Comparative Analysis of Mesocotyl Elongation Ability among Maize Inbred Lines
Abstract
:1. Introduction
2. Results
2.1. Few Cell Numbers and Short Cell Length Are the Key Factors of Short Mesocotyl Length in Maize
2.2. Transcriptome Analysis of Mesocotyl Elongation
2.3. Many Cytochrome P450 and Peroxidase-Related Genes Were Downregulated in the Short Mesocotyl Lines Compared with the Long Mesocotyl Line
2.4. Plant Hormone Signal Transduction-Related Genes Are Involved in Regulating the Length and Number of Mesocotyl Cell
2.5. Validation of RNA-Seq Data
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Measurement of Mesocotyl Length
4.3. Measurement of Cell Length and Cell Number of Mesocotyl
4.4. RNA-Seq and Transcriptome Analysis
4.5. qRT-PCR
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, S.; Wang, T.; Wang, L.; Li, X.; Jia, Y.; Liu, C.; Huang, X.; Xie, W.; Wang, X. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling. Nat. Commun. 2018, 9, 2523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, P.; Zhao, Z.; Zhao, G.; Tian, B.; Wang, J.; Wang, G. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor. Appl. Genet. 2012, 124, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Shi, H.; Xue, C.; Wei, N.; Guo, H.; Deng, X.W. Ethylene-orchestrated circuitry coordinates a seedling’s response to soil cover and etiolated growth. Proc. Natl. Acad. Sci. USA 2014, 111, 3913–3920. [Google Scholar] [CrossRef] [PubMed]
- Leivar, P.; Monte, E.; Oka, Y.; Liu, T.; Carle, C.; Castillon, A.; Huq, E.; Quail, P.H. Multiple Phytochrome-Interacting bHLH Transcription Factors Repress Premature Seedling Photomorphogenesis in Darkness. Curr. Biol. 2008, 18, 1815–1823. [Google Scholar] [CrossRef] [PubMed]
- Sáenz Rodríguez, M.N.; Cassab, G.I. Primary Root and Mesocotyl Elongation in Maize Seedlings: Two Organs with Antagonistic Growth below the Soil Surface. Plants 2021, 10, 1274. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, Y.; Hossain, Z.; Shi, J.; Mao, T.; Bai, X. Integrated QTL Mapping, Meta-Analysis, and RNA-Sequencing Reveal Candidate Genes for Maize Deep-Sowing Tolerance. Int. J. Mol. Sci. 2023, 24, 6770. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, Y.; Liu, Y.; Lyle, D.; Li, D.; Wang, P.; Xu, J.; Zhen, S.; Lu, J.; Peng, Y.; et al. Dissecting the genetic basis of maize deep-sowing tolerance by combining association mapping and gene expression analysis. J. Integr. Agric. 2022, 21, 1266–1277. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, L.; Wang, J.; Li, C.; Zeng, X.; Xie, S.; Zhang, Y.; Liu, S.; Hu, S.; Wang, J.; et al. Quantitative Trait Locus Analysis for Deep-Sowing Germination Ability in the Maize IBM Syn10 DH Population. Front. Plant Sci. 2017, 8, 813. [Google Scholar] [CrossRef]
- Zhao, X.; Zhong, Y.; Zhou, W. Molecular mechanisms of mesocotyl elongation induced by brassinosteroid in maize under deep-seeding stress by RNA-sequencing, microstructure observation, and physiological metabolism. Genomics 2021, 113, 3565–3581. [Google Scholar] [CrossRef]
- Chen, F.; Ji, X.; Bai, M.; Zhuang, Z.; Peng, Y. Network Analysis of Different Exogenous Hormones on the Regulation of Deep Sowing Tolerance in Maize Seedlings. Front. Plant Sci. 2021, 12, 739101. [Google Scholar] [CrossRef]
- Liu, H.; Zhan, J.; Li, J.; Lu, X.; Liu, J.; Wang, Y.; Zhao, Q.; Ye, G. Genome-Wide Association Study (GWAS) for Mesocotyl Elongation in Rice (Oryza sativa L.) under Multiple Culture Conditions. Genes 2020, 11, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.; Lu, X.; Liu, H.; Zhao, Q.; Ye, G. Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): A review of physiological and genetic basis. Planta 2020, 251, 27. [Google Scholar] [CrossRef] [PubMed]
- Kutschera, U.; Wang, Z. Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma 2016, 253, 3–14. [Google Scholar] [CrossRef]
- Zhang, D.; Jing, Y.; Jiang, Z.; Lin, R. The Chromatin-Remodeling Factor PICKLE Integrates Brassinosteroid and Gibberellin Signaling during Skotomorphogenic Growth in Arabidopsis. Plant Cell 2014, 26, 2472–2485. [Google Scholar] [CrossRef]
