Morphology and Applications of Self-Assembled Peptide Nucleic Acids
Abstract
:1. Introduction
2. Discussion
2.1. Long PNA Oligomers
2.2. PNA Monomers
2.3. PNA Dimers
2.4. PNA–Peptide Conjugates
2.4.1. PNA–Peptide–Alkyl Chains
2.4.2. Hydrophobic Peptide Conjugates
2.4.3. Amphipathic Peptide Conjugates
2.5. Assembly of Gamma-PNA
3. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Dey, S.; Fan, C.H.; Gothelf, K.V.; Li, J.; Lin, C.X.; Liu, L.F.; Liu, N.; Nijenhuis, M.A.D.; Saccà, B.; Simmel, F.C.; et al. DNA origami. Nat. Rev. Method Prime 2021, 1, 12. [Google Scholar] [CrossRef]
- Li, K.; Liu, Y.F.; Lou, B.B.; Tan, Y.F.; Chen, L.W.; Liu, Z.B. DNA-directed assembly of nanomaterials and their biomedical applications. Int. J. Biol. Macromol. 2023, 245, 125551. [Google Scholar] [CrossRef] [PubMed]
- Levin, A.; Hakala, T.A.; Schnaider, L.; Bernardes, G.J.L.; Gazit, E.; Knowles, T.P.J. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 2020, 4, 615–634. [Google Scholar] [CrossRef]
- Huo, Y.H.; Hu, J.; Yin, Y.Y.; Liu, P.; Cai, K.Y.; Ji, W. Self-Assembling Peptide-Based Functional Biomaterials. ChemBioChem 2023, 24, e202200582. [Google Scholar] [CrossRef]
- Stephanopoulos, N. Hybrid Nanostructures from the Self-Assembly of Proteins and DNA. Chem 2020, 6, 364–405. [Google Scholar] [CrossRef]
- Danielsen, M.B.; Mao, H.B.; Lou, C.G. Peptide-DNA conjugates as building blocks for de novo design of hybrid nanostructures. Cell Rep. Phys. Sci. 2023, 4, 101620. [Google Scholar] [CrossRef]
- Gray, V.P.; Amelung, C.D.; Duti, I.J.; Laudermilch, E.G.; Letteri, R.A.; Lampe, K.J. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering. Acta Biomater. 2022, 140, 43–75. [Google Scholar] [CrossRef]
- Sinha, N.J.; Langenstein, M.G.; Pochan, D.J.; Kloxin, C.J.; Saven, J.G. Peptide Design and Self-assembly into Targeted Nanostructure and Functional Materials. Chem. Rev. 2021, 121, 13915–13935. [Google Scholar] [CrossRef]
- Liu, S.Y.; Du, P.D.; Sun, H.; Yu, H.Y.; Wang, Z.G. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catal. 2020, 10, 14937–14958. [Google Scholar] [CrossRef]
- Nielsen, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 1991, 254, 1497–1500. [Google Scholar] [CrossRef]
- Avitabile, C.; Moggio, L.; D’Andrea, L.D.; Pedone, C.; Romanelli, A. Development of an efficient and low-cost protocol for the manual PNA synthesis by Fmoc chemistry. Tetrahedron. Lett. 2010, 51, 3716–3718. [Google Scholar] [CrossRef]
- Singh, G.; Monga, V. Peptide Nucleic Acids: Recent Developments in the Synthesis and Backbone Modifications. Bioorg. Chem. 2023, 141, 106860. [Google Scholar] [CrossRef] [PubMed]
- Pensato, S.; Saviano, M.; Romanelli, A. New peptide nucleic acid analogues: Synthesis and applications. Expert Opin Biol. Ther. 2007, 7, 1219–1232. [Google Scholar] [CrossRef] [PubMed]
