Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights
Abstract
:1. Introduction
2. Results
2.1. ADMET Analyses
2.2. Toxicogenomic Analyses
3. Discussion
3.1. ADMET Analysis
3.2. Gene Ontology, Molecular Pathways and Related Diseases
3.3. Phenotype Data
3.4. Network Analysis
3.5. Critical Endpoints
3.6. Limitations
4. Materials and Methods
4.1. ADMET Properties: AdmetSAR and ADMETlab
4.2. Toxicogenomic Analysis
4.2.1. Comparative Toxicogenomic Database
4.2.2. ToppGene Suite Portal
4.2.3. Metascape
4.2.4. Network Analysis: GeneMANIA, CytoNCA and CytoHubba
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Y.; Nielsen, C.; Li, Y.; Hammarstrand, S.; Andersson, E.M.; Li, H.; Olsson, D.S.; Engström, K.; Pineda, D.; Lindh, C.H.; et al. Serum Perfluoroalkyl Substances in Residents Following Long-Term Drinking Water Contamination from Firefighting Foam in Ronneby, Sweden. Environ. Int. 2021, 147, 106333. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; He, J.; Niu, Z.; Zhang, Y. Legacy Per- and Polyfluoroalkyl Substances (PFASs) and Alternatives (Short-Chain Analogues, F-53B, GenX and FC-98) in Residential Soils of China: Present Implications of Replacing Legacy PFASs. Environ. Int. 2020, 135, 105419. [Google Scholar] [CrossRef] [PubMed]
- Cousins, I.T.; DeWitt, J.C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Scheringer, M.; Wang, Z. The High Persistence of PFAS Is Sufficient for Their Management as a Chemical Class. Environ. Sci. Process Impacts 2020, 22, 2307–2312. [Google Scholar] [CrossRef]
- Glüge, J.; Scheringer, M.; Cousins, I.T.; DeWitt, J.C.; Goldenman, G.; Herzke, D.; Lohmann, R.; Ng, C.A.; Trier, X.; Wang, Z. An Overview of the Uses of Per- and Polyfluoroalkyl Substances (PFAS). Environ. Sci. Process Impacts 2020, 22, 2345–2373. [Google Scholar] [CrossRef] [PubMed]
- Anderko, L.; Pennea, E. Exposures to Per-and Polyfluoroalkyl Substances (PFAS): Potential Risks to Reproductive and Children’s Health. Curr. Probl. Pediatr. Adolesc. Health Care 2020, 50, 100760. [Google Scholar] [CrossRef]
- Andersson, E.M.; Scott, K.; Xu, Y.; Li, Y.; Olsson, D.S.; Fletcher, T.; Jakobsson, K. High Exposure to Perfluorinated Compounds in Drinking Water and Thyroid Disease. A Cohort Study from Ronneby, Sweden. Environ. Res. 2019, 176, 108540. [Google Scholar] [CrossRef]
- Catherine, M.; Nadège, B.; Charles, P.; Yann, A. Perfluoroalkyl Substances (PFASs) in the Marine Environment: Spatial Distribution and Temporal Profile Shifts in Shellfish from French Coasts. Chemosphere 2019, 228, 640–648. [Google Scholar] [CrossRef]
- McCarthy, C.J.; Roark, S.A.; Middleton, E.T. Considerations for Toxicity Experiments and Risk Assessments with PFAS Mixtures. Integr. Environ. Assess. Manag. 2021, 17, 697–704. [Google Scholar] [CrossRef]
- Rodríguez-Jorquera, I.A.; Colli-Dula, R.C.; Kroll, K.; Jayasinghe, B.S.; Parachu Marco, M.V.; Silva-Sanchez, C.; Toor, G.S.; Denslow, N.D. Blood Transcriptomics Analysis of Fish Exposed to Perfluoro Alkyls Substances: Assessment of a Non-Lethal Sampling Technique for Advancing Aquatic Toxicology Research. Environ. Sci. Technol. 2019, 53, 1441–1452. [Google Scholar] [CrossRef]
- Hoover, G.; Kar, S.; Guffey, S.; Leszczynski, J.; Sepúlveda, M.S. In Vitro and in Silico Modeling of Perfluoroalkyl Substances Mixture Toxicity in an Amphibian Fibroblast Cell Line. Chemosphere 2019, 233, 25–33. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Perfluoroalkyls; ATSDR: Atalanta, GA, USA, 2021. [Google Scholar]
- Peritore, A.F.; Gugliandolo, E.; Cuzzocrea, S.; Crupi, R.; Britti, D. Current Review of Increasing Animal Health Threat of Per- and Polyfluoroalkyl Substances (PFAS): Harms, Limitations, and Alternatives to Manage Their Toxicity. Int. J. Mol. Sci. 2023, 24, 11707. [Google Scholar] [CrossRef] [PubMed]
- Ojo, A.F.; Peng, C.; Ng, J.C. Assessing the Human Health Risks of Per- and Polyfluoroalkyl Substances: A Need for Greater Focus on Their Interactions as Mixtures. J. Hazard. Mater. 2021, 407, 124863. [Google Scholar] [CrossRef] [PubMed]
- Pelch, K.E.; Reade, A.; Wolffe, T.A.M.; Kwiatkowski, C.F. PFAS Health Effects Database: Protocol for a Systematic Evidence Map. Environ. Int. 2019, 130, 104851. [Google Scholar] [CrossRef] [PubMed]
- EPA. Fact Sheet: 2010/2015 PFOA Stewardship Program; EPA: Washington, DC, USA, 2024. [Google Scholar]
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L. (Ron); Leblanc, J.; Nebbia, C.S.; et al. Risk to Human Health Related to the Presence of Perfluoroalkyl Substances in Food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- Stockholm Convention on Persistent Organic Pollutants (POPs). Available online: https://www.pops.int (accessed on 5 November 2024).