- Zhao, X.; Niu, Y.; Hossain, Z.; Zhao, B.; Bai, X.; Mao, T. New insights into light spectral quality inhibits the plasticity elongation of maize mesocotyl and coleoptile during seed germination. Front. Plant Sci. 2023, 14, 1152399. [Google Scholar] [CrossRef] [PubMed]
- Cona, A.; Cenci, F.; Cervelli, M.; Federico, R.; Mariottini, P.; Moreno, S.; Angelini, R. Polyamine Oxidase, a Hydrogen Peroxide-Producing Enzyme, Is Up-Regulated by Light and Down-Regulated by Auxin in the Outer Tissues of the Maize Mesocotyl. Plant Physiol. 2003, 131, 803–813. [Google Scholar] [CrossRef]
- Gao, C.; Hu, J.; Zhang, S.; Zheng, Y.; Knapp, A. Association of polyamines in governing the chilling sensitivity of maize genotypes. Plant Growth Regul. 2009, 57, 31–38. [Google Scholar] [CrossRef]
- Xiong, Q.; Ma, B.; Lu, X.; Huang, Y.; He, S.; Yang, C.; Yin, C.; Zhao, H.; Zhou, Y.; Zhang, W.; et al. Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings. Plant Cell 2017, 29, 1053–1072. [Google Scholar] [CrossRef]
- Hartwig, T.; Corvalan, C.; Best, N.B.; Budka, J.S.; Zhu, J.; Choe, S.; Schulz, B. Propiconazole is a specific and accessible brassinosteroid (BR) biosynthesis inhibitor for Arabidopsis and maize. PLoS ONE 2012, 7, e36625. [Google Scholar] [CrossRef]
- Hu, S.; Sanchez, D.L.; Wang, C.; Lipka, A.E.; Yin, Y.; Gardner, C.A.C.; Lübberstedt, T. Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.). Plant Sci. 2017, 263, 132–141. [Google Scholar] [CrossRef]
- Niu, L.; Wu, Z.; Liu, H.; Wu, X.; Wang, W. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays. BMC Genom. 2019, 20, 758. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wei, K. Comparative functional genomics analysis of cytochrome P450 gene superfamily in wheat and maize. BMC Plant Biol. 2020, 20, 93. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.C.; Nelson, D.R.; Møller, B.L.; Werck-Reichhart, D. Plant cytochrome P450 plasticity and evolution. Mol. Plant 2021, 14, 1244–1265. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Niu, Y.; Bai, X.; Mao, T. Transcriptomic and Metabolic Profiling Reveals a Lignin Metabolism Network Involved in Mesocotyl Elongation during Maize Seed Germination. Plants 2022, 11, 1034. [Google Scholar] [CrossRef]
- Ju, L.; Lv, N.; Yin, F.; Niu, H.; Yan, H.; Wang, Y.; Fan, F.; Lv, X.; Chu, J.; Ping, J. Identification of Key Genes Regulating Sorghum Mesocotyl Elongation through Transcriptome Analysis. Genes 2023, 14, 1215. [Google Scholar] [CrossRef]
- Iino, M.; Carr, D.J. Sources of Free IAA in the Mesocotyl of Etiolated Maize Seedlings. Plant Physiol. 1982, 69, 1109–1112. [Google Scholar] [CrossRef]
- Fellner, M.; Ford, E.D.; Volkenburgh, E.V. Development of Erect Leaves in a Modern Maize Hybrid is Associated with Reduced Responsiveness to Auxin and Light of Young Seedlings in vitro. Plant Signal. Behav. 2006, 1, 201–211. [Google Scholar] [CrossRef]
- Jones, A.M.U.O.; Cochran, D.S.; Lamerson, P.M.; Evans, M.L.; Cohen, J.D. Red light-regulated growth. I. Changes in the abundance of indoleacetic acid and a 22-kilodalton auxin-binding protein in the maize mesocotyl. Plant Physiol. 1991, 97, 352–358. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, J. Effect of auxin on mesocotyl elongation of dark-grown maize under different seeding depths. Russ. J. Plant Physiol. 2010, 57, 79–86. [Google Scholar] [CrossRef]
- Watanabe, H.; Takahashi, K.; Saigusa, M. Morphological and anatomical effects of abscisic acid (ABA) and fluridone (FLU) on the growth of rice mesocotyls. Plant Growth Regul. 2001, 34, 273–275. [Google Scholar] [CrossRef]
- Hu, Z.; Yamauchi, T.; Yang, J.; Jikumaru, Y.; Tsuchida-Mayama, T.; Ichikawa, H.; Takamure, I.; Nagamura, Y.; Tsutsumi, N.; Yamaguchi, S.; et al. Strigolactone and Cytokinin Act Antagonistically in Regulating Rice Mesocotyl Elongation in Darkness. Plant Cell Physiol. 2014, 55, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, Y.; Huang, G.; Zhu, N.; Li, Z.; Zhang, M.; Duan, L. Coronatine inhibits mesocotyl elongation by promoting ethylene production in etiolated maize seedlings. Plant Growth Regul. 2020, 90, 51–61. [Google Scholar] [CrossRef]
