Similarity Analysis of Computer-Generated and Commercial Libraries for Targeted Biocompatible Coded Amino Acid Replacement
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition of the Library
2.2. Tanimoto Coefficients
2.3. Ranking
- Report for each CAA the most similar XAA.
- Show further highly ranked XAAs for each CAA with TC greater than 0.65.
2.4. Projection
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuan, J.; O’Donoghue, P.; Ambrogelly, A.; Gundllapalli, S.; Sherrer, R.L.; Palioura, S.; Simonović, M.; Söll, D. Distinct genetic code expansion strategies for selenocysteine and pyrrolysine are reflected in different aminoacyl-tRNA formation systems. FEBS Lett. 2010, 584, 342–349. [Google Scholar] [CrossRef]
- Gilles, A.M.; Marlière, P.; Rose, T.; Sarfati, R.; Longin, R.; Meier, A.; Fermandjian, S.; Monnot, M.; Cohen, G.N.; Bârzu, O. Conservative replacement of methionine by norleucine in Escherichia coli adenylate kinase. J. Biol. Chem. 1988, 263, 8204–8209. [Google Scholar] [CrossRef]
- Trifonov, E.N. Consensus temporal order of amino acids and evolution of the triplet code. Gene 2000, 261, 139–151. [Google Scholar] [CrossRef]
- Woese, C.R.; Olsen, G.J.; Ibba, M.; Söll, D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol. Mol. Biol. Rev. MMBR 2000, 64, 202–236. [Google Scholar] [CrossRef]
- Cleaves, H.J. The origin of the biologically coded amino acids. J. Theor. Biol. 2010, 263, 490–498. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, H.; Vo, M.-N.; Shi, Y.; Nawaz, M.H.; Vargas-Rodriguez, O.; Diedrich, J.K.; Yates, J.R.; Kishi, S.; Musier-Forsyth, K.; et al. Double mimicry evades tRNA synthetase editing by toxic vegetable-sourced non-proteinogenic amino acid. Nat. Commun. 2017, 8, 2281. [Google Scholar] [CrossRef]
- Marlière, P.; Patrouix, J.; Döring, V.; Herdewijn, P.; Tricot, S.; Cruveiller, S.; Bouzon, M.; Mutzel, R. Chemical Evolution of a Bacterium’s Genome. Angew. Chem. Int. Ed. 2011, 50, 7109–7114. [Google Scholar] [CrossRef]
- Malyshev, D.A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J.M.; Corrêa, I.R., Jr.; Romesberg, F.E. A semi-synthetic organism with an expanded genetic alphabet. Nature 2014, 509, 385–388. [Google Scholar] [CrossRef]
- Kuriyan, J.; Konforti, B.; Wemmer, D. The Molecules of Life: Physical and Chemical Principles; W.W. Norton & Company: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Dunn, I.S. Searching for Molecular Solutions; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Dobson, C.M. Chemical space and biology. Nature 2004, 432, 824–828. [Google Scholar] [CrossRef]
- Meringer, M.; Cleaves, H.J. Exploring astrobiology using in silico molecular structure generation. Philos. Transactions. Ser. A Math. Phys. Eng. Sci. 2017, 375, 20160344. [Google Scholar] [CrossRef]
- Ilardo, M.; Meringer, M.; Freeland, S.; Rasulev, B.; Cleaves, H.J., 2nd. Extraordinarily adaptive properties of the genetically encoded amino acids. Sci. Rep. 2015, 5, 9414. [Google Scholar] [CrossRef] [PubMed]
- Ilardo, M.; Bose, R.; Meringer, M.; Rasulev, B.; Grefenstette, N.; Stephenson, J.; Freeland, S.; Gillams, R.J.; Butch, C.J.; Cleaves, H.J., 2nd. Adaptive Properties of the Genetically Encoded Amino Acid Alphabet Are Inherited from Its Subsets. Sci. Rep. 2019, 9, 12468. [Google Scholar] [CrossRef] [PubMed]
- Casti, J.L.; Karlqvist, A. (Eds.) Complexity, Language, and Life: Mathematical Approaches. In Biomathematics; Springer-Verlag: Berlin/Heidelberg, Germany, 1980; Volume 16. [Google Scholar]
