et al. A Common Framework of Monocyte-Derived Macrophage Activation. Sci. Immunol. 2022, 7, eabl7482. [Google Scholar] [CrossRef] [PubMed]
- Sica, A.; Erreni, M.; Allavena, P.; Porta, C. Macrophage Polarization in Pathology. Cell. Mol. Life Sci. 2015, 72, 4111–4126. [Google Scholar] [CrossRef] [PubMed]
- Okabe, Y.; Medzhitov, R. Tissue Biology Perspective on Macrophages. Nat. Immunol. 2016, 17, 9–17. [Google Scholar] [CrossRef]
- Wynn1, T.A.; Chawla, A.; Pollard, J.W. Origins and Hallmarks of Macrophages: Development, Homeostasis, and Disease. Nature 2013, 496, 445–455. [Google Scholar] [CrossRef]
- Park, M.D.; Silvin, A.; Ginhoux, F.; Merad, M. Macrophages in Health and Disease. Cell 2022, 185, 4259–4279. [Google Scholar] [CrossRef]
- Gordon, S.; Plüddemann, A. Tissue Macrophages: Heterogeneity and Functions. BMC Biol. 2017, 15, 53. [Google Scholar] [CrossRef]
- Schultze, J.L. Reprogramming of Macrophages—New Opportunities for Therapeutic Targeting. Curr. Opin. Pharmacol. 2016, 26, 10–15. [Google Scholar] [CrossRef]
- Murray, P.J.; Wynn, T.A. Protective and Pathogenic Functions of Macrophage Subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef]
- Geissmann, F.; Manz, M.G.; Jung, S.; Sieweke, M.H.; Merad, M.; Ley, K. Development of Monocytes, Macrophages, and Dendritic Cells. Science 2010, 327, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Epelman, S.; Lavine, K.J.; Randolph, G.J. Origin and Functions of Tissue Macrophages. Immunity 2014, 41, 21–35. [Google Scholar] [CrossRef] [PubMed]
- Ginhoux, F.; Guilliams, M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity 2016, 44, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Hirschi, K.K. Tissue-Resident Macrophage Development and Function. Front. Cell Dev. Biol. 2021, 8, 617879. [Google Scholar] [CrossRef] [PubMed]
- Mass, E.; Nimmerjahn, F.; Kierdorf, K.; Schlitzer, A. Tissue-Specific Macrophages: How They Develop and Choreograph Tissue Biology. Nat. Rev. Immunol. 2023, 23, 563–579. [Google Scholar] [CrossRef]
- Eligini, S.; Brioschi, M.; Fiorelli, S.; Tremoli, E.; Banfi, C.; Colli, S. Human Monocyte-Derived Macrophages Are Heterogenous: Proteomic Profile of Different Phenotypes. J. Proteom. 2015, 124, 112–123. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, G.; Li, H. Approaches for Studying Human Macrophages. Trends Immunol. 2024, 45, 237–247. [Google Scholar] [CrossRef]
- Cui, D.; Franz, A.; Fillon, S.A.; Jannetti, L.; Isambert, T.; Fundel-Clemens, K.; Huber, H.J.; Viollet, C.; Ghanem, A.; Niwa, A.; et al. High-Yield Human Induced Pluripotent Stem Cell-Derived Monocytes and Macrophages Are Functionally Comparable with Primary Cells. Front. Cell Dev. Biol. 2021, 9, 656867. [Google Scholar] [CrossRef]
- Bitzer, S.; Harati, M.D.; Kasmi, K.C.E.; Schloesser, D.; Sauer, J.; Olbrich, H.; Schuler, M.; Gantner, F.; Heilker, R. Application of Human IPSC-Derived Macrophages in a Miniaturized High-Content-Imaging-Based Efferocytosis Assay. SLAS Discov. 2023, 28, 149–162. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef]