- Nandhini, K.P.; Shaer, D.A.; Albericio, F.; de la Torre, B.G. The challenge of peptide nucleic acid synthesis. Chem. Soc. Rev. 2023, 52, 2764–2789. [Google Scholar] [CrossRef]
- Brodyagin, N.; Katkevics, M.; Kotikam, V.; Ryan, C.A.; Rozners, E. Chemical approaches to discover the full potential of peptide nucleic acids in biomedical applications. Beilstein J. Org. Chem. 2021, 17, 1641–1688. [Google Scholar] [CrossRef]
- Saarbach, J.; Sabale, P.M.; Winssinger, N. Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics. Curr. Opin. Chem. Biol. 2019, 52, 112–124. [Google Scholar] [CrossRef]
- Brazil, R. Peptide Nucleic Acids Promise New Therapeutics and Gene Editing Tools. ACS Cent. Sci. 2023, 9, 3–6. [Google Scholar] [CrossRef]
- Zannetti, A.; Del Vecchio, S.; Romanelli, A.; Scala, S.; Saviano, M.; Cali’, G.; Stoppelli, M.P.; Pedone, C.; Salvatore, M. Inhibition of Sp1 activity by a decoy PNA-DNA chimera prevents urokinase receptor expression and migration of breast cancer cells. Biochem. Pharmacol. 2005, 70, 1277–1287. [Google Scholar] [CrossRef]
- Volpi, S.; Cancelli, U.; Neri, M.; Corradini, R. Multifunctional Delivery Systems for Peptide Nucleic Acids. Pharmaceuticals 2021, 14, 14. [Google Scholar] [CrossRef]
- Avitabile, C.; Accardo, A.; Ringhieri, P.; Morelli, G.; Saviano, M.; Montagner, G.; Fabbri, E.; Gallerani, E.; Gambari, R.; Romanelli, A. Incorporation of Naked Peptide Nucleic Acids into Liposomes Leads to Fast and Efficient Delivery. Bioconjugate Chem. 2015, 26, 1533–1541. [Google Scholar] [CrossRef]
- Sarkar, S. Recent advancements in bionanomaterial applications of peptide nucleic acid assemblies. Biopolymers 2024, 115, e23567. [Google Scholar] [CrossRef] [PubMed]
- Berger, O.; Adler-Abramovich, L.; Levy-Sakin, M.; Grunwald, A.; Liebes-Peer, Y.; Bachar, M.; Buzhansky, L.; Mossou, E.; Forsyth, V.T.; Schwartz, T.; et al. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing. Nat. Nanotechnol. 2015, 10, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Dhami, I.; Thadke, S.A.; Ly, D.H.; Taylor, R.E. Rapid self-assembly of gammaPNA nanofibers at constant temperature. Biopolymers 2021, 112, e23463. [Google Scholar] [CrossRef] [PubMed]
- Diaferia, C.; Avitabile, C.; Leone, M.; Gallo, E.; Saviano, M.; Accardo, A.; Romanelli, A. Diphenylalanine Motif Drives Self-Assembling in Hybrid PNA-Peptide Conjugates. Chem. Eur. J. 2021, 27, 14307–14316. [Google Scholar] [CrossRef]
- Avitabile, C.; Diaferia, C.; Roviello, V.; Altamura, D.; Giannini, C.; Vitagliano, L.; Accardo, A.; Romanelli, A. Fluorescence and Morphology of Self-Assembled Nucleobases and Their Diphenylalanine Hybrid Aggregates. Chem. Eur. J. 2019, 25, 14850–14857. [Google Scholar] [CrossRef]
- DiMaio, J.T.M.; Doran, T.M.; Ryan, D.M.; Raymond, D.M.; Nilsson, B.L. Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition. Biomacromolecules 2017, 18, 3591–3599. [Google Scholar] [CrossRef]