- Sadrabadi, F.; Alarcan, J.; Sprenger, H.; Braeuning, A.; Buhrke, T. Impact of Perfluoroalkyl Substances (PFAS) and PFAS Mixtures on Lipid Metabolism in Differentiated HepaRG Cells as a Model for Human Hepatocytes. Arch. Toxicol. 2024, 98, 507–524. [Google Scholar] [CrossRef]
- Wolf, C.J.; Schmid, J.E.; Lau, C.; Abbott, B.D. Activation of Mouse and Human Peroxisome Proliferator-Activated Receptor-Alpha (PPARα) by Perfluoroalkyl Acids (PFAAs): Further Investigation of C4–C12 Compounds. Reprod. Toxicol. 2012, 33, 546–551. [Google Scholar] [CrossRef]
- Wolf, C.J.; Rider, C.V.; Lau, C.; Abbott, B.D. Evaluating the Additivity of Perfluoroalkyl Acids in Binary Combinations on Peroxisome Proliferator-Activated Receptor-α Activation. Toxicology 2014, 316, 43–54. [Google Scholar] [CrossRef]
- Roth, K.; Yang, Z.; Agarwal, M.; Liu, W.; Peng, Z.; Long, Z.; Birbeck, J.; Westrick, J.; Liu, W.; Petriello, M.C. Exposure to a Mixture of Legacy, Alternative, and Replacement per- and Polyfluoroalkyl Substances (PFAS) Results in Sex-Dependent Modulation of Cholesterol Metabolism and Liver Injury. Environ. Int. 2021, 157, 106843. [Google Scholar] [CrossRef]
- Lin, Z.; Chou, W.-C. Machine Learning and Artificial Intelligence in Toxicological Sciences. Toxicol. Sci. 2022, 189, 7–19. [Google Scholar] [CrossRef]
- Lu, H.; Yang, D.; Shi, Y.; Chen, K.; Li, P.; Huang, S.; Cui, D.; Feng, Y.; Wang, T.; Yang, J.; et al. Toxicogenomics Scoring System: TGSS, a Novel Integrated Risk Assessment Model for Chemical Carcinogenicity Prediction. Ecotoxicol. Environ. Saf. 2023, 250, 114466. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Liu, G.; Tang, Y. In Silico ADMET Prediction: Recent Advances, Current Challenges and Future Trends. Curr. Top. Med. Chem. 2013, 13, 1273–1289. [Google Scholar] [CrossRef] [PubMed]
- Boverhof, D.R.; Zacharewski, T.R. Toxicogenomics in Risk Assessment: Applications and Needs. Toxicol. Sci. 2006, 89, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.W.; Jen, H.; Chia, C.; Wang, C.; Shan, S.; Pinpin, W. Leveraging Complementary Computational Models for Prioritizing Chemicals of Developmental and Reproductive Toxicity Concern: An Example of Food Contact Materials. Arch. Toxicol. 2020, 94, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Audouze, K.; Taboureau, O.; Grandjean, P. A Systems Biology Approach to Predictive Developmental Neurotoxicity of a Larvicide Used in the Prevention of Zika Virus Transmission. Toxicol. Appl. Pharmacol. 2018, 354, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Van Breda, S.G.J.; Claessen, S.M.H.; Lo, K.; Van Herwijnen, M.; Gaj, S.; De Kok, T.M.C.M.; Kleinjans, J.C.S. Epigenetic Mechanisms Underlying Arsenic Associated Lung Carcinogenesis. Arch. Toxicol. 2014, 89, 1959–1969. [Google Scholar] [CrossRef]
- Grondin, C.J.; Davis, A.P.; Wiegers, J.A.; Wiegers, T.C.; Sciaky, D.; Johnson, R.J.; Mattingly, C.J. Predicting Molecular Mechanisms, Pathways, and Health Outcomes Induced by Juul e-Cigarette Aerosol Chemicals Using the Comparative Toxicogenomics Database. Curr. Res. Toxicol. 2021, 2, 272–281. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, X.; Chen, J.; Du, X.; Sun, Y.; Zhan, L.; Wang, W.; Li, Y. Exploring the Molecular Mechanisms by Which Per- and Polyfluoroalkyl Substances Induce Polycystic Ovary Syndrome through in Silico Toxicogenomic Data Mining. Ecotoxicol. Environ. Saf. 2024, 275, 116251. [Google Scholar] [CrossRef]
- Zeilmaker, M.J. Mixture Exposure to PFAS: A Relative Potency Factor Approach; RIVM Report; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2018. [Google Scholar]
- Takeda, K.; Saito, T.; Sasaki, S.; Eguchi, A.; Sugiyama, M.; Eto, S.; Suzuki, K.; Kamata, R. Toxicity Assessment of Mixed Exposure of Nine Perfluoroalkyl Substances at Concentrations Relevant to Daily Intake. Toxics 2024, 12, 52. [Google Scholar] [CrossRef]