- Zhao, G.C.A.U.; Wang, J. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Prod. Sci. 2008, 11, 423–429. [Google Scholar] [CrossRef]
- Pan, B.; Zhong, T.; Zhao, G. Promoting deep-sowing germinability of corn (Zea mays) by seed soaking with gibberellic acid. Arch. Agron. Soil Sci. 2017, 63, 1314–1323. [Google Scholar] [CrossRef]
- Du, L.; Jiang, H.; Zhao, G.; Ren, J. Gene cloning of ZmMYB59 transcription factor in maize and its expression during seed germination in response to deep-sowing and exogenous hormones. Plant Breed. 2017, 136, 834–844. [Google Scholar] [CrossRef]
- Feng, F.; Mei, H.; Fan, P.; Li, Y.; Xu, X.; Wei, H.; Yan, M.; Luo, L. Dynamic transcriptome and phytohormone profiling along the time of light exposure in the mesocotyl of rice seedling. Sci. Rep. 2017, 7, 11961. [Google Scholar] [CrossRef]
- Xie, L.; Wen, D.; Wu, C.; Zhang, C. Transcriptome analysis reveals the mechanism of internode development affecting maize stalk strength. BMC Plant Biol. 2022, 22, 49. [Google Scholar] [CrossRef]
- Niu, L.; Hao, R.; Wu, X.; Wang, W. Maize mesocotyl: Role in response to stress and deep-sowing tolerance. Plant Breed. 2020, 139, 466–473. [Google Scholar] [CrossRef]
- Wen, D.; Xu, H.; Xie, L.; He, M.; Hou, H.; Wu, C.; Li, Y.; Zhang, C. Effects of Nitrogen Level during Seed Production on Wheat Seed Vigor and Seedling Establishment at the Transcriptome Level. Int. J. Mol. Sci. 2018, 19, 3417. [Google Scholar] [CrossRef]
- Meng, A.; Wen, D.; Zhang, C. Dynamic Changes in Seed Germination under Low-Temperature Stress in Maize. Int. J. Mol. Sci. 2022, 23, 5495. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, J.; Wu, Y. Transcriptional Regulation of Zein Gene Expression in Maize through the Additive and Synergistic Action of opaque2, Prolamine-Box Binding Factor, and O2 Heterodimerizing Proteins. Plant Cell 2015, 27, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Gene ID | Gene Annotation | log2FoldChange | p-Value |
---|---|---|---|
Zm00001d044775 | Xyloglucan endotransglucosylase/hydrolase protein 3 | −9.42 | 7.18 × 10−14 |
Zm00001d026250 | Xyloglucan endotransglucosylase/hydrolase protein 24 | −5.92 | 4.22 × 10−4 |
Zm00001d051526 | Probable xyloglucan endotransglucosylase/hydrolase protein 30 | −5.65 | 8.86 × 10−4 |
Zm00001d026251 | Probable xyloglucan endotransglucosylase/hydrolase protein 16 | −4.87 | 1.52 × 10−2 |
Zm00001d024378 | Xyloglucan endotransglucosylase/hydrolase 2 | −4.77 | 2.05 × 10−11 |
Zm00001d050201 | Probable xyloglucan endotransglucosylase/hydrolase protein 25 | −3.91 | 3.85 × 10−4 |
Zm00001d002409 | Probable xyloglucan endotransglucosylase/hydrolase protein 16 | −3.80 | 6.49 × 10−3 |
Zm00001d009899 | Probable pectinesterase/pectinesterase inhibitor 41 | −3.54 | 4.49 × 10−10 |
Zm00001d022104 | Pectinesterase QRT1 | −3.47 | 2.28 × 10−8 |
Zm00001d024392 | Probable xyloglucan endotransglucosylase/hydrolase protein 25 | −3.07 | 1.88 × 10−3 |
Zm00001d053961 | Probable xyloglucan endotransglucosylase/hydrolase protein 30 | −3.02 | 6.85 × 10−3 |
Zm00001d032992 | Pectinesterase 31 | −2.27 | 1.24 × 10−49 |
Zm00001d047970 | Probable xyloglucan endotransglucosylase/hydrolase protein 28 | −2.01 | 2.98 × 10−22 |
Zm00001d045048 | Probable pectinesterase/pectinesterase inhibitor 12 | −1.83 | 3.38 × 10−53 |
Zm00001d002412 | Probable xyloglucan endotransglucosylase/hydrolase protein 25 | −1.69 | 2.74 × 10−3 |
Zm00001d042624 | Probable pectinesterase/pectinesterase inhibitor 51 | −1.39 | 3.49 × 10−36 |
Zm00001d012766 | Probable pectinesterase 53 | −1.31 | 7.44 × 10−9 |
Zm00001d042625 | Probable pectinesterase/pectinesterase inhibitor 51 | −1.22 | 7.04 × 10−28 |
Zm00001d014613 | Xyloglucan endotransglucosylase/hydrolase protein 22 | −1.17 | 1.43 × 10−21 |
Zm00001d021667 | Probable xyloglucan endotransglucosylase/hydrolase protein 8 | −1.07 | 1.86 × 10−20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, D.; Tian, X.; Wu, C.; Zhang, C. Comparative Analysis of Mesocotyl Elongation Ability among Maize Inbred Lines. Int. J. Mol. Sci. 2024, 25, 12437. https://doi.org/10.3390/ijms252212437
Wen D, Tian X, Wu C, Zhang C. Comparative Analysis of Mesocotyl