Diversity of Neurotransmitter-Producing Human Skin Commensals
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Halff, E.F.; Rutigliano, G.; Garcia-Hidalgo, A.; Howes, O.D. Trace amine-associated receptor 1 (TAAR1) agonism as a new treatment strategy for schizophrenia and related disorders. Trends Neurosci. 2023, 46, 60–74. [Google Scholar] [CrossRef] [PubMed]
- Gainetdinov, R.R.; Hoener, M.C.; Berry, M.D. Trace amines and their receptors. Pharmacol. Rev. 2018, 70, 549–620. [Google Scholar] [CrossRef] [PubMed]
- Jones, R. Tryptamine: A neuromodulator or neurotransmitter in mammalian brain? Prog. Neurobiol. 1982, 19, 117–139. [Google Scholar] [CrossRef]
- Bugda Gwilt, K.; González, D.P.; Olliffe, N.; Oller, H.; Hoffing, R.; Puzan, M.; El Aidy, S.; Miller, G.M. Actions of trace amines in the brain-gut-microbiome axis via trace amine-associated receptor-1 (TAAR1). Cell. Mol. Neurobiol. 2020, 40, 191–201. [Google Scholar] [CrossRef]
- Maini Rekdal, V.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 2019, 364, eaau6323. [Google Scholar] [CrossRef]
- Williams, B.B.; Van Benschoten, A.H.; Cimermancic, P.; Donia, M.S.; Zimmermann, M.; Taketani, M.; Ishihara, A.; Kashyap, P.C.; Fraser, J.S.; Fischbach, M.A. Discovery and Characterization of Gut Microbiota Decarboxylases that Can Produce the Neurotransmitter Tryptamine. Cell Host Microbe 2014, 16, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Bargossi, E.; Gardini, F.; Gatto, V.; Montanari, C.; Torriani, S.; Tabanelli, G. The capability of tyramine production and correlation between phenotypic and genetic characteristics of Enterococcus faecium and Enterococcus faecalis strains. Front. Microbiol. 2015, 6, 1371. [Google Scholar] [CrossRef]
- Fernández, M.; Linares, D.M.; Alvarez, M.A. Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. J. Food Prot. 2004, 67, 2521–2529. [Google Scholar] [CrossRef]
- Gatto, V.; Tabanelli, G.; Montanari, C.; Prodomi, V.; Bargossi, E.; Torriani, S.; Gardini, F. Tyrosine decarboxylase activity of Enterococcus mundtii: New insights into phenotypic and genetic aspects. Microb. Biotechnol. 2016, 9, 801–813. [Google Scholar] [CrossRef]
- Linares, D.M.; Fernández, M.; Martín, M.C.; Álvarez, M.A. Tyramine biosynthesis in Enterococcus durans is transcriptionally regulated by the extracellular pH and tyrosine concentration. Microb. Biotechnol. 2009, 2, 625–633. [Google Scholar] [CrossRef]
- Lucas, P.; Landete, J.; Coton, M.; Coton, E.; Lonvaud-Funel, A. The tyrosine decarboxylase operon of Lactobacillus brevis IOEB 9809: Characterization and conservation in tyramine-producing bacteria. FEMS Microbiol. Lett. 2003, 229, 65–71. [Google Scholar] [CrossRef]
- Bonnin-Jusserand, M.; Grandvalet, C.; Rieu, A.; Weidmann, S.; Alexandre, H. Tyrosine-containing peptides are precursors of tyramine produced by Lactobacillus plantarum strain IR BL0076 isolated from wine. BMC Microbiol. 2012, 12, 199. [Google Scholar] [CrossRef] [PubMed]
- Coton, M.; Coton, E.; Lucas, P.; Lonvaud, A. Identification of the gene encoding a putative tyrosine decarboxylase of Carnobacterium divergens 508. Development of molecular tools for the detection of tyramine-producing bacteria. Food Microbiol. 2004, 21, 125–130. [Google Scholar] [CrossRef]
- La Gioia, F.; Rizzotti, L.; Rossi, F.; Gardini, F.; Tabanelli, G.; Torriani, S. Identification of a tyrosine decarboxylase gene (tdcA) in Streptococcus thermophilus 1TT45 and analysis of its expression and tyramine production in milk. Appl. Environ. Microbiol. 2011, 77, 1140–1144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Ni, Y. Tyrosine decarboxylase from Lactobacillus brevis: Soluble expression and characterization. Protein Expr. Purif. 2014, 94, 33–39. [Google Scholar] [CrossRef]