- Berger, O.; Yoskovitz, E.; Adler-Abramovich, L.; Gazit, E. Spectral Transition in Bio-Inspired Self-Assembled Peptide Nucleic Acid Photonic Crystals. Adv. Mater. 2016, 28, 2195–2200. [Google Scholar] [CrossRef]
- Nikoloudakis, E.; Karikis, K.; Han, J.J.; Kokotidou, C.; Charisiadis, A.; Folias, F.; Douvas, A.M.; Mitraki, A.; Charalambidis, G.; Yan, X.H.; et al. A self-assembly study of PNA-porphyrin and PNA-BODIPY hybrids in mixed solvent systems. Nanoscale 2019, 11, 3557–3566. [Google Scholar] [CrossRef]
- Avitabile, C.; Diaferia, C.; Della Ventura, B.; Mercurio, F.A.; Leone, M.; Roviello, V.; Saviano, M.; Velotta, R.; Morelli, G.; Accardo, A.; et al. Self-Assembling of Fmoc-GC Peptide Nucleic Acid Dimers into Highly Fluorescent Aggregates. Chem. Eur. J. 2018, 24, 4729–4735. [Google Scholar] [CrossRef]
- Vernille, J.P.; Kovell, L.C.; Schneider, J.W. Peptide nucleic acid (PNA) amphiphiles: Synthesis, self-assembly, and duplex stability. Bioconjugate Chem. 2004, 15, 1314–1321. [Google Scholar] [CrossRef]
- Lau, C.; Bitton, R.; Bianco-Peled, H.; Schultz, D.G.; Cookson, D.J.; Grosser, S.T.; Schneider, J.W. Morphological characterization of self-assembled peptide nucleic acid amphiphiles. J. Phys. Chem. B 2006, 110, 9027–9033. [Google Scholar] [CrossRef] [PubMed]
- Argueta-Gonzalez, H.; Swenson, C.S.; Skowron, K.J.; Heemstra, J.M. Elucidating Sequence-Assembly Relationships for Bilingual PNA Biopolymers. ACS Omega 2023, 8, 37442–37450. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Kumar, V.; Liu, C.H.; Shih, K.C.; Krueger, S.; Nieh, M.P.; Bahal, R. Head on Comparison of Self- and Nano-assemblies of Gamma Peptide Nucleic Acid Amphiphiles. Adv. Funct. Mater. 2022, 32, 2109552. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Gu, Z.; Hsu, L.; Patterson, G.D.; Armitage, B.A. Synthesis and characterization of thermoreversible biopolymer microgels based on hydrogen bonded nucleobase pairing. J. Am. Chem. Soc. 2003, 125, 10250–10256. [Google Scholar] [CrossRef] [PubMed]
- Chu, T.W.; Feng, J.; Yang, J.; Kopecek, J. Hybrid polymeric hydrogels via peptide nucleic acid (PNA)/DNA complexation. J. Control Release 2015, 220 Pt B, 608–616. [Google Scholar] [CrossRef]
- Becker, A.L.; Johnston, A.P.; Caruso, F. Peptide nucleic acid films and capsules: Assembly and enzymatic degradation. Macromol. Biosci. 2010, 10, 488–495. [Google Scholar] [CrossRef]
- Avakyan, N.; Greschner, A.A.; Aldaye, F.; Serpell, C.J.; Toader, V.; Petitjean, A.; Sleiman, H.F. Reprogramming the assembly of unmodified DNA with a small molecule. Nat. Chem. 2016, 8, 368–376. [Google Scholar] [CrossRef]
- Teyssier, J.; Saenko, S.V.; van der Marel, D.; Milinkovitch, M.C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 2015, 6, 6368. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, Y.; Rencus-Lazar, S.; Mei, D.; Gazit, E.; Tao, K. Bio-organic adaptive photonic crystals enable supramolecular solvatochromism. NanoResearch 2023, 16, 12092–12097. [Google Scholar] [CrossRef]