- Brown, N. Bioisosteres in Medicinal Chemistry; Wiley-VCH: Weinheim, Germany, 2012; p. 238. [Google Scholar]
- Drienovská, I.; Roelfes, G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat. Catal. 2020, 3, 193–202. [Google Scholar] [CrossRef]
- Miyajima, M. Amino acids: Key sources for immunometabolites and immunotransmitters. Int. Immunol. 2020, 32, 435–446. [Google Scholar] [CrossRef]
- Josephson, K.; Hartman, M.C.T.; Szostak, J.W. Ribosomal Synthesis of Unnatural Peptides. J. Am. Chem. Soc. 2005, 127, 11727–11735. [Google Scholar] [CrossRef]
- Hartman, M.C.T.; Josephson, K.; Lin, C.-W.; Szostak, J.W. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS ONE 2007, 2, e972. [Google Scholar] [CrossRef]
- Willett, P.; Barnard, J.M.; Downs, G.M. Chemical Similarity Searching. J. Chem. Inf. Comput. Sci. 1998, 38, 983–996. [Google Scholar] [CrossRef]
- Bender, A.; Glen, R.C. Molecular similarity: A key technique in molecular informatics. Org. Biomol. Chem. 2004, 2, 3204. [Google Scholar] [CrossRef]
- Maldonado, A.G.; Doucet, J.P.; Petitjean, M.; Fan, B.-T. Molecular similarity and diversity in chemoinformatics: From theory to applications. Mol. Divers. 2006, 10, 39–79. [Google Scholar] [CrossRef]
- Meringer, M.; Cleaves, H.J.; Freeland, S.J. Beyond Terrestrial Biology: Charting the Chemical Universe of α-Amino Acid Structures. J. Chem. Inf. Model. 2013, 53, 2851–2862. [Google Scholar] [CrossRef]
- Meringer, M. Structure Enumeration and Sampling. Chapman Hall/CRC Math. Comput. Biol. 2010, 233–267. [Google Scholar] [CrossRef]
- Gugisch, R.; Kerber, A.; Kohnert, A.; Laue, R.; Meringer, M.; Rücker, C.; Wassermann, A. MOLGEN 5.0, A Molecular Structure Generator. In Advances in Mathematical Chemistry and Applications; Basak, S.C., Restrepo, G., Villaveces, J.L., Eds.; Bentham Science Publisher: Amsterdam, The Netherlands, 2014; Volume 1, p. 1:113. [Google Scholar]
- Bose, R.; Meringer, M.; Ilardo, M.; Cleaves, H.J. Adaptive properties of the amino acid alphabet and its subsets. In Artificial Life Conference Proceedings; MIT Press: Cambridge, MA, USA, 2018; pp. 459–460. [Google Scholar]
- Brown, S.M.; Voráček, V.; Freeland, S. What Would an Alien Amino Acid Alphabet Look Like and Why? Astrobiology 2023, 23, 536–549. [Google Scholar] [CrossRef]
- Frenkel-Pinter, M.; Haynes, J.W.; C, M.; Petrov, A.S.; Burcar, B.T.; Krishnamurthy, R.; Hud, N.V.; Leman, L.J.; Williams, L.D. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl. Acad. Sci. USA 2019, 116, 16338–16346. [Google Scholar] [CrossRef]
- Makarov, M.; Sanchez Rocha, A.C.; Krystufek, R.; Cherepashuk, I.; Dzmitruk, V.; Charnavets, T.; Faustino, A.M.; Lebl, M.; Fujishima, K.; Fried, S.D.; et al. Early Selection of the Amino Acid Alphabet Was Adaptively Shaped by Biophysical Constraints of Foldability. J. Am. Chem. Soc. 2023, 145, 5320–5329. [Google Scholar] [CrossRef]
- Hartman, M.C.T. Non-canonical Amino Acid Substrates of E. coli Aminoacyl-tRNA Synthetases. Chembiochem A Eur. J. Chem. Biol. 2022, 23, e202100299. [Google Scholar] [CrossRef]
- Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME-the Konstanz information miner. ACM SIGKDD Explor. Newsl. 2009, 11, 26–31. [Google Scholar] [CrossRef]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminformatics 2011, 3, 33. [Google Scholar] [CrossRef]
- R CoreTeam. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 2 April 2024).
- Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef]
- Guha, R. Chemical Informatics Functionality in R. J. Stat. Softw. 2007, 18, 1–16. [Google Scholar] [CrossRef]
- Tanimoto, T.T. An Elementary Mathematical Theory of Classification and Prediction; International Business Machines Corporation: New York, NY, USA, 1958. [Google Scholar]
- Torgerson, W.S. Multidimensional scaling: I. Theory and method. Psychometrika 1952, 17, 401–419. [Google Scholar] [CrossRef]
- Torgerson, W.S. Theory and Methods of Scaling; John Wiley & Sons: New York, NY, USA, 1958; p. 460. [Google Scholar]
- Gower, J.C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 1966, 53, 325–338. [Google Scholar] [CrossRef]
- Borg, I.; Groenen, P. Modern Multidimensional Scaling; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar] [CrossRef]
- Saeed, N.; Nam, H.; Haq, M.I.U.; Muhammad Saqib, D.B. A Survey on Multidimensional Scaling. ACM Comput. Surv. 2018, 51, 1–25. [Google Scholar] [CrossRef]
- Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminformatics 2015, 7, 20. [Google Scholar] [CrossRef]
- Mayer-Bacon, C.; Meringer, M.; Havel, R.; Aponte, J.C.; Freeland, S. A Closer Look at Non-random Patterns Within Chemistry Space for a Smaller, Earlier Amino Acid Alphabet. J. Mol. Evol. 2022, 90, 307–323. [Google Scholar] [CrossRef]
- Bleicher, K.H.; Böhm, H.-J.; Müller, K.; Alanine, A.I. Hit and lead generation: Beyond high-throughput screening. Nat. Rev. Drug Discov. 2003, 2, 369–378. [Google Scholar] [CrossRef]
- Wallach, I.; Bernard, D.; Nguyen, K.; Ho, G.; Morrison, A.; Stecula, A.; Rosnik, A.; O’Sullivan, A.M.; Davtyan, A.; Samudio, B.; et al. AI is a viable alternative to high throughput screening: A 318-target study. Sci. Rep. 2024, 14, 7526. [Google Scholar] [CrossRef]
- Kun, A.; Papp, B.; Szathmáry, E. Computational identification of obligatorily autocatalytic replicators embedded in metabolic networks. Genome Biol. 2008, 9, R51. [Google Scholar] [CrossRef]
- Altschul, S.F. Amino acid substitution matrices from an information theoretic perspective. J. Mol. Biol. 1991, 219, 555–565. [Google Scholar] [CrossRef]
- Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1997; Volume 2, pp. 131–160. [Google Scholar]
- DuToit, S.H.; Steyn, A.G.W.; Stumpf, R.H. Graphical Exploratory Data Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Heckert, N.; Filliben, J.; Croarkin, C.; Hembree, B.; Guthrie, W.; Tobias, P.; Prinz, J. Handbook 151: NIST/SEMATECH e-Handbook of Statistical Methods, NIST Interagency/Internal Report (NISTIR); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2002; Available online: https://www.itl.nist.gov/div898/handbook/prc/section1/prc16.htm (accessed on 20 July 2024).