- Choi, Y.; Han, S.-W.; Kim, J.-S.; Jang, Y.; Shin, J.-S. Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus. Appl. Microbiol. Biotechnol. 2021, 105, 2775–2785. [Google Scholar] [CrossRef]
- Koyanagi, T.; Nakagawa, A.; Sakurama, H.; Yamamoto, K.; Sakurai, N.; Takagi, Y.; Minami, H.; Katayama, T.; Kumagai, H. Eukaryotic-type aromatic amino acid decarboxylase from the root colonizer Pseudomonas putida is highly specific for 3, 4-dihydroxyphenyl-L-alanine, an allelochemical in the rhizosphere. Microbiology 2012, 158, 2965–2974. [Google Scholar] [CrossRef]
- Luqman, A.; Nega, M.; Nguyen, M.T.; Ebner, P.; Götz, F. SadA-Expressing Staphylococci in the Human Gut Show Increased Cell Adherence and Internalization. Cell Rep. 2018, 22, 535–545. [Google Scholar] [CrossRef]
- Luqman, A.; Zabel, S.; Rahmdel, S.; Merz, B.; Gruenheit, N.; Harter, J.; Nieselt, K.; Götz, F. The Neuromodulator-Encoding sadA Gene Is Widely Distributed in the Human Skin Microbiome. Front. Microbiol. 2020, 11, 573679. [Google Scholar] [CrossRef]
- Luqman, A.; Ebner, P.; Reichert, S.; Sass, P.; Kabagema-Bilan, C.; Heilmann, C.; Ruth, P.; Götz, F. A new host cell internalisation pathway for SadA-expressing staphylococci triggered by excreted neurochemicals. Cell. Microbiol. 2019, 21, e13044. [Google Scholar] [CrossRef]
- Luqman, A.; Muttaqin, M.Z.; Yulaipi, S.; Ebner, P.; Matsuo, M.; Zabel, S.; Tribelli, P.M.; Nieselt, K.; Hidayati, D.; Götz, F. Trace amines produced by skin bacteria accelerate wound healing in mice. Commun. Biol. 2020, 3, 277. [Google Scholar] [CrossRef]
- Chen, H.; Nwe, P.-K.; Yang, Y.; Rosen, C.E.; Bielecka, A.A.; Kuchroo, M.; Cline, G.W.; Kruse, A.C.; Ring, A.M.; Crawford, J.M. A forward chemical genetic screen reveals gut microbiota metabolites that modulate host physiology. Cell 2019, 177, 1217–1231.e18. [Google Scholar] [CrossRef] [PubMed]
- Luck, B.; Horvath, T.D.; Engevik, K.A.; Ruan, W.; Haidacher, S.J.; Hoch, K.M.; Oezguen, N.; Spinler, J.K.; Haag, A.M.; Versalovic, J. Neurotransmitter profiles are altered in the gut and brain of mice mono-associated with Bifidobacterium dentium. Biomolecules 2021, 11, 1091. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Kibe, R.; Ooga, T.; Aiba, Y.; Kurihara, S.; Sawaki, E.; Koga, Y.; Benno, Y. Impact of intestinal microbiota on intestinal luminal metabolome. Sci. Rep. 2012, 2, 233. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, M.; Kibe, R.; Ooga, T.; Aiba, Y.; Sawaki, E.; Koga, Y.; Benno, Y. Cerebral low-molecular metabolites influenced by intestinal microbiota: A pilot study. Front. Syst. Neurosci. 2013, 7, 9. [Google Scholar] [CrossRef]
- Fernández, M.; Linares, D.M.; Rodríguez, A.; Alvarez, M.A. Factors affecting tyramine production in Enterococcus durans IPLA 655. Appl. Microbiol. Biot. 2007, 73, 1400–1406. [Google Scholar] [CrossRef]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef]
- Pereira, C.; Matos, D.; San Romão, M.; Barreto Crespo, M. Dual role for the tyrosine decarboxylation pathway in Enterococcus faecium E17: Response to an acid challenge and generation of a proton motive force. Appl. Environ. Microbiol. 2009, 75, 345–352. [Google Scholar] [CrossRef]