- Gutbier, S.; Wanke, F.; Dahm, N.; Rümmelin, A.; Zimmermann, S.; Christensen, K.; Köchl, F.; Rautanen, A.; Hatje, K.; Geering, B.; et al. Large-Scale Production of Human IPSC-Derived Macrophages for Drug Screening. Int. J. Mol. Sci. 2020, 21, 4808. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, K.; Ikeda, T.; Haruta, M.; Matsumura, K.; Ogi, Y.; Nakagata, N.; Uchino, M.; Ando, Y.; Nishimura, Y.; Senju, S. Degradation of Amyloid Beta by Human Induced Pluripotent Stem Cell-Derived Macrophages Expressing Neprilysin-2. Stem Cell Res. 2014, 13, 442–453. [Google Scholar] [CrossRef]
- Senju, S.; Haruta, M.; Matsumura, K.; Matsunaga, Y.; Fukushima, S.; Ikeda, T.; Takamatsu, K.; Irie, A.; Nishimura, Y. Generation of Dendritic Cells and Macrophages from Human Induced Pluripotent Stem Cells Aiming at Cell Therapy. Gene Ther. 2011, 18, 874–883. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Ding, J.; Li, O.; He, Q.; Ke, M.; Zhu, M.; Liu, L.; Ou, W.-B.; He, Y.; Wu, Y. Human-Induced Pluripotent Stem Cell-Derived Macrophages and Their Immunological Function in Response to Tuberculosis Infection. Stem Cell Res. Ther. 2018, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Harati, M.D.; King, J.; Langer, S.; Binder, F.; Heilker, R. Recapitulation of NOD/RIPK2 Signaling in IPSC-Derived Macrophages. SLAS Discov. 2024, 29, 100185. [Google Scholar] [CrossRef] [PubMed]
- Murugesan, G.; Davidson, L.; Jannetti, L.; Crocker, P.R.; Weigle, B. Quantitative Proteomics of Polarised Macrophages Derived from Induced Pluripotent Stem Cells. Biomedicines 2022, 10, 239. [Google Scholar] [CrossRef]
- Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.; et al. Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity 2014, 41, 14–20. [Google Scholar] [CrossRef]
- Xue, J.; Schmidt, S.V.; Sander, J.; Draffehn, A.; Krebs, W.; Quester, I.; De Nardo, D.; Gohel, T.D.; Emde, M.; Schmidleithner, L.; et al. Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation. Immunity 2014, 40, 274–288. [Google Scholar] [CrossRef]
- Locati, M.; Mantovani, A.; Sica, A. Chapter Six Macrophage Activation and Polarization as an Adaptive Component of Innate Immunity. Adv. Immunol. 2013, 120, 163–184. [Google Scholar] [CrossRef]
- Hu, G.; Su, Y.; Kang, B.H.; Fan, Z.; Dong, T.; Brown, D.R.; Cheah, J.; Wittrup, K.D.; Chen, J. High-Throughput Phenotypic Screen and Transcriptional Analysis Identify New Compounds and Targets for Macrophage Reprogramming. Nat. Commun. 2021, 12, 773. [Google Scholar] [CrossRef]
- Buchacher, T.; Ohradanova-Repic, A.; Stockinger, H.; Fischer, M.B.; Weber, V. M2 Polarization of Human Macrophages Favors Survival of the Intracellular Pathogen Chlamydia Pneumoniae. PLoS ONE 2015, 10, e0143593. [Google Scholar] [CrossRef] [PubMed]
- McWhorter, F.Y.; Wang, T.; Nguyen, P.; Chung, T.; Liu, W.F. Modulation of Macrophage Phenotype by Cell Shape. Proc. Natl. Acad. Sci. USA 2013, 110, 17253–17258. [Google Scholar] [CrossRef] [PubMed]
- Bray, M.-A.; Singh, S.; Han, H.; Davis, C.T.; Borgeson, B.; Hartland, C.; Kost-Alimova, M.; Gustafsdottir, S.M.; Gibson, C.C.; Carpenter, A.E. Cell Painting, a High-Content Image-Based Assay for Morphological Profiling Using Multiplexed Fluorescent Dyes. Nat. Protoc. 2016, 11, 1757–1774. [Google Scholar] [CrossRef] [PubMed]
- Cimini, B.A.; Chandrasekaran, S.N.; Kost-Alimova, M.; Miller, L.; Goodale, A.; Fritchman, B.; Byrne, P.; Garg, S.; Jamali, N.; Logan, D.J.; et al. Optimizing the Cell Painting Assay for Image-Based Profiling. Nat. Protoc. 2023, 18, 1981–2013. [Google Scholar] [CrossRef]