- Maxwell, D.L.; Oluwayiose, O.A.; Houle, E.; Roth, K.; Nowak, K.; Sawant, S.; Paskavitz, A.L.; Liu, W.; Gurdziel, K.; Petriello, M.C.; et al. Mixtures of Per- and Polyfluoroalkyl Substances (PFAS) Alter Sperm Methylation and Long-Term Reprogramming of Offspring Liver and Fat Transcriptome. Environ. Int. 2024, 186, 108577. [Google Scholar] [CrossRef]
- Janani, C.; Ranjitha Kumari, B.D. PPAR Gamma Gene—A Review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [Google Scholar] [CrossRef]
- Pillai, O.; Dhanikula, A.B.; Panchagnula, R. Drug Delivery: An Odyssey of 100 Years. Curr. Opin. Chem. Biol. 2001, 5, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- May, P.; May, E. Twenty Years of P53 Research: Structural and Functional Aspects of the P53 Protein. Oncogene 1999, 18, 7621–7636. [Google Scholar] [CrossRef] [PubMed]
- Horie, T.; Nishino, T.; Baba, O.; Kuwabara, Y.; Nakao, T.; Nishiga, M.; Usami, S.; Izuhara, M.; Sowa, N.; Yahagi, N.; et al. MicroRNA-33 Regulates Sterol Regulatory Element-Binding Protein 1 Expression in Mice. Nat. Commun. 2013, 4, 2883. [Google Scholar] [CrossRef] [PubMed]
- Ana Maria, A.; Oscar Andréas, M.-R.; Haider, N.B. Role of Nuclear Receptors in Central Nervous System Development and Associated Diseases. J. Exp. Neurosci. 2015, 9, JEN-S25480. [Google Scholar] [CrossRef]
- Rakhshandehroo, M.; Knoch, B.; Müller, M.; Kersten, S. Peroxisome Proliferator-Activated Receptor Alpha Target Genes. PPAR Res. 2010, 2010, 612089. [Google Scholar] [CrossRef]
- Bharal, B.; Ruchitha, C.; Kumar, P.; Pandey, R.; Rachamalla, M.; Niyogi, S.; Naidu, R.; Kaundal, R.K. Neurotoxicity of Per- and Polyfluoroalkyl Substances: Evidence and Future Directions. Sci. Total Environ. 2024, 955, 176941. [Google Scholar] [CrossRef]
- Panieri, E.; Baralic, K.; Djukic-Cosic, D.; Djordjevic, A.B.; Saso, L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics 2022, 10, 44. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, J.; Peng, S.; Du, M.; Ow, S.; Pu, H.; Pan, C.; Shen, H. Proteomic Analysis of Perfluorooctane Sulfonate-Induced Apoptosis in Human Hepatic Cells Using the ITRAQ Technique. J. Appl. Toxicol. 2014, 34, 1342–1351. [Google Scholar] [CrossRef]
- Wilson, J.; Berntsen, H.F.; Zimmer, K.E.; Verhaegen, S.; Frizzell, C.; Ropstad, E.; Connolly, L. Do Persistent Organic Pollutants Interact with the Stress Response? Individual Compounds, and Their Mixtures, Interaction with the Glucocorticoid Receptor. Toxicol. Lett. 2016, 241, 121–132. [Google Scholar] [CrossRef]
- Mao, Z.; Xia, W.; Wang, J.; Chen, T.; Zeng, Q.; Xu, B.; Li, W.; Chen, X.; Xu, S. Perfluorooctane Sulfonate Induces Apoptosis in Lung Cancer A549 Cells through Reactive Oxygen Species-Mediated Mitochondrion-Dependent Pathway. J. Appl. Toxicol. 2013, 33, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Berntsen, H.F.; Bjørklund, C.G.; Strandabø, R.; Haug, T.M.; Moldes-Anaya, A.; Fuentes-Lazaro, J.; Verhaegen, S.; Paulsen, R.E.; Tasker, R.A.; Ropstad, E. PFOS-Induced Excitotoxicity Is Dependent on Ca2+ Influx via NMDA Receptors in Rat Cerebellar Granule Neurons. Toxicol. Appl. Pharmacol. 2018, 357, 19–32. [Google Scholar] [CrossRef]
- Mahapatra, C.T.; Damayanti, N.P.; Guffey, S.C.; Serafin, J.S.; Irudayaraj, J.; Sepúlveda, M.S. Comparative in Vitro Toxicity Assessment of Perfluorinated Carboxylic Acids. J. Appl. Toxicol. 2017, 37, 699–708. [Google Scholar] [CrossRef]
- Lee, J.-K.; Lee, S.; Baek, M.-C.; Lee, B.-H.; Lee, H.-S.; Kwon, T.K.; Park, P.-H.; Shin, T.-Y.; Khang, D.; Kim, S.-H. Association between Perfluorooctanoic Acid Exposure and Degranulation of Mast Cells in Allergic Inflammation. J. Appl. Toxicol. 2017, 37, 554–562. [Google Scholar] [CrossRef]