- Fernández de Palencia, P.; Fernández, M.; Mohedano, M.L.; Ladero, V.; Quevedo, C.; Alvarez, M.A.; López, P. Role of tyramine synthesis by food-borne Enterococcus durans in adaptation to the gastrointestinal tract environment. Appl. Environ. Microbiol. 2011, 77, 699–702. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hou, Y.; Wang, G.; Zheng, X.; Hao, H. Gut microbial metabolites of aromatic amino acids as signals in host–microbe interplay. Trends Endocrinol. Metab. 2020, 31, 818–834. [Google Scholar] [CrossRef]
- Bhattarai, Y.; Williams, B.B.; Battaglioli, E.J.; Whitaker, W.R.; Till, L.; Grover, M.; Linden, D.R.; Akiba, Y.; Kandimalla, K.K.; Zachos, N.C. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe 2018, 23, 775–785.e5. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, S.; Ding, Y.; Saedi, N.; Choi, M.; Sridharan, G.V.; Sherr, D.H.; Yarmush, M.L.; Alaniz, R.C.; Jayaraman, A.; Lee, K. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2018, 23, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Landemaine, L.; Da Costa, G.; Fissier, E.; Francis, C.; Morand, S.; Verbeke, J.; Michel, M.-L.; Briandet, R.; Sokol, H.; Gueniche, A. Staphylococcus epidermidis isolates from atopic or healthy skin have opposite effect on skin cells: Potential implication of the AHR pathway modulation. Front. Immunol. 2023, 14, 1098160. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, L.; Hao, Z.; Chen, L.; Yang, Q.; Xiong, X.; Deng, Y. Potential roles of gut microbial tryptophan metabolites in the complex pathogenesis of acne vulgaris. Front. Microbiol. 2022, 13, 942027. [Google Scholar] [CrossRef]
- Ahmed, H.; Leyrolle, Q.; Koistinen, V.; Kärkkäinen, O.; Layé, S.; Delzenne, N.; Hanhineva, K. Microbiota-derived metabolites as drivers of gut–brain communication. Gut Microbes 2022, 14, 2102878. [Google Scholar] [CrossRef]
- Sudo, N. Biogenic amines: Signals between commensal microbiota and gut physiology. Front. Endocrinol. 2019, 10, 504. [Google Scholar] [CrossRef]
- Rutigliano, G.; Accorroni, A.; Zucchi, R. The Case for TAAR1 as a Modulator of Central Nervous System Function. Front. Pharmacol. 2018, 8, 987. [Google Scholar] [CrossRef] [PubMed]
- Torriani, S.; Gatto, V.; Sembeni, S.; Tofalo, R.; Suzzi, G.; Belletti, N.; Gardini, F.; Bover-Cid, S. Rapid detection and quantification of tyrosine decarboxylase gene (tdc) and its expression in gram-positive bacteria associated with fermented foods using PCR-based methods. J. Food Prot. 2008, 71, 93–101. [Google Scholar] [CrossRef]
- Marcobal, A.; De Las Rivas, B.; Landete, J.M.; Tabera, L.; Muñoz, R. Tyramine and phenylethylamine biosynthesis by food bacteria. Crit. Rev. Food Sci. Nutr. 2012, 52, 448–467. [Google Scholar] [CrossRef]
- Connil, N.; Le Breton, Y.; Dousset, X.; Auffray, Y.; Rincé, A.; Prévost, H. Identification of the Enterococcus faecalis tyrosine decarboxylase operon involved in tyramine production. Appl. Environ. Microbiol. 2002, 68, 3537–3544. [Google Scholar] [CrossRef]
- Grice, E.A.; Kong, H.H.; Conlan, S.; Deming, C.B.; Davis, J.; Young, A.C.; Program, N.C.S.; Bouffard, G.G.; Blakesley, R.W.; Murray, P.R. Topographical and temporal diversity of the human skin microbiome. Science 2009, 324, 1190–1192. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Kong, H.H.; Renaud, G.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Wolfsberg, T.G.; Turner, M.L.; Segre, J.A. A diversity profile of the human skin microbiota. Genome Res. 2008, 18, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Joglekar, P.; Conlan, S.; Lee-Lin, S.-Q.; Deming, C.; Kashaf, S.S.; Program, N.C.S.; Kong, H.H.; Segre, J.A. Integrated genomic and functional analyses of human skin–associated Staphylococcus reveal extensive inter-and intra-species diversity. Proc. Natl. Acad. Sci. USA 2023, 120, e2310585120. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Byrd, A.L.; Deming, C.; Conlan, S.; Kong, H.H.; Segre, J.A. Biogeography and individuality shape function in the human skin metagenome. Nature 2014, 514, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Huang, Y.; Zhang, X.; Fei, W.; Chang, Y.; Cheng, S.; Zhou, Y.; Gao, J.; Tang, X.; Zhang, X. Profile of the skin microbiota in a healthy Chinese population. J. Dermatol. 2018, 45, 1289–1300. [Google Scholar] [CrossRef]