- Gustafsdottir, S.M.; Ljosa, V.; Sokolnicki, K.L.; Wilson, J.A.; Walpita, D.; Kemp, M.M.; Seiler, K.P.; Carrel, H.A.; Golub, T.R.; Schreiber, S.L.; et al. Multiplex Cytological Profiling Assay to Measure Diverse Cellular States. PLoS ONE 2013, 8, e80999. [Google Scholar] [CrossRef]
- Tromans-Coia, C.; Jamali, N.; Abbasi, H.S.; Giuliano, K.A.; Hagimoto, M.; Jan, K.; Kaneko, E.; Letzsch, S.; Schreiner, A.; Sexton, J.Z.; et al. Assessing the Performance of the Cell Painting Assay across Different Imaging Systems. Cytom. Part A 2023, 103, 915–926. [Google Scholar] [CrossRef]
- Seal, S.; Trapotsi, M.-A.; Spjuth, O.; Singh, S.; Carreras-Puigvert, J.; Greene, N.; Bender, A.; Carpenter, A.E. A Decade in a Systematic Review: The Evolution and Impact of Cell Painting. bioRxiv 2024. [Google Scholar] [CrossRef]
- Yu, S.; Kalinin, A.A.; Paraskevopoulou, M.D.; Maruggi, M.; Cheng, J.; Tang, J.; Icke, I.; Luo, Y.; Wei, Q.; Scheibe, D.; et al. Integrating Inflammatory Biomarker Analysis and Artificial-Intelligence-Enabled Image-Based Profiling to Identify Drug Targets for Intestinal Fibrosis. Cell Chem. Biol. 2023, 30, 1169–1182.e8. [Google Scholar] [CrossRef]
- Caicedo, J.C.; Arevalo, J.; Piccioni, F.; Bray, M.-A.; Hartland, C.L.; Wu, X.; Brooks, A.N.; Berger, A.H.; Boehm, J.S.; Carpenter, A.E.; et al. Cell Painting Predicts Impact of Lung Cancer Variants. Mol. Biol. Cell 2022, 33, ar49. [Google Scholar] [CrossRef]
- Schölermann, B.; Bonowski, J.; Grigalunas, M.; Burhop, A.; Xie, Y.; Hoock, J.G.F.; Liu, J.; Dow, M.; Nelson, A.; Nowak, C.; et al. Identification of Dihydroorotate Dehydrogenase Inhibitors Using the Cell Painting Assay. ChemBioChem 2022, 23, e202200475. [Google Scholar] [CrossRef]
- Pahl, A.; Liu, J.; Patil, S.; Adariani, S.R.; Schölermann, B.; Warmers, J.; Bonowski, J.; Koska, S.; Akbulut, Y.; Seitz, C.; et al. Illuminating Dark Chemical Matter Using the Cell Painting Assay. J. Med. Chem. 2024, 67, 8862–8876. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.R.; Shelton, C.; Murphy, J.; Brittain, S.; Bray, M.-A.; Aspesi, P.; Concannon, J.; King, F.J.; Ihry, R.J.; Ho, D.J.; et al. Enhancing the Small-Scale Screenable Biological Space beyond Known Chemogenomics Libraries with Gray Chemical Matter–Compounds with Novel Mechanisms from High-Throughput Screening Profiles. ACS Chem. Biol. 2024, 19, 938–952. [Google Scholar] [CrossRef] [PubMed]
- Haslum, J.F.; Lardeau, C.-H.; Karlsson, J.; Turkki, R.; Leuchowius, K.-J.; Smith, K.; Müllers, E. Cell Painting-Based Bioactivity Prediction Boosts High-Throughput Screening Hit-Rates and Compound Diversity. Nat. Commun. 2024, 15, 3470. [Google Scholar] [CrossRef]
- Ziegler, S.; Sievers, S.; Waldmann, H. Morphological Profiling of Small Molecules. Cell Chem. Biol. 2021, 28, 300–319. [Google Scholar] [CrossRef]
- Simm, J.; Klambauer, G.; Arany, A.; Steijaert, M.; Wegner, J.K.; Gustin, E.; Chupakhin, V.; Chong, Y.T.; Vialard, J.; Buijnsters, P.; et al. Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug Discovery. Cell Chem. Biol. 2018, 25, 611–618.e3. [Google Scholar] [CrossRef]
- Borowa, A.; Rymarczyk, D.; Żyła, M.; Kańdula, M.; Sánchez-Fernández, A.; Rataj, K.; Struski, Ł.; Tabor, J.; Zieliński, B. Decoding Phenotypic Screening: A Comparative Analysis of Image Representations. Comput. Struct. Biotechnol. J. 2024, 23, 1181–1188. [Google Scholar] [CrossRef]