- Chen, H.; Kapidzic, M.; Gantar, D.; Aksel, S.; Levan, J.; Abrahamsson, D.P.; Jigmeddagva, U.; Basrai, S.; San, A.; Gaw, S.L.; et al. Perfluorooctanoic Acid Induces Transcriptomic Alterations in Second Trimester Human Cytotrophoblasts. Toxicol. Sci. 2023, 196, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Wang, C.; Wahlang, B.; Sexton, T.; Morris, A.J.; Hennig, B. Co-Exposure to PCB126 and PFOS Increases Biomarkers Associated with Cardiovascular Disease Risk and Liver Injury in Mice. Toxicol. Appl. Pharmacol. 2020, 409, 115301. [Google Scholar] [CrossRef] [PubMed]
- Webster, G.M.; Rauch, S.A.; Marie, N.S.; Mattman, A.; Lanphear, B.P.; Venners, S.A. Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S. Adults: Variation According to TPOAb and Iodine Status (NHANES 2007-2008). Environ. Health Perspect. 2016, 124, 935–942. [Google Scholar] [CrossRef]
- Li, Y.; Lu, X.; Yu, N.; Li, A.; Zhuang, T.; Du, L.; Tang, S.; Shi, W.; Yu, H.; Song, M.; et al. Exposure to Legacy and Novel Perfluoroalkyl Substance Disturbs the Metabolic Homeostasis in Pregnant Women and Fetuses: A Metabolome-Wide Association Study. Environ. Int. 2021, 156, 106627. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Z.; Miao, M.; Tian, Y.; Zhou, Y.; Wen, S.; Chen, Y.; Sun, X.; Yuan, W. Prenatal Exposure to Perfluoroalkyl Substances and Thyroid Hormone Concentrations in Cord Plasma in a Chinese Birth Cohort. Environ. Health 2020, 19, 127. [Google Scholar] [CrossRef]
- Salihovic, S.; Lind, L.; Larsson, A.; Lind, P.M. Plasma Perfluoroalkyls Are Associated with Decreased Levels of Proteomic Inflammatory Markers in a Cross-Sectional Study of an Elderly Population. Environ. Int. 2020, 145, 106099. [Google Scholar] [CrossRef]
- Eick, S.M.; Goin, D.E.; Cushing, L.; DeMicco, E.; Park, J.-S.; Wang, Y.; Smith, S.; Padula, A.M.; Woodruff, T.J.; Morello-Frosch, R. Mixture Effects of Prenatal Exposure to Per- and Polyfluoroalkyl Substances and Polybrominated Diphenyl Ethers on Maternal and Newborn Telomere Length. Environ. Health 2021, 20, 76. [Google Scholar] [CrossRef] [PubMed]
- Tahri-Joutey, M.; Andreoletti, P.; Surapureddi, S.; Nasser, B.; Cherkaoui-Malki, M.; Latruffe, N. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARα. Int. J. Mol. Sci. 2021, 22, 8969. [Google Scholar] [CrossRef]
- Safran, M.; Rosen, N.; Twik, M.; BarShir, R.; Stein, T.I.; Dahary, D.; Fishilevich, S.; Lancet, D. The GeneCards Suite. In Practical Guide to Life Science Databases; Springer Nature: Singapore, 2021; pp. 27–56. [Google Scholar]
- Kohlmeier, M. How Nutrients Are Affected by Genetics. In Nutrigenetics; Elsevier: Amsterdam, The Netherlands, 2013; pp. 103–221. [Google Scholar]
- Dommett, R.M.; Klein, N.; Turner, M.W. Mannose-binding Lectin in Innate Immunity: Past, Present and Future. Tissue Antigens 2006, 68, 193–209. [Google Scholar] [CrossRef]
- Thomae, B.A.; Eckloff, B.W.; Freimuth, R.R.; Wieben, E.D.; Weinshilboum, R.M. Human Sulfotransferase SULT2A1 Pharmacogenetics: Genotype-to-Phenotype Studies. Pharmacogenomics J. 2002, 2, 48–56. [Google Scholar] [CrossRef]
- Rodriguez Sawicki, L.; Bottasso Arias, N.M.; Scaglia, N.; Falomir Lockhart, L.J.; Franchini, G.R.; Storch, J.; Córsico, B. FABP1 Knockdown in Human Enterocytes Impairs Proliferation and Alters Lipid Metabolism. Biochim. Et Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2017, 1862, 1587–1594. [Google Scholar] [CrossRef]
- Pawlak, M.; Lefebvre, P.; Staels, B. Molecular Mechanism of PPARα Action and Its Impact on Lipid Metabolism, Inflammation and Fibrosis in Non-Alcoholic Fatty Liver Disease. J. Hepatol. 2015, 62, 720–733. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yue, M.; Liu, X.; Liu, Y.; Lv, L.; Zhang, P.; Zhou, Y. The PCK2-Glycolysis Axis Assists Three-Dimensional-Stiffness Maintaining Stem Cell Osteogenesis. Bioact. Mater. 2022, 18, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Sentinelli, F.; Capoccia, D.; Incani, M.; Bertoccini, L.; Severino, A.; Pani, M.G.; Manconi, E.; Cossu, E.; Leonetti, F.; Baroni, M.G. The Perilipin 2 (PLIN2) Gene Ser251Pro Missense Mutation Is Associated with Reduced Insulin Secretion and Increased Insulin Sensitivity in Italian Obese Subjects. Diabetes Metab. Res. Rev. 2016, 32, 550–556. [Google Scholar] [CrossRef]