- Fleming, E.; Pabst, V.; Scholar, Z.; Xiong, R.; Voigt, A.Y.; Zhou, W.; Hoyt, A.; Hardy, R.; Peterson, A.; Beach, R. Cultivation of common bacterial species and strains from human skin, oral, and gut microbiota. BMC Microbiol. 2021, 21, 278. [Google Scholar] [CrossRef]
- Saheb Kashaf, S.; Proctor, D.M.; Deming, C.; Saary, P.; Hölzer, M.; Taylor, M.E.; Kong, H.H.; Segre, J.A.; Almeida, A. Integrating cultivation and metagenomics for a multi-kingdom view of skin microbiome diversity and functions. Nat. Microbiol. 2022, 7, 169–179. [Google Scholar] [CrossRef]
- Acosta, E.M.; Little, K.A.; Bratton, B.P.; Lopez, J.G.; Mao, X.; Payne, A.S.; Donia, M.; Devenport, D.; Gitai, Z. Bacterial DNA on the skin surface overrepresents the viable skin microbiome. Elife 2023, 12, RP87192. [Google Scholar] [CrossRef]
- Ahle, C.M.; Stødkilde, K.; Poehlein, A.; Bömeke, M.; Streit, W.R.; Wenck, H.; Reuter, J.H.; Hüpeden, J.; Brüggemann, H. Interference and co-existence of staphylococci and Cutibacterium acnes within the healthy human skin microbiome. Commun. Biol. 2022, 5, 923. [Google Scholar] [CrossRef]
- Perley, J.; Stowe, B. The production of tryptamine from tryptophan by Bacillus cereus (KVT). Biochem. J. 1966, 100, 169. [Google Scholar] [CrossRef]
- Oldendorf, W.H. Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection. Am. J. Physiol. Leg. Content 1971, 221, 1629–1639. [Google Scholar] [CrossRef]
- Pruitt, A.A. Neurologic complications of infective endocarditis. Curr. Treat. Options Neurol. 2013, 15, 465–476. [Google Scholar] [CrossRef]
- Francklyn, C.; Adams, J.; Augustine, J. Catalytic defects in mutants of class II histidyl-tRNA synthetase from Salmonella typhimurium previously linked to decreased control of histidine biosynthesis regulation. J. Mol. Biol. 1998, 280, 847–858. [Google Scholar] [CrossRef] [PubMed]
- Linares, D.M.; Fernandez, M.; Del-Rio, B.; Ladero, V.; Martin, M.C.; Alvarez, M.A. The tyrosyl-tRNA synthetase like gene located in the tyramine biosynthesis cluster of Enterococcus durans is transcriptionally regulated by tyrosine concentration and extracellular pH. BMC Microbiol. 2012, 12, 23. [Google Scholar] [CrossRef] [PubMed]
- Strøman, P.; Sørensen, K.I.; Derkx, P.M.; Neves, A.R. Development of Tyrosine Decarboxylase–Negative Strains of Lactobacillus curvatus by Classical Strain Improvement. J. Food Prot. 2018, 81, 628–635. [Google Scholar] [CrossRef]
- Wolken, W.A.; Lucas, P.M.; Lonvaud-Funel, A.; Lolkema, J.S. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis. J. Bacteriol. 2006, 188, 2198–2206. [Google Scholar] [CrossRef] [PubMed]
- Pessione, E.; Pessione, A.; Lamberti, C.; Coïsson, D.J.; Riedel, K.; Mazzoli, R.; Bonetta, S.; Eberl, L.; Giunta, C. First evidence of a membrane-bound, tyramine and β-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: A two-dimensional electrophoresis proteomic study. Proteomics 2009, 9, 2695–2710. [Google Scholar] [CrossRef]
- Molenaar, D.; Bosscher, J.S.; ten Brink, B.; Driessen, A.; Konings, W.N. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri. J. Bacteriol. 1993, 175, 2864–2870. [Google Scholar] [CrossRef]