- Haslum, J.F.; Matsoukas, C.; Leuchowius, K.-J.; Müllers, E.; Smith, K. Metadata-Guided Consistency Learning for High Content Images. arXiv 2022, arXiv:2212.11595. [Google Scholar] [CrossRef]
- Kraus, O.; Kenyon-Dean, K.; Saberian, S.; Fallah, M.; McLean, P.; Leung, J.; Sharma, V.; Khan, A.; Balakrishnan, J.; Celik, S.; et al. Masked Autoencoders for Microscopy Are Scalable Learners of Cellular Biology. arXiv 2024, arXiv:2404.10242. [Google Scholar] [CrossRef]
- Palma, A.; Theis, F.J.; Lotfollahi, M. Predicting Cell Morphological Responses to Perturbations Using Generative Modeling. bioRxiv 2023. [Google Scholar] [CrossRef]
- Cross-Zamirski, J.O.; Mouchet, E.; Williams, G.; Schönlieb, C.-B.; Turkki, R.; Wang, Y. Label-Free Prediction of Cell Painting from Brightfield Images. Sci. Rep. UK 2022, 12, 10001. [Google Scholar] [CrossRef]
- Moffat, J.G.; Vincent, F.; Lee, J.A.; Eder, J.; Prunotto, M. Opportunities and Challenges in Phenotypic Drug Discovery: An Industry Perspective. Nat. Rev. Drug Discov. 2017, 16, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Seal, S.; Yang, H.; Vollmers, L.; Bender, A. Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays. Chem. Res. Toxicol. 2021, 34, 422–437. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Seal, S.; Yang, H.; Bender, A. Using Chemical and Biological Data to Predict Drug Toxicity. Slas Discov. 2023, 28, 53–64. [Google Scholar] [CrossRef]
- Lippincott, M.J.; Tomkinson, J.; Bunten, D.; Mohammadi, M.; Kastl, J.; Knop, J.; Schwandner, R.; Huang, J.; Ongo, G.; Robichaud, N.; et al. A Morphology and Secretome Map of Pyroptosis. bioRxiv 2024. [Google Scholar] [CrossRef]
- Cox, M.J.; Jaensch, S.; de Waeter, J.V.; Cougnaud, L.; Seynaeve, D.; Benalla, S.; Koo, S.J.; Wyngaert, I.V.D.; Neefs, J.-M.; Malkov, D.; et al. Tales of 1,008 Small Molecules: Phenomic Profiling through Live-Cell Imaging in a Panel of Reporter Cell Lines. Sci. Rep. 2020, 10, 13262. [Google Scholar] [CrossRef]
- Tegtmeyer, M.; Arora, J.; Asgari, S.; Cimini, B.A.; Peirent, E.; Liyanage, D.; Way, G.; Weisbart, E.; Nathan, A.; Amariuta, T.; et al. High-Dimensional Phenotyping to Define the Genetic Basis of Cellular Morphology. bioRxiv 2023. [Google Scholar] [CrossRef]
- Mehrizi, R.; Mehrjou, A.; Alegro, M.; Zhao, Y.; Carbone, B.; Fishwick, C.; Vappiani, J.; Bi, J.; Sanford, S.; Keles, H.; et al. Multi-Omics Prediction from High-Content Cellular Imaging with Deep Learning. arXiv 2023, arXiv:2306.09391. [Google Scholar] [CrossRef]
- Lazarov, T.; Juarez-Carreño, S.; Cox, N.; Geissmann, F. Physiology and Diseases of Tissue-Resident Macrophages. Nature 2023, 618, 698–707. [Google Scholar] [CrossRef]
- Sturgeon, C.M.; Ditadi, A.; Awong, G.; Kennedy, M.; Keller, G. Wnt Signaling Controls the Specification of Definitive and Primitive Hematopoiesis from Human Pluripotent Stem Cells. Nat. Biotechnol. 2014, 32, 554–561. [Google Scholar] [CrossRef]
- Hoeffel, G.; Ginhoux, F. Ontogeny of Tissue-Resident Macrophages. Front. Immunol. 2015, 6, 486. [Google Scholar] [CrossRef]
- Takata, K.; Kozaki, T.; Lee, C.Z.W.; Thion, M.S.; Otsuka, M.; Lim, S.; Utami, K.H.; Fidan, K.; Park, D.S.; Malleret, B.; et al. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function. Immunity 2017, 47, 183–198.e6. [Google Scholar] [CrossRef] [PubMed]