- Elcombe, C.R.; Elcombe, B.M.; Foster, J.R.; Chang, S.-C.; Ehresman, D.J.; Noker, P.E.; Butenhoff, J.L. Evaluation of Hepatic and Thyroid Responses in Male Sprague Dawley Rats for up to Eighty-Four Days Following Seven Days of Dietary Exposure to Potassium Perfluorooctanesulfonate. Toxicology 2012, 293, 30–40. [Google Scholar] [CrossRef]
- Rasim Barutcu, A.; Black, M.B.; Andersen, M.E. Investigating the Mode of Action for Liver Toxicity and Wasting-like Responses Produced by High Dose Exposures to Longer Chain Perfluoroacid Substances (PFAS) Using High Throughput Transcriptomics. bioRxiv 2024. [Google Scholar] [CrossRef]
- Yang, W.; Ling, X.; He, S.; Cui, H.; Yang, Z.; An, H.; Wang, L.; Zou, P.; Chen, Q.; Liu, J.; et al. PPARα/ACOX1 as a Novel Target for Hepatic Lipid Metabolism Disorders Induced by per- and Polyfluoroalkyl Substances: An Integrated Approach. Environ. Int. 2023, 178, 108138. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Jiang, L.; Hong, Y.; Cai, Z. Multilayered Glycoproteomic Analysis Reveals the Hepatotoxic Mechanism in Perfluorooctane Sulfonate (PFOS) Exposure Mice. Environ. Pollut. 2021, 268, 115774. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, T.; Wang, Z.; Wei, J.; Liu, J.; Zhang, Y.; Zhao, Z. Distribution of Perfluorooctane Sulfonate in Mice and Its Effect on Liver Lipidomic. Talanta 2021, 226, 122150. [Google Scholar] [CrossRef]
- Owumi, S.; Bello, T.; Oyelere, A.K. N-Acetyl Cysteine Abates Hepatorenal Toxicities Induced by Perfluorooctanoic Acid Exposure in Male Rats. Environ. Toxicol. Pharmacol. 2021, 86, 103667. [Google Scholar] [CrossRef]
- Rashid, F.; Ramakrishnan, A.; Fields, C.; Irudayaraj, J. Acute PFOA Exposure Promotes Epigenomic Alterations in Mouse Kidney Tissues. Toxicol. Rep. 2020, 7, 125–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Gao, N.; Gong, Y.; Shi, W.; Wang, X. Transcriptome and Metabolome Analyses Reveal Perfluorooctanoic Acid-Induced Kidney Injury by Interfering with PPAR Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 11503. [Google Scholar] [CrossRef]
- Cui, L.; Zhou, Q.; Liao, C.; Fu, J.; Jiang, G. Studies on the Toxicological Effects of PFOA and PFOS on Rats Using Histological Observation and Chemical Analysis. Arch. Environ. Contam. Toxicol. 2009, 56, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Sim, K.H.; Lee, Y.J. Perfluorohexane Sulfonate Induces Memory Impairment and Downregulation of Neuroproteins via NMDA Receptor-Mediated PKC-ERK/AMPK Signaling Pathway. Chemosphere 2022, 288, 132503. [Google Scholar] [CrossRef] [PubMed]
- Holahan, M. GAP-43 in Synaptic Plasticity: Molecular Perspectives. Res. Rep. Biochem. 2015, 5, 137. [Google Scholar] [CrossRef]
- Ramhøj, L.; Hass, U.; Gilbert, M.E.; Wood, C.; Svingen, T.; Usai, D.; Vinggaard, A.M.; Mandrup, K.; Axelstad, M. Evaluating Thyroid Hormone Disruption: Investigations of Long-Term Neurodevelopmental Effects in Rats after Perinatal Exposure to Perfluorohexane Sulfonate (PFHxS). Sci. Rep. 2020, 10, 2672. [Google Scholar] [CrossRef]
- Davidsen, N.; Ramhøj, L.; Lykkebo, C.A.; Kugathas, I.; Poulsen, R.; Rosenmai, A.K.; Evrard, B.; Darde, T.A.; Axelstad, M.; Bahl, M.I.; et al. PFOS-Induced Thyroid Hormone System Disrupted Rats Display Organ-Specific Changes in Their Transcriptomes. Environ. Pollut. 2022, 305, 119340. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.T.; Cheung, L.Y.; Chan, T.F.; Li, M.; Lai, K.P.; Wong, C.K.C. Characterization of PFOS Toxicity on In-Vivo and Ex-Vivo Mouse Pancreatic Islets. Environ. Pollut. 2021, 289, 117857. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, H.; Zheng, F.; Sheng, N.; Guo, X.; Dai, J. Perfluorooctanoic Acid Exposure for 28 Days Affects Glucose Homeostasis and Induces Insulin Hypersensitivity in Mice. Sci. Rep. 2015, 5, 11029. [Google Scholar] [CrossRef]