- Berry, M.D.; Shitut, M.R.; Almousa, A.; Alcorn, J.; Tomberli, B. Membrane permeability of trace amines: Evidence for a regulated, activity-dependent, nonexocytotic, synaptic release. Synapse 2013, 67, 656–667. [Google Scholar] [CrossRef]
- Van Kessel, S.P.; El Aidy, S. Contributions of gut bacteria and diet to drug pharmacokinetics in the treatment of Parkinson’s disease. Front. Neurol. 2019, 10, 1087. [Google Scholar] [CrossRef]
- Moreno-Arribas, V.; Lonvaud-Funel, A. Purification and characterization of tyrosine decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiol. Lett. 2001, 195, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Marcobal, A.; De Las Rivas, B.; Muñoz, R. First genetic characterization of a bacterial β-phenylethylamine biosynthetic enzyme in Enterococcus faecium RM58. FEMS Microbiol. Lett. 2006, 258, 144–149. [Google Scholar] [CrossRef]
- Adamberg, K.; Kask, S.; Laht, T.-M.; Paalme, T. The effect of temperature and pH on the growth of lactic acid bacteria: A pH-auxostat study. Int. J. Food Microbiol. 2003, 85, 171–183. [Google Scholar] [CrossRef]
- Nakajo, K.; Komori, R.; Ishikawa, S.; Ueno, T.; Suzuki, Y.; Iwami, Y.; Takahashi, N. Resistance to acidic and alkaline environments in the endodontic pathogen Enterococcus faecalis. Oral Microbiol. Immunol. 2006, 21, 283–288. [Google Scholar] [CrossRef]
- Andersson, E.; Bailey, J.E. The influence of the external pH on the production of modified protein A by Staphylococcus aureus. J. Biotechnol. 1989, 11, 37–47. [Google Scholar] [CrossRef]
- Beetham, C.M.; Schuster, C.F.; Kviatkovski, I.; Santiago, M.; Walker, S.; Gründling, A. Histidine transport is essential for the growth of Staphylococcus aureus at low pH. PLoS Pathog. 2024, 20, e1011927. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, J.; Thomas, V.C.; Olson, M.; Chaudhari, S.; Nuxoll, A.S.; Schaeffer, C.; Lindgren, K.; Jones, J.; Zimmerman, M.C.; Dunman, P. Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. J. Bacteriol. 2014, 196, 2277–2289. [Google Scholar] [CrossRef]
- Christensen, I.B.; Vedel, C.; Clausen, M.-L.; Kjærulff, S.; Agner, T.; Nielsen, D.S. Targeted screening of lactic acid bacteria with antibacterial activity toward Staphylococcus aureus clonal complex type 1 associated with atopic dermatitis. Front. Microbiol. 2021, 12, 733847. [Google Scholar] [CrossRef]
- Jensen, M.G.; Svraka, L.; Baez, E.; Lund, M.; Poehlein, A.; Brüggemann, H. Species-and strain-level diversity of Corynebacteria isolated from human facial skin. BMC Microbiol. 2023, 23, 366. [Google Scholar] [CrossRef]
- Rahmdel, S.; Shekarforoush, S.S.; Hosseinzadeh, S.; Torriani, S.; Gatto, V. Antimicrobial spectrum activity of bacteriocinogenic Staphylococcus strains isolated from goat and sheep milk. J. Dairy Sci. 2019, 102, 2928–2940. [Google Scholar] [CrossRef]
- Bae, T.; Schneewind, O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 2006, 55, 58–63. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, S.P.; Auvinen, P.; Scheperjans, F.; El Aidy, S. Gut bacterial tyrosine decarboxylase associates with clinical variables in a longitudinal cohort study of Parkinsons disease. npj Park. Dis. 2021, 7, 115. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, J.; Kamenska, N.; Matuschek, E.; Brüggemann, H.; Söderquist, B. Cutibacterium avidum: A Potent and Underestimated Pathogen in Prosthetic Hip Joint Infections. Microorganisms 2024, 12, 432. [Google Scholar] [CrossRef] [PubMed]
Bacillus | Staphylococcus | Corynebacterium |
---|---|---|
B. agri | S. capitis | C. bouchesdurhonense |
B. albus | S. caprae | C. curieae |