- Chang, R.; Nikoloudakis, E.; Zou, Q.L.; Mitraki, A.; Coutsolelos, A.G.; Yan, X.H. Supramolecular Nanodrugs Constructed by Self-Assembly of Peptide Nucleic Acid-Photosensitizer Conjugates for Photodynamic Therapy. ACS Appl. Bio Mater. 2020, 3, 2–9. [Google Scholar] [CrossRef]
- Basavalingappa, V.; Bera, S.; Xue, B.; Azuri, I.; Tang, Y.; Tao, K.; Shimon, L.J.W.; Sawaya, M.R.; Kolusheva, S.; Eisenberg, D.S.; et al. Mechanically rigid supramolecular assemblies formed from an Fmoc-guanine conjugated peptide nucleic acid. Nat. Commun. 2019, 10, 5256. [Google Scholar] [CrossRef] [PubMed]
- Basavalingappa, V.; Xue, B.; Rencus-Lazar, S.; Wang, W.; Tao, K.; Cao, Y.; Gazit, E. Self-Assembled Quadruplex-Inspired Peptide Nucleic Acid Tetramer for Artificial Photosynthesis. ChemPhotoChem 2020, 4, 5154–5158. [Google Scholar] [CrossRef]
- Arnon, Z.A.; Berger, O.; Aizen, R.; Hannes, K.; Brown, N.; Shimon, L.J.W.; Gazit, E. Coassembly of Complementary Peptide Nucleic Acid into Crystalline Structures by Microfluidics. Small Methods 2019, 3, 1900179. [Google Scholar] [CrossRef]
- Abraham, J.N.; Pawar, P.; Kootteri, D.K. Self-Assembly of Di-Guanine Peptide Nucleic Acid Amphiphiles into Fractal Patterns. ChemistrySelect 2019, 4, 13525–13532. [Google Scholar] [CrossRef]
- Mosseri, A.; Sancho-Albero, M.; Mercurio, F.A.; Leone, M.; De Cola, L.; Romanelli, A. Tryptophan-PNA gc Conjugates Self-Assemble to Form Fibers. Bioconjugate Chem. 2023, 34, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.H.; Li, Z.Y.; Rong, L.; Qin, S.Y.; Lei, Q.; Cheng, H.; Zhou, X.; Zhuo, R.X.; Zhang, X.Z. Self-Assembly of Hybridized Peptide Nucleic Acid Amphiphiles. ACS Macro Lett. 2014, 3, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Marques, B.F.; Schneider, J.W. Sequence-specific binding of DNA to liposomes containing di-alkyl peptide nucleic acid (PNA) amphiphiles. Langmuir 2005, 21, 2488–2494. [Google Scholar] [CrossRef]
- Guler, M.O.; Pokorski, J.K.; Appella, D.H.; Stupp, S.I. Enhanced oligonucleotide binding to self-assembled nanofibers. Bioconjugate Chem. 2005, 16, 501–503. [Google Scholar] [CrossRef]
- Datta, D.; Tiwari, O.; Gupta, M.K. Self-Assembly of Diphenylalanine-Peptide Nucleic Acid Conjugates. ACS Omega 2019, 4, 10715–10728. [Google Scholar] [CrossRef]
- Sedman, V.L.; Adler-Abramovich, L.; Allen, S.; Gazit, E.; Tendler, S.J. Direct observation of the release of phenylalanine from diphenylalanine nanotubes. J. Am. Chem. Soc. 2006, 128, 6903–6908. [Google Scholar] [CrossRef]
- Adler-Abramovich, L.; Reches, M.; Sedman, V.L.; Allen, S.; Tendler, S.J.; Gazit, E. Thermal and chemical stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications. Langmuir 2006, 22, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Mosseri, A.; Sancho-Albero, M.; Leone, M.; Nava, D.; Secundo, F.; Maggioni, D.; De Cola, L.; Romanelli, A. Chiral Fibers Formation Upon Assembly of Tetraphenylalanine Peptide Conjugated to a PNA Dimer. Chem. Eur. J. 2022, 28, e202200693. [Google Scholar] [CrossRef]
- Cimmino, L.; Diaferia, C.; Rosa, M.; Morelli, G.; Rosa, E.; Accardo, A. Hybrid peptide-PNA monomers as building blocks for the fabrication of supramolecular aggregates. J. Pept. Sci. 2024, 30, e3573. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, E.; Rosa, E.; Ferrauto, G.; Diaferia, C.; Gallo, E.; Accardo, A.; Terreno, E. Development of cationic peptide-based hydrogels loaded with iopamidol for CEST-MRI detection. J. Mater. Chem. B 2023, 11, 7435–7441. [Google Scholar] [CrossRef] [PubMed]
- Hoschtettler, P.; Pickaert, G.; Carvalho, A.; Averlant-Petit, M.C.; Stefan, L. Highly Synergistic Properties of Multicomponent Hydrogels Thanks to Cooperative Nucleopeptide Assemblies. Chem. Mater. 2023, 35, 4259–4275. [Google Scholar] [CrossRef]
- Giraud, T.; Bouguet-Bonnet, S.; Marchal, P.; Pickaert, G.; Averlant-Petit, M.C.; Stefan, L. Improving and fine-tuning the properties of peptide-based hydrogels via incorporation of peptide nucleic acids. Nanoscale 2020, 12, 19905–19917. [Google Scholar] [CrossRef]
- Gao, J.; Tang, C.; Elsawy, M.A.; Smith, A.M.; Miller, A.F.; Saiani, A. Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology. Biomacromolecules 2017, 18, 826–834. [Google Scholar] [CrossRef]
- Giraud, T.; Bouguet-Bonnet, S.; Stebe, M.J.; Richaudeau, L.; Pickaert, G.; Averlant-Petit, M.C.; Stefan, L. Co-assembly and multicomponent hydrogel formation upon mixing nucleobase-containing peptides. Nanoscale 2021, 13, 10566–10578. [Google Scholar] [CrossRef]
- Zhou, Y.; Qiu, P.; Yao, D.; Song, Y.; Zhu, Y.; Pan, H.; Wu, J.; Zhang, J. A crosslinked colloidal network of peptide/nucleic base amphiphiles for targeted cancer cell encapsulation. Chem. Sci. 2021, 12, 10063–10069. [Google Scholar] [CrossRef]
- Sakar, S.; Anderson, C.F.; Schneider, J.P. The Design of a Participatory Peptide Nucleic Acid Duplex Crosslinker to Enhance the Stiffness of Self-Assembled Peptide Gels. Angew. Chem. Int. Ed. Engl. 2024, 63, e202313507. [Google Scholar] [CrossRef]
- Dragulescu-Andrasi, A.; Rapireddy, S.; Frezza, B.M.; Gayathri, C.; Gil, R.R.; Ly, D.H. A simple γ-backbone modification preorganizes peptide nucleic acid into a helical structure. J. Am. Chem. Soc. 2006, 128, 10258–10267. [Google Scholar] [CrossRef]
- Kumar, S.; Pearse, A.; Liu, Y.; Taylor, R.E. Modular self-assembly of gamma-modified peptide nucleic acids in organic solvent mixtures. Nat. Commun. 2020, 11, 2960. [Google Scholar] [CrossRef]
- Swenson, C.S.; Velusamy, A.; Argueta-Gonzalez, H.S.; Heemstra, J.M. Bilingual Peptide Nucleic Acids: Encoding the Languages of Nucleic Acids and Proteins in a Single Self-Assembling Biopolymer. J. Am. Chem. Soc. 2019, 141, 19038–19047. [Google Scholar] [CrossRef] [PubMed]
- Argueta-Gonzalez, H.S.; Swenson, C.S.; Song, G.; Heemstra, J.M. Stimuli-responsive assembly of bilingual peptide nucleic acids. RSC Chem. Biol. 2022, 3, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Möllers, P.V.; Ulku, S.; Jayarathna, D.; Tassinari, F.; Nürenberg, D.; Naaman, R.; Achim, C.; Zacharias, H. Spin-selective electron transmission through self-assembled monolayers of double-stranded peptide nucleic acid. Chirality 2021, 33, 93–102. [Google Scholar] [CrossRef] [PubMed]
Sequence 1 | Morphology 2 | Application 3 |
---|---|---|
Biotin-tagagtt-Lys-NH2 | Fiber (after DNA hybridization) | Hydrogel |
Methacryloyl-Gly2-agtgaccg-OH/HPMA copolymer Methacryloyl-Gly2-accaggcg-OH/HPMA copolymer Methacryloyl-Gly2-ttctcttcttc-OH/HPMA copolymer Methacryloyl-Gly2-cttcttctctt-OH/HPMA copolymer | Porous structure (after DNA hybridization) | Hydrogel |
Glu-tgagcttgtatagtcg-Glu * Glu-caagctcacgactata-Glu * | Film and hollow capsule | Delivery |
aaaaaaa * | Fiber (after cyanuric acid binding) | |
Fmoc-g(Bhoc)-OH | Microsphere | Photonic crystals Organic solvents detection |
Fmoc-g(Bhoc)-TPP Fmoc-g(Bhoc)-BDP | Nanosphere Spherical or flake-shaped aggregate | Catalysis photodynamic therapy |
Fmoc-g-aminopentanoic acid | Sphere or nanoribbon | Energy transfer processes |
gc-NH2c g-NH2 gg-NH2 | Crystal | Optoelectronic |
Fmoc-gc-NH2 | Sphere | Fluorescence |
C12-gg-NH2 | Sphere | n.r. |
C12-agtgatctac-(Glu)4-NH2 | Micelle | n.r. |
C12-tttccg-(Lys)2-NH2 | Micelle | n.r. |
C12-tagacg-(Glu)2-NH2 | Ellipsoidal micelle | Separation of DNA oligomers |
C12-ctgactga-(Glu)4-NH2 | Spherical micelle | n.r. |
(C14)2-(AEEA)2-agtgatctac-(Glu)4-NH2 | n.r. | Liposomes (mixture with cholesterol and DSPC) for DNA delivery |
(C14)2-agtgatctac-(Glu)4-NH2 | n.r. | Liposomes (mixture with cholesterol and DSPC) for DNA delivery |
(C14)2-tttccg-(Lys)2-NH2 | n.r. | Liposomes (mixture with cholesterol and DSPC) for DNA delivery |
LysLys(Lys(Lys-t7))(Gly)3(Ala)3Lys(palmitoyl)-NH2 | Fiber | Hydrogels |
Boc-(Phe)2-tz-AN(Boc)2-aeg-OEthyl Boc-(Phe)2-tz-GN(Boc)2-aeg-OEthyl | Hollow nanoparticle Hollow nanoparticle | Encapsulation Supercapacitors |
a-(Phe)2-OH or g-(Phe)2-OH aa-(Phe)2-OH or gg-(Phe)2-OH c-(Phe)2-OH or cc-(Phe)2-OH t-(Phe)2-OH or tt-(Phe)2-OH | Amorphous conglomerate Fibrous nanostructure Entwined fiber Entwined fiber | n.r. |
gc−(Phe)2 gc−(Phe)2−NH2 (Phe)2−gc (Phe)2−gc−NH2 | Spherical aggregate Spherical aggregate Spherical aggregate Spherical aggregate | n.r. |
(Trp)2−gc−NH2 (Trp)2−at−NH2 | Spherical aggregate/ intertwined fiber Spherical aggregate | n.r. |
(Phe)4−gc−NH2 (Phe)4−at−NH2 | Vesicle like Twisted fiber | n.r. |
c-Phe-g-Phe-NH2 (c-Phe-g-Phe)2-NH2 t-Phe-a-Phe-NH2 (t-Phe-a-Phe)2-NH2 | Globular aggregate Thin plates Globular aggregates Globular aggregates | n.r. |
c-LeuValAlaGlyLys-NH2 | n.r. | Hydrogel for CEST-MRI |
Ac-ttctctctga-PEG-(PheLysPheGlu)2-NH2 Ac-(PheLysPheGlu)2-PEG-tttctaatgt-Lys-NH2 | Fibrils | Hydrogels |
Ac-ac-FEFK-NH2 Ac-tg-FEFK-NH2 | Entangled fibers | Hydrogel |
a-(PheAsp)2(PheLys)2-OH g-(PheAsp)2(PheLys)2-OH t-(PheAsp)2(PheLys)2-OH c-(PheAsp)2(PheLys)2-OH | Entangled fibers Entangled fibers Thin fibers/spherical nanostructures Thin fibers/spherical nanostructures | Hydrogel Hydrogel Hydrogel Hydrogel |
t-ArgGlyAspPhePheLys(rhodamine)-NH2 a-ArgGlyAspPhePheLys(naphthalimide)-NH2 | Crosslinked spherical fibers Crosslinked fibers | Encapsulation cancer cells |
Ac-VLTKVKTKVDPPTKVQVKVFV-(PEG10)2-tgttacgact-NH2 Ac-VLTKVKTKVDPPTKVQVKVFV-(PEG10)2-agtcgtaaca-NH2 | Fiber (after duplex assembly) | hydrogel |
aγmpataγmpgcgtγmptcac-NH2 gγmpctaγmpttgaγmpgtaa-NH2 gγmpacaγmptcttγmpactc-NH2 cγmptggγmpcgtgγmpcgga-NH2 cγmpgccγmpagccγmpctcg-NH2 biotin-gγmptgaγmpaccgγmpaggg-NH2 aγmpgttγmpttgaγmptgtc-NH2 Cy3-aγmpaaaγmpctacγmpagaa-NH2 tγmpccgγmpcattγmpctgt-NH2 | Fiber (after combination of all nine single strand PNAs) | |
(aatagcgttcac)γSer-NH2 (gctattgagtaa)γSer-NH2 (gacatcttactc)γSer-NH2 (ctggcgtgcgga)γSer-NH2 (cgccagccctcg)γSer-NH2 biotin-DEG-(gtgaaccgaggg)γSer-NH2 (agttttgatgtc)γSer-NH2 TAMRA-DEG-(aaaactacagaa)γSer-NH2 (tccgcattctgt)γSer-NH2 | Nanofiber (after a combination of all nine single-strand PNAs) | |
tγLyscaaγLyscatcγAlaagtγAlacD-NH2 tγLyscaaγLyscatcγLeuagtγLeucD-NH2 DtγAlacaaγAlacatcγGluagtγGluc-Gly-NH2 tγLyscaaγLyscatγAlacaγAlagD-NH2 tγLyscaγLysacγAlaatγAlacD-NH2 | Spherical assembly (micelles) | n.r. |
(C12)-PEG3-agcattaa-Lys-PEG3-TAMRA (C12)-PEG3-(agcattaa)γmp-Lys-PEG3-TAMRA | Ellipsoid nanostructures | Anticancer |
cgtacaaacttagacaccag-Lys3-NH2 Lys-ctggtgtcta-NH2 + Ac-agtttgtacg-(CH2)3SH ctggγSertgtγSerctaγSer-Lys-NH2+ Ac-agtttgtacg-(CH2)3SH | Monolayer (in duplex form with complementary PNA strand) | Electrocatalytic reactions |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Andrea, L.D.; Romanelli, A. Morphology and Applications of Self-Assembled Peptide Nucleic Acids. Int. J. Mol. Sci. 2024, 25, 12435. https://doi.org/10.3390/ijms252212435
D’Andrea LD, Romanelli A. Morphology and Applications of Self-Assembled Peptide Nucleic Acids. International Journal of Molecular Sciences. 2024; 25(22):12435. https://doi.org/10.3390/ijms252212435
Chicago/Turabian StyleD’Andrea, Luca Domenico, and Alessandra Romanelli. 2024. "Morphology and Applications of Self-Assembled Peptide Nucleic Acids" International Journal of Molecular Sciences 25, no. 22: 12435. https://doi.org/10.3390/ijms252212435
APA StyleD’Andrea, L. D., & Romanelli, A. (2024). Morphology and Applications of Self-Assembled Peptide Nucleic Acids. International Journal of Molecular Sciences, 25(22), 12435. https://doi.org/10.3390/ijms252212435