- Antonsen, K.W.; Friis, H.N.; Sorensen, B.S.; Etzerodt, A.; Moestrup, S.K.; Møller, H.J. Comparison of Culture Media Reveals That Non-essential Amino Acids Strongly Affect the Phenotype of Human Monocyte-derived Macrophages. Immunology 2023, 170, 344–358. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, T.; Kawamura, K.; Fujimori, K.; Koike, A.; Amano, F. Influence of the Culture Medium on the Production of Nitric Oxide and Expression of Inducible Nitric Oxide Synthase by Activated Macrophages in Vitro. Biochem. Biophys. Rep. 2016, 5, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Qiu, Y.; Kurland, I.J.; Drlica, K.; Subbian, S.; Tyagi, S.; Shi, L. Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium Tuberculosis Infection. MBio 2022, 13, e01274-22. [Google Scholar] [CrossRef]
- Hu, X.; Ma, Z.; Xu, B.; Li, S.; Yao, Z.; Liang, B.; Wang, J.; Liao, W.; Lin, L.; Wang, C.; et al. Glutamine Metabolic Microenvironment Drives M2 Macrophage Polarization to Mediate Trastuzumab Resistance in HER2-positive Gastric Cancer. Cancer Commun. 2023, 43, 909–937. [Google Scholar] [CrossRef]
- Ren, W.; Xia, Y.; Chen, S.; Wu, G.; Bazer, F.W.; Zhou, B.; Tan, B.; Zhu, G.; Deng, J.; Yin, Y. Glutamine Metabolism in Macrophages: A Novel Target for Obesity/Type 2 Diabetes. Adv. Nutr. 2019, 10, 321–330. [Google Scholar] [CrossRef]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Cell Painting for Phenotypic Screening. Revvity—Expanding the boundaries of human potential through science. Available online: https://www.revvity.cn/content/cell-painting-phenotypic-screening?srsltid=AfmBOoqAvL5HbLi1qP67hDEgRcqdrv9IwWnpRsoMlqlvvSMPjlhcjw-2 (accessed on 17 October 2024).
- Trapotsi, M.-A.; Mouchet, E.; Williams, G.; Monteverde, T.; Juhani, K.; Turkki, R.; Miljković, F.; Martinsson, A.; Mervin, L.; Pryde, K.R.; et al. Cell Morphological Profiling Enables High-Throughput Screening for PROteolysis TArgeting Chimera (PROTAC) Phenotypic Signature. ACS Chem. Biol. 2022, 17, 1733–1744. [Google Scholar] [CrossRef]
- Wong, D.R.; Logan, D.J.; Hariharan, S.; Stanton, R.; Clevert, D.-A.; Kiruluta, A. Deep Representation Learning Determines Drug Mechanism of Action from Cell Painting Images. Digit. Discov. 2023, 2, 1354–1367. [Google Scholar] [CrossRef]
- Chandrasekaran, S.N.; Ceulemans, H.; Boyd, J.D.; Carpenter, A.E. Image-Based Profiling for Drug Discovery: Due for a Machine-Learning Upgrade? Nat. Rev. Drug Discov. 2021, 20, 145–159. [Google Scholar] [CrossRef]
- Herman, D.; Kańduła, M.M.; Freitas, L.G.A.; van Dongen, C.; Van, T.L.; Mesens, N.; Jaensch, S.; Gustin, E.; Micholt, L.; Lardeau, C.-H.; et al. Leveraging Cell Painting Images to Expand the Applicability Domain and Actively Improve Deep Learning Quantitative Structure–Activity Relationship Models. Chem. Res. Toxicol. 2023, 36, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Nyffeler, J.; Willis, C.; Lougee, R.; Richard, A.; Paul-Friedman, K.; Harrill, J.A. Bioactivity Screening of Environmental Chemicals Using Imaging-Based High-Throughput Phenotypic Profiling. Toxicol. Appl. Pharmacol. 2020, 389, 114876. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, K.; Larsson, L.-I. Effects of Cytochalasin D on the Actin Cytoskeleton: Association of Neoformed Actin Aggregates with Proteins Involved in Signaling and Endocytosis. Cell. Mol. Life Sci. CMLS 2003, 60, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- .