B. altitudinis | S. coagulans | C. gottingense |
B. atrophaeus | S. epidermidis | C. kefirresidentii |
B. canaveralius | S. haemolyticus | C. meitnerae |
B. cereus | S. hominis | C. mucifaciens |
B. haynesii | S. petrasil | C. parakroppenstedtii |
B. licheniformis | S. pragensis | C. pilbarense |
B. mobilis | S. saccharolyticus | C. tuberculostearicum |
B. paramycoides | S. saprophyticus | C. ureicelerivorans |
B. siamensis | ||
B. tequilensis | Cutibacterium | Peribacillus |
B. tyonensis | Cut. acnes | P. butanolivorans |
B. velezensis | Cut. avidum | P. frigoritolerans |
B. wiedmannii | P. simplex | |
Kocuria | Nialia | Roseomonas |
K. arsenatis | N. circulans | R. mucosa |
Micrococcus | Paeniibacillus | Streptococcus |
M. endophyticus | P. etheri | St. anginosus |
M. luteus | St. thermophilus |
Production Pattern | Species | No. of Isolates |
---|---|---|
TRY + PEA + TYM | S. capitis | 1 |
S. coagulans | 8 | |
S. epidermidis | 75 | |
S. hominis | 4 | |
S. saccharolyticus | 11 | |
Total | 99 | |
TRY + PEA | S. capitis | 2 |
S. caprae | 1 | |
S. epidermidis | 16 | |
Total | 19 | |
PEA + TYM | S. epidermidis | 3 |
S. haemolyticus | 1 | |
S. pragensis | 1 | |
Total | 5 | |
TYM | S. capitis | 4 |
S. epidermidis | 1 | |
Total | 5 |
Enzyme | Species | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. aureus | S. capitis | S. caprae | S. carnosus | S. coagulans | S. condimenti | S. cornubiensis | S. debuckii | S. delphini | S. epidermidis | S. haemolyticus | S. hominis | S. intermedius | S. lugdunensis | S. lutrae | S. pasteuri | S. petrasii | S. piscifermentans | S. pragensis | S. pseudintermedius | S. schleiferi | S. simulans | S. ureilyticus | Staphylococcus sp.* | Total | |
SadA | 676 | 1 | 3 | 14 | 63 | 9 | 1 | 1 | 42 | 798 | 17 | 14 | 5 | 2 | 1 | ND | 1 | 1 | 1 | 4188 | 55 | 2 | 3 | 24 | 5922 |
TDC | 1 | 21 | 30 | ND | ND | ND | ND | ND | ND | 125 | 14 | ND | ND | ND | ND | 1 | ND | ND | ND | ND | ND | ND | ND | 6 | 198 |
tdc Operon | Blastp | |||||
---|---|---|---|---|---|---|
S. epidermidis 102 | L. brevis IOEB | |||||
Protein | Length (aa) | GenBank Accession No. | Length (aa) | Coverage (%) | E Value | Identity (%) |
Tyrosyl-tRNA synthetase (TyrS) | 417 | AAQ83557.1 | 418 | 99 | 0.0 | 69 |
Tyrosine decarboxylase (TDC) | 616 | AAN77279.2 | 635 | 95 | 0.0 | 71 |
Tyrosine–tyramine permease (TyrP) | 479 | AAQ83558.1 | 473 | 99 | 0.0 | 66 |
Na+/H+ antiporter (NhaC) | 461 | AAQ83559.1 | 476 | 96 | 2 × 10−142 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmdel, S.; Purkayastha, M.; Nega, M.; Liberini, E.; Li, N.; Luqman, A.; Brüggemann, H.; Götz, F. Diversity of Neurotransmitter-Producing Human Skin Commensals. Int. J. Mol. Sci. 2024, 25, 12345. https://doi.org/10.3390/ijms252212345
Rahmdel S, Purkayastha M, Nega M, Liberini E, Li N, Luqman A, Brüggemann H, Götz F. Diversity of Neurotransmitter-Producing Human Skin Commensals. International Journal of Molecular Sciences. 2024; 25(22):12345. https://doi.org/10.3390/ijms252212345
Chicago/Turabian StyleRahmdel, Samane, Moushumi Purkayastha, Mulugeta Nega, Elisa Liberini, Ningna Li, Arif Luqman, Holger Brüggemann, and Friedrich Götz. 2024. "Diversity of Neurotransmitter-Producing Human Skin Commensals" International Journal of Molecular Sciences 25, no. 22: 12345. https://doi.org/10.3390/ijms252212345
APA StyleRahmdel, S., Purkayastha, M., Nega, M., Liberini, E., Li, N., Luqman, A., Brüggemann, H., & Götz, F. (2024). Diversity of Neurotransmitter-Producing Human Skin Commensals. International Journal of Molecular Sciences, 25(22), 12345. https://doi.org/10.3390/ijms252212345