- Hohsaka, T.; Sisido, M. Incorporation of non-natural amino acids into proteins. Curr. Opin. Chem. Biol. 2002, 6, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Link, A.J.; Mock, M.L.; Tirrell, D.A. Non-canonical amino acids in protein engineering. Curr. Opin. Biotechnol. 2003, 14, 603–609. [Google Scholar] [CrossRef]
- Wang, L.; Schultz, P.G. Expanding the genetic code. Angew. Chem. Int. Ed. 2005, 44, 34–66. [Google Scholar] [CrossRef]
- Liu, C.C.; Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 2010, 79, 413–444. [Google Scholar] [CrossRef]
- Agostini, F.; Völler, J.S.; Koksch, B.; Acevedo-Rocha, C.G.; Kubyshkin, V.; Budisa, N. Biocatalysis with unnatural amino acids: Enzymology meets xenobiology. Angew. Chem. Int. Ed. 2017, 56, 9680–9703. [Google Scholar] [CrossRef]
- Bell, E.L.; Finnigan, W.; France, S.P.; Green, A.P.; Hayes, M.A.; Hepworth, L.J.; Lovelock, S.L.; Niikura, H.; Osuna, S.; Romero, E.; et al. Biocatalysis. Nat. Rev. Methods Primers 2021, 1, 46. [Google Scholar] [CrossRef]
Abbreviation | Description | Reference/Definition | Size |
---|---|---|---|
CAAs | Canonical AAs (standard code) | e.g., Cleaves (2010) [5] | 20 |
EAAs | Experimentally evaluated AAs | Josephson et al. (2005) [19] Hartman et al. (2007) [20] | 105 |
GAAs | (computationally) Generated AAs | Ilardo et al. (2015) [13] | 1913 |
PAAs | Purchasable AAs | www.emolecules.com | 9518 |
AAAs | All AAs | EAA ∪ GAA ∪ PAA | 11,302 |
XAAs | Xeno AAs | AAA\CAA | 11,282 |
Parameter | CAA Pairs | CAA × XAA | XAA Pairs | AAA Pairs |
---|---|---|---|---|
Number of TCs | 190 | 225,640 | 63,636,121 | 63,861,951 |
Minimum | 0.11111 | 0.06579 | 0.06173 | 0.06173 |
First quartile | 0.25767 | 0.13793 | 0.12500 | 0.12500 |
Median | 0.32129 | 0.17647 | 0.15385 | 0.15385 |
Third quartile | 0.38844 | 0.22642 | 0.19118 | 0.19149 |
90% quantile | 0.46321 | 0.28125 | 0.23214 | 0.23214 |
99% quantile | 0.61389 | 0.40000 | 0.33333 | 0.33333 |
Maximum | 0.65000 | 0.75000 | 1.00000 | 1.00000 |
Mean | 0.32803 | 0.18964 | 0.16369 | 0.16379 |
Std. deviation | 0.11054 | 0.06860 | 0.05301 | 0.05309 |
G | A | S | P | V | T | C | I | L | N | D | Q | K | E | M | H | F | R | Y | W | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | 1.000 | 0.333 | 0.350 | 0.208 | 0.286 | 0.273 | 0.333 | 0.280 | 0.292 | 0.318 | 0.381 | 0.259 | 0.286 | 0.320 | 0.241 | 0.242 | 0.206 | 0.194 | 0.200 | 0.152 |
A | 0.333 | 1.000 | 0.450 | 0.192 | 0.611 | 0.579 | 0.429 | 0.478 | 0.500 | 0.409 | 0.409 | 0.333 | 0.310 | 0.346 | 0.357 | 0.265 | 0.265 | 0.250 | 0.257 | 0.196 |