- Zhang, Q.; Sioud, M. Tumor-Associated Macrophage Subsets: Shaping Polarization and Targeting. Int. J. Mol. Sci. 2023, 24, 7493. [Google Scholar] [CrossRef]
- Cao, J.; Liu, C. Mechanistic Studies of Tumor-Associated Macrophage Immunotherapy. Front. Immunol. 2024, 15, 1476565. [Google Scholar] [CrossRef]
- DeNardo, D.G.; Ruffell, B. Macrophages as Regulators of Tumor Immunity and Immunotherapy. Nat. Rev. Immunol. 2019, 19, 369–382. [Google Scholar] [CrossRef]
- Lindner, B.; Martin, E.; Steininger, M.; Bundalo, A.; Lenter, M.; Zuber, J.; Schuler, M. A Genome-Wide CRISPR/Cas9 Screen to Identify Phagocytosis Modulators in Monocytic THP-1 Cells. Sci. Rep. 2021, 11, 12973. [Google Scholar] [CrossRef]
- Jahchan, N.S.; Mujal, A.M.; Pollack, J.L.; Binnewies, M.; Sriram, V.; Reyno, L.; Krummel, M.F. Tuning the Tumor Myeloid Microenvironment to Fight Cancer. Front. Immunol. 2019, 10, 1611. [Google Scholar] [CrossRef]
- Anderson, N.R.; Minutolo, N.G.; Gill, S.; Klichinsky, M. Macrophage-Based Approaches for Cancer Immunotherapy. Cancer Res. 2021, 81, 1201–1208. [Google Scholar] [CrossRef]
- Pyonteck, S.M.; Akkari, L.; Schuhmacher, A.J.; Bowman, R.L.; Sevenich, L.; Quail, D.F.; Olson, O.C.; Quick, M.L.; Huse, J.T.; Teijeiro, V.; et al. CSF-1R Inhibition Alters Macrophage Polarization and Blocks Glioma Progression. Nat. Med. 2013, 19, 1264–1272. [Google Scholar] [CrossRef]
- Zhang, M.; Hutter, G.; Kahn, S.A.; Azad, T.D.; Gholamin, S.; Xu, C.Y.; Liu, J.; Achrol, A.S.; Richard, C.; Sommerkamp, P.; et al. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo. PLoS ONE 2016, 11, e0153550. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Mu, R.; Wang, Z.; Xing, P.; Zhang, J.; Dong, L.; Wang, C. A Toll-like Receptor Agonist Mimicking Microbial Signal to Generate Tumor-Suppressive Macrophages. Nat. Commun. 2019, 10, 2272. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, P.; Lepland, A.; Scodeller, P.; Fontana, F.; Torrieri, G.; Tiboni, M.; Shahbazi, M.; Casettari, L.; Kostiainen, M.A.; Hirvonen, J.; et al. Peptide-Guided Resiquimod-Loaded Lignin Nanoparticles Convert Tumor-Associated Macrophages from M2 to M1 Phenotype for Enhanced Chemotherapy. Acta Biomater. 2021, 133, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Allavena, P.; Anfray, C.; Ummarino, A.; Andón, F.T. Therapeutic Manipulation of Tumor-Associated Macrophages: Facts and Hopes from a Clinical and Translational Perspective. Clin. Cancer Res. 2021, 27, 3291–3297. [Google Scholar] [CrossRef] [PubMed]
- Krentzel, D.; Shorte, S.L.; Zimmer, C. Deep Learning in Image-Based Phenotypic Drug Discovery. Trends Cell Biol. 2023, 33, 538–554. [Google Scholar] [CrossRef]
- Watson, C.K.; Schloesser, D.; Fundel-Clemens, K.; Lerner, C.; Gabler, S.; Baskaran, P.; Wohnhaas, C.T.; Dichtl, S.; Huber, H.J.; Ask, K.; et al. Antifibrotic Drug Nintedanib Inhibits CSF1R to Promote IL-4–Associated Tissue Repair Macrophages. Am. J. Respir. Cell Mol. Biol. 2023, 68, 366–380. [Google Scholar] [CrossRef]
- Schorpp, K.; Bessadok, A.; Biibosunov, A.; Rothenaigner, I.; Strasser, S.; Peng, T.; Hadian, K. CellDeathPred: A Deep Learning Framework for Ferroptosis and Apoptosis Prediction Based on Cell Painting. Cell Death Discov. 2023, 9, 277. [Google Scholar] [CrossRef]
- Goebel, G.L.; Giannino, N.; Lampe, P.; Qiu, X.; Schloßhauer, J.L.; Imig, J.; Sievers, S.; Wu, P. Profiling Cellular Morphological Changes Induced by Dual-Targeting PROTACs of Aurora Kinase and RNA-Binding Protein YTHDF2. ChemBioChem 2024, 25, e202400183. [Google Scholar] [CrossRef]
- Chandrasekaran, S.N.; Ackerman, J.; Alix, E.; Ando, D.M.; Arevalo, J.; Bennion, M.; Boisseau, N.; Borowa, A.; Boyd, J.D.; Brino, L.; et al. JUMP Cell Painting Dataset: Morphological Impact of 136,000 Chemical and Genetic Perturbations. bioRxiv 2023. [Google Scholar] [CrossRef]
- Chandrasekaran, S.N.; Cimini, B.A.; Goodale, A.; Miller, L.; Kost-Alimova, M.; Jamali, N.; Doench, J.G.; Fritchman, B.; Skepner, A.; Melanson, M.; et al. Three Million Images and Morphological Profiles of Cells Treated with Matched Chemical and Genetic Perturbations. Nat. Methods 2024, 21, 1114–1121. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brüggenthies, J.B.; Dittmer, J.; Martin, E.; Zingman, I.; Tabet, I.; Bronner, H.; Groetzner, S.; Sauer, J.; Dehghan Harati, M.; Scharnowski, R.; et al. Insights into the Identification of iPSC- and Monocyte-Derived Macrophage-Polarizing Compounds by AI-Fueled Cell Painting Analysis Tools. Int. J. Mol. Sci. 2024, 25, 12330. https://doi.org/10.3390/ijms252212330
Brüggenthies JB, Dittmer J, Martin E, Zingman I, Tabet I, Bronner H, Groetzner S, Sauer J, Dehghan Harati M, Scharnowski R, et al. Insights into the Identification of iPSC- and Monocyte-Derived Macrophage-Polarizing Compounds by AI-Fueled Cell Painting Analysis Tools. International Journal of Molecular Sciences. 2024; 25(22):12330. https://doi.org/10.3390/ijms252212330
Chicago/Turabian StyleBrüggenthies, Johanna B., Jakob Dittmer, Eva Martin, Igor Zingman, Ibrahim Tabet, Helga Bronner, Sarah Groetzner, Julia Sauer, Mozhgan Dehghan Harati, Rebekka Scharnowski, and et al. 2024. "Insights into the Identification of iPSC- and Monocyte-Derived Macrophage-Polarizing Compounds by AI-Fueled Cell Painting Analysis Tools" International Journal of Molecular Sciences 25, no. 22: 12330. https://doi.org/10.3390/ijms252212330
APA StyleBrüggenthies, J. B., Dittmer, J., Martin, E., Zingman, I., Tabet, I., Bronner, H., Groetzner, S., Sauer, J., Dehghan Harati, M., Scharnowski, R., Bakker, J., Riegger, K., Heinzelmann, C., Ast, B., Ries, R., Fillon, S. A., Bachmayr-Heyda, A., Kitt, K., Grundl, M. A., ... Weigle, B. (2024). Insights into the Identification of iPSC- and Monocyte-Derived Macrophage-Polarizing Compounds by AI-Fueled Cell Painting Analysis Tools. International Journal of Molecular Sciences, 25(22), 12330. https://doi.org/10.3390/ijms252212330