- Bodin, J.; Groeng, E.-C.; Andreassen, M.; Dirven, H.; Nygaard, U.C. Exposure to Perfluoroundecanoic Acid (PFUnDA) Accelerates Insulitis Development in a Mouse Model of Type 1 Diabetes. Toxicol. Rep. 2016, 3, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A. In Silico Prediction of Hepatotoxicity. Curr. Comput. Aided-Drug Des. 2009, 5, 122–127. [Google Scholar] [CrossRef]
- Kar, S.; Leszczynski, J. Open Access in Silico Tools to Predict the ADMET Profiling of Drug Candidates. Expert. Opin. Drug Discov. 2020, 15, 1473–1487. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Murphy, C.G.; Rosenstein, M.C.; Wiegers, T.C.; Mattingly, C.J. The Comparative Toxicogenomics Database Facilitates Identification and Understanding of Chemical-Gene-Disease Associations: Arsenic as a Case Study. BMC Med. Genom. 2008, 1, 48. [Google Scholar] [CrossRef]
- Lagarde, F.; Beausoleil, C.; Belcher, S.M.; Belzunces, L.P.; Emond, C.; Guerbet, M.; Rousselle, C. Non-Monotonic Dose-Response Relationships and Endocrine Disruptors: A Qualitative Method of Assessment. Environ. Health 2015, 14, 13. [Google Scholar] [CrossRef]
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. AdmetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. J. Chem. Inf. Model. 2012, 52, 3099–3105. [Google Scholar] [CrossRef]
- Fu, L.; Shi, S.; Yi, J.; Wang, N.; He, Y.; Wu, Z.; Peng, J.; Deng, Y.; Wang, W.; Wu, C.; et al. ADMETlab 3.0: An Updated Comprehensive Online ADMET Prediction Platform Enhanced with Broader Coverage, Improved Performance, API Functionality and Decision Support. Nucleic Acids Res. 2024, 52, W422–W431. [Google Scholar] [CrossRef]
- Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. Comparative Toxicogenomics Database (CTD): Update 2021. Nucleic Acids Res. 2021, 49, D1138–D1143. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.P.; Grondin, C.J.; Johnson, R.J.; Sciaky, D.; McMorran, R.; Wiegers, J.; Wiegers, T.C.; Mattingly, C.J. The Comparative Toxicogenomics Database: Update 2019. Nucleic Acids Res. 2019, 47, D948–D954. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Richmond-Bryant, J.; Lu, S.E.; Buckley, B.; Welsh, W.J.; Whitsel, E.A.; Hanna, A.; Yeatts, K.B.; Warren, J.; Herring, A.H.; et al. Cardiovascular Outcomes and the Physical and Chemical Properties of Metal Ions Found in Particulate Matter Air Pollution: A QICAR Study. Environ. Health Perspect. 2013, 121, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Wiegers, T.C.; Davis, A.P.; Cohen, K.B.; Hirschman, L.; Mattingly, C.J. Text Mining and Manual Curation of Chemical-Gene-Disease Networks for the Comparative Toxicogenomics Database (CTD). BMC Bioinform. 2009, 10, 326. [Google Scholar] [CrossRef]
- Davis, A.P.; Murphy, C.G.; Saraceni-Richards, C.A.; Rosenstein, M.C.; Wiegers, T.C.; Mattingly, C.J. Comparative Toxicogenomics Database: A Knowledgebase and Discovery Tool for Chemical-Gene-Disease Networks. Nucleic Acids Res. 2009, 37, 786–792. [Google Scholar] [CrossRef]
- Chen, J.; Bardes, E.E.; Aronow, B.J.; Jegga, A.G. ToppGene Suite for Gene List Enrichment Analysis and Candidate Gene Prioritization. Nucleic Acids Res. 2009, 37, 305–311. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape Provides a Biologist-Oriented Resource for the Analysis of Systems-Level Datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Hogue, C.W.; Groll, M. An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinform. 2001, 29, 137–140. [Google Scholar]
- Montojo, J.; Zuberi, K.; Rodriguez, H.; Bader, G.D.; Morris, Q. GeneMANIA: Fast Gene Network Construction and Function Prediction for Cytoscape. F1000Research 2014, 3, 153. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA Prediction Server: Biological Network Integration for Gene Prioritization and Predicting Gene Function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef]
- Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.-X. CytoNCA: A Cytoscape Plugin for Centrality Analysis and Evaluation of Protein Interaction Networks. Biosystems 2015, 127, 67–72. [Google Scholar] [CrossRef] [PubMed]
Category | PFOS | PFOA | PFHxS | PFNA | PFDA | PFUnDA |
---|---|---|---|---|---|---|
Absorption | ||||||
Crossing the blood–brain barrier | + | + | + | + | + | + |
Intestinal absorption | + | + | + | + | + | + |
Par 3 Caco-2 | − | + | + | + | − | − |
Bioavailability | ||||||
Oral bioavailability | + | − | + | − | − | − |
Transporter inhibition | ||||||
The bile salt export pump (BSEP) inhibitor | − | − | − | − | − | + |
Enzyme inhibition | ||||||
OATP1B1 inhibitor | − | − | + | + | + | + |
OATP1B3 inhibitor | − | − | + | + | + | + |
Receptor binding | ||||||
Aromatase binding | + | + | − | − | + | + |
Binding of estrogen receptors | + | + | + | + | + | + |
PPAR gamma | + | + | + | + | + | + |
Toxicity | ||||||
Carcinogenicity (Total) | + | + | + | + | + | + |
Eye damage | + | + | + | + | + | + |
Eye irritation | + | + | + | + | + | + |
Toxicity to fish | + | − | + | + | − | − |
Micronuclearity | + | + | + | + | + | + |
Mitochondrial toxicity | + | − | + | + | − | − |
Nephrotoxicity | + | + | + | + | + | + |
Reproductive toxicity | + | + | + | + | + | + |
Respiratory toxicity | + | − | + | + | − | − |
Skin damage | + | + | + | + | + | + |
Skin irritation | + | + | + | + | + | + |
Skin sensitization | + | + | + | + | + | + |
ID | Name | p-Value | |
---|---|---|---|
Molecular functions | GO:0004879 | activity of nuclear receptors | 1.421 × 10−6 |
GO:0098531 | activity of a ligand-activated transcription factor | 1.421 × 10−6 | |
GO:0004421 | hydroxymethylglutaryl-CoA synthase activity | 2.835 × 10−6 | |
GO:0016509 | long-chain-3-hydroxyacyl-CoA dehydrogenase activity | 8.481 × 10−6 | |
GO:0003707 | activity of nuclear steroid receptors | 1.789 × 10−5 | |
GO:0008289 | lipid binding | 3.732 × 10−5 | |
GO:0046912 | acyltransferase activity, acyl groups are converted to alkyl during transfer | 4.227 × 10−5 | |
GO:0016491 | oxidoreductase activity | 4.952 × 10−5 | |
GO:0003857 | 3-Hydroxyacyl-dehydrogenase activity | 5.911 × 10−5 | |
GO:0016616 | oxidoreductase activity, which acts on the CH-OH group of the donor, NAD or NADP as the acceptor | 7.775 × 10−5 | |
GO:0018812 | 3-hydroxyacyl-CoA dehydratase activity | 7.873 × 10−5 | |
GO:0005496 | steroid binding | 8.235 × 10−5 | |
GO:0001221 | binding of transcription coregulators | 9.473 × 10−5 | |
GO:0016614 | oxidoreductase activity, which acts on the donor CH-OH group | 1.028 × 10−4 | |
GO:0001223 | binding of transcriptional coactivators | 1.123 × 10−4 | |
Biological processes | GO:0006629 | lipid metabolism process | 3.716 × 10−21 |
GO:0044255 | metabolic process of cellular lipids | 3.531 × 10−17 | |
GO:0031667 | response to nutrient levels | 5.332 × 10−15 | |
GO:0009991 | response to an extracellular stimulus | 1.379 × 10−14 | |
GO:0009410 | response to a xenobiotic stimulus | 9.931 × 10−14 | |
GO:0033993 | response to lipids | 6.107 × 10−13 | |
GO:0009725 | hormone response | 3.006 × 10−12 | |
GO:0014070 | response to an organic cyclic compound | 5.254 × 10−12 | |
GO:0008203 | metabolic process of cholesterol | 5.852 × 10−12 | |
GO:0006631 | metabolic process of fatty acids | 5.858 × 10−12 | |
GO:0016125 | metabolic process of sterols | 1.142 × 10−11 | |
GO:1902652 | secondary metabolic process of alcohol | 1.323 × 10−11 | |
GO:0008202 | steroid metabolic process | 1.645 × 10−11 | |
GO:1901701 | cellular response to an oxygen-containing compound | 1.747 × 10−11 | |
GO:0019395 | oxidation of fatty acids | 2.288 × 10−11 | |
Pathways | M27316 | regulation of lipid metabolism by PPARA | 5.093 × 10−19 |
M39428 | nuclear receptors | 5.131 × 10−18 | |
M39553 | PPAR signaling pathway | 4.193 × 10−16 | |
M13088 | PPAR signaling pathway | 5.731 × 10−16 | |
MM15995 | PPAR signaling pathway | 1.041 × 10−15 | |
M27451 | lipid metabolism | 1.073 × 10−14 | |
M39547 | PPARA road | 3.066 × 10−11 | |
MM15920 | cholesterol metabolism | 3.457 × 10−11 | |
M39679 | SREBF and MIR33 in cholesterol and lipid homeostasis | 5.509 × 10−10 | |
M39853 | cholesterol metabolism | 1.379 × 10−9 | |
MM14563 | metabolism | 3.431 × 10−9 | |
MM15866 | nuclear receptors in lipid metabolism and toxicity | 8.973 × 10−9 | |
M41830 | cytoprotection by HMOX-1 | 9.346 × 10−9 | |
MM15193 | lipid metabolism | 1.027 × 10−8 | |
M39488 | nuclear receptors in lipid metabolism | 2.026 × 10−8 | |
Diseases | C0022661 | kidney failure, chronic | 1.504 × 10−14 |
C0038433 | streptozotocin diabetes | 1.150 × 10−9 | |
C0011853 | diabetes mellitus, experimental | 1.150 × 10−9 | |
C0002152 | diabetes | 1.150 × 10−9 | |
C0860207 | drug-induced liver disease | 1.669 × 10−9 | |
C3658290 | acute drug-induced liver damage | 1.669 × 10−9 | |
C4277682 | liver damage caused by chemicals and drugs | 1.669 × 10−9 | |
C1262760 | drug-induced hepatitis | 1.669 × 10−9 | |
C0019193 | hepatitis, toxic | 1.669 × 10−9 | |
C4279912 | chemically induced hepatotoxicity | 1.669 × 10−9 | |
C0028754 | obesity | 9.517 × 10−9 | |
C1565662 | acute renal failure | 2.269 × 10−8 | |
C2609414 | acute kidney injury | 2.269 × 10−8 | |
C0022660 | kidney failure, acute | 2.269 × 10−8 | |
C1704377 | Bright’s disease | 3.725 × 10−8 |
Color | MCODE | Gene Ontology | Description | Log10(P) |
---|---|---|---|---|
Red | MCODE_1 | WP5434 | Pathways in cancer | −9.8 |
MCODE_1 | hsa05200 | Pathways in cancer | −9.7 | |
MCODE_1 | WP3624 | Lung fibrosis | −9.2 | |
Blue | MCODE_2 | WP2874 | Liver X receptor pathway | −13.0 |
MCODE_2 | GO:0032787 | Monocarboxylic acid metabolic process | −10.6 | |
MCODE_2 | GO:0019752 | Carboxylic acid metabolic process | −9.5 | |
Green | MCODE_3 | R-HSA-1989781 | PPARA activates gene expression | −12.1 |
MCODE_3 | R-HSA-400206 | Regulation of lipid metabolism by PPARalpha | −12.1 | |
MCODE_3 | hsa03320 | PPAR signaling pathway | −9.8 |
EHHADH | APOA2 | MBL2 | SULT2A1 | |||||
ME | PE | ME | PE | ME | PE | ME | PE | |
PFOS | + | + | +/− | N/A | +/− | N/A | +/− | N/A |
PFOA | + | + | + | +/− | +/− | N/A | +/− | − |
PFHxS | + | N/A | + | N/A | + | N/A | + | N/A |
PFNA | +/− | N/A | + | N/A | + | N/A | +/− | N/A |
PFDA | + | N/A | +/− | N/A | − | N/A | − | N/A |
PFUnDA | + | N/A | +/− | N/A | − | N/A | + | N/A |
FABP1 | PPARA | PCK2 | PLIN2 | |||||
ME | PE | ME | PE | ME | PE | ME | PE | |
PFOS | +/− | N/A | +/− | N/A | + | N/A | +/− | N/A |
PFOA | +/− | + | +/− | +/− | + | N/A | +/− | + |
PFHxS | + | N/A | +/− | N/A | + | N/A | + | N/A |
PFNA | + | N/A | + | N/A | + | N/A | + | N/A |
PFDA | + | N/A | − | N/A | + | N/A | + | N/A |
PFUnDA | − | N/A | + | N/A | + | N/A | + | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baralić, K.; Petkovski, T.; Piletić, N.; Marić, Đ.; Buha Djordjevic, A.; Antonijević, B.; Đukić-Ćosić, D. Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights. Int. J. Mol. Sci. 2024, 25, 12333. https://doi.org/10.3390/ijms252212333
Baralić K, Petkovski T, Piletić N, Marić Đ, Buha Djordjevic A, Antonijević B, Đukić-Ćosić D. Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights. International Journal of Molecular Sciences. 2024; 25(22):12333. https://doi.org/10.3390/ijms252212333
Chicago/Turabian StyleBaralić, Katarina, Teodora Petkovski, Nađa Piletić, Đurđica Marić, Aleksandra Buha Djordjevic, Biljana Antonijević, and Danijela Đukić-Ćosić. 2024. "Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights" International Journal of Molecular Sciences 25, no. 22: 12333. https://doi.org/10.3390/ijms252212333
APA StyleBaralić, K., Petkovski, T., Piletić, N., Marić, Đ., Buha Djordjevic, A., Antonijević, B., & Đukić-Ćosić, D. (2024). Exploring Toxicity of Per- and Polyfluoroalkyl Substances (PFAS) Mixture Through ADMET and Toxicogenomic In Silico Analysis: Molecular Insights. International Journal of Molecular Sciences, 25(22), 12333. https://doi.org/10.3390/ijms252212333