S | 0.350 | 0.450 | 1.000 | 0.172 | 0.391 | 0.375 | 0.571 | 0.370 | 0.500 | 0.545 | 0.545 | 0.444 | 0.414 | 0.462 | 0.414 | 0.353 | 0.353 | 0.333 | 0.343 | 0.261 |
P | 0.208 | 0.192 | 0.172 | 1.000 | 0.172 | 0.167 | 0.167 | 0.147 | 0.152 | 0.161 | 0.161 | 0.139 | 0.132 | 0.143 | 0.132 | 0.143 | 0.116 | 0.111 | 0.114 | 0.111 |
V | 0.286 | 0.611 | 0.391 | 0.172 | 1.000 | 0.650 | 0.375 | 0.542 | 0.440 | 0.360 | 0.360 | 0.300 | 0.281 | 0.310 | 0.323 | 0.243 | 0.243 | 0.231 | 0.237 | 0.184 |
T | 0.273 | 0.579 | 0.375 | 0.167 | 0.650 | 1.000 | 0.360 | 0.520 | 0.423 | 0.346 | 0.346 | 0.290 | 0.273 | 0.300 | 0.313 | 0.237 | 0.237 | 0.225 | 0.231 | 0.180 |
C | 0.333 | 0.429 | 0.571 | 0.167 | 0.375 | 0.360 | 1.000 | 0.357 | 0.480 | 0.522 | 0.522 | 0.429 | 0.400 | 0.444 | 0.400 | 0.382 | 0.343 | 0.324 | 0.333 | 0.255 |
I | 0.280 | 0.478 | 0.370 | 0.147 | 0.542 | 0.520 | 0.357 | 1.000 | 0.414 | 0.345 | 0.345 | 0.294 | 0.278 | 0.303 | 0.314 | 0.275 | 0.275 | 0.233 | 0.268 | 0.212 |
L | 0.292 | 0.500 | 0.500 | 0.152 | 0.440 | 0.423 | 0.480 | 0.414 | 1.000 | 0.462 | 0.462 | 0.387 | 0.364 | 0.400 | 0.452 | 0.316 | 0.316 | 0.300 | 0.308 | 0.240 |
N | 0.318 | 0.409 | 0.545 | 0.161 | 0.360 | 0.346 | 0.522 | 0.345 | 0.462 | 1.000 | 0.636 | 0.519 | 0.387 | 0.429 | 0.387 | 0.333 | 0.333 | 0.351 | 0.324 | 0.250 |
D | 0.381 | 0.409 | 0.545 | 0.161 | 0.360 | 0.346 | 0.522 | 0.345 | 0.462 | 0.636 | 1.000 | 0.414 | 0.387 | 0.481 | 0.387 | 0.371 | 0.371 | 0.316 | 0.361 | 0.277 |
Q | 0.259 | 0.333 | 0.444 | 0.139 | 0.300 | 0.290 | 0.429 | 0.294 | 0.387 | 0.519 | 0.414 | 1.000 | 0.412 | 0.607 | 0.412 | 0.293 | 0.293 | 0.375 | 0.286 | 0.226 |
K | 0.286 | 0.310 | 0.414 | 0.132 | 0.281 | 0.273 | 0.400 | 0.278 | 0.364 | 0.387 | 0.387 | 0.412 | 1.000 | 0.424 | 0.389 | 0.279 | 0.310 | 0.425 | 0.302 | 0.241 |
E | 0.320 | 0.346 | 0.462 | 0.143 | 0.310 | 0.300 | 0.444 | 0.303 | 0.400 | 0.429 | 0.481 | 0.607 | 0.424 | 1.000 | 0.424 | 0.300 | 0.300 | 0.350 | 0.293 | 0.231 |
M | 0.241 | 0.357 | 0.414 | 0.132 | 0.323 | 0.313 | 0.400 | 0.314 | 0.452 | 0.387 | 0.387 | 0.412 | 0.389 | 0.424 | 1.000 | 0.279 | 0.279 | 0.326 | 0.273 | 0.218 |
H | 0.242 | 0.265 | 0.353 | 0.143 | 0.243 | 0.237 | 0.382 | 0.275 | 0.316 | 0.333 | 0.371 | 0.293 | 0.279 | 0.300 | 0.279 | 1.000 | 0.395 | 0.265 | 0.386 | 0.333 |
F | 0.206 | 0.265 | 0.353 | 0.116 | 0.243 | 0.237 | 0.343 | 0.275 | 0.316 | 0.333 | 0.371 | 0.293 | 0.310 | 0.300 | 0.279 | 0.395 | 1.000 | 0.292 | 0.564 | 0.385 |
R | 0.194 | 0.250 | 0.333 | 0.111 | 0.231 | 0.225 | 0.324 | 0.233 | 0.300 | 0.351 | 0.316 | 0.375 | 0.425 | 0.350 | 0.326 | 0.265 | 0.292 | 1.000 | 0.286 | 0.213 |
Y | 0.200 | 0.257 | 0.343 | 0.114 | 0.237 | 0.231 | 0.333 | 0.268 | 0.308 | 0.324 | 0.361 | 0.286 | 0.302 | 0.293 | 0.273 | 0.386 | 0.564 | 0.286 | 1.000 | 0.327 |
W | 0.152 | 0.196 | 0.261 | 0.111 | 0.184 | 0.180 | 0.255 | 0.212 | 0.240 | 0.250 | 0.277 | 0.226 | 0.241 | 0.231 | 0.218 | 0.333 | 0.385 | 0.213 | 0.327 | 1.000 |
CAA | TC | ID | EAA | GAA | PAA | CAA | TC | ID | EAA | GAA | PAA |
---|---|---|---|---|---|---|---|---|---|---|---|
G | 0.450 | G1 | x | N | 0.636 | D | x | x | x | ||
A | 0.611 | A1 | x | x | 0.583 | N2 | x | x | |||
0.611 | V | x | x | D | 0.636 | N | x | x | x | ||
S | 0.600 | S1 | x | x | 0.609 | D2 | x | ||||
P | 0.750 | P1 | x | x | Q | 0.607 | E | x | x | x | |
0.680 | P2 | x | 0.581 | Q2 | x | ||||||
0.654 | P3 | x | K | 0.714 | K1 | x | x | ||||
V | 0.700 | V1 | x | E | 0.607 | Q | x | x | x | ||
0.684 | A1 | x | x | 0.586 | E2 | x | |||||
0.667 | V3.1 | x | M | 0.606 | M1 | x | |||||
0.667 | V3.2 | x | H | 0.590 | H1 | x | |||||
T | 0.714 | T1 | x | F | 0.610 | F1 | x | ||||
0.682 | T2.1 | x | R | 0.737 | R1 | x | |||||
0.682 | T2.2 | x | 0.676 | R2 | x | ||||||
C | 0.619 | C1 | x | x | 0.667 | R3 | x | ||||
I | 0.667 | I1 | x | 0.658 | R4 | x | |||||
L | 0.643 | L1 | x | Y | 0.649 | Y1 | x | ||||
W | 0.623 | W1 | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meringer, M.; Casanola-Martin, G.M.; Rasulev, B.; Cleaves, H.J., II. Similarity Analysis of Computer-Generated and Commercial Libraries for Targeted Biocompatible Coded Amino Acid Replacement. Int. J. Mol. Sci. 2024, 25, 12343. https://doi.org/10.3390/ijms252212343
Meringer M, Casanola-Martin GM, Rasulev B, Cleaves HJ II. Similarity Analysis of Computer-Generated and Commercial Libraries for Targeted Biocompatible Coded Amino Acid Replacement. International Journal of Molecular Sciences. 2024; 25(22):12343. https://doi.org/10.3390/ijms252212343
Chicago/Turabian StyleMeringer, Markus, Gerardo M. Casanola-Martin, Bakhtiyor Rasulev, and H. James Cleaves, II. 2024. "Similarity Analysis of Computer-Generated and Commercial Libraries for Targeted Biocompatible Coded Amino Acid Replacement" International Journal of Molecular Sciences 25, no. 22: 12343. https://doi.org/10.3390/ijms252212343
APA StyleMeringer, M., Casanola-Martin, G. M., Rasulev, B., & Cleaves, H. J., II. (2024). Similarity Analysis of Computer-Generated and Commercial Libraries for Targeted Biocompatible Coded Amino Acid Replacement. International Journal of Molecular Sciences, 25(22), 12343. https://doi.org/10.3390/ijms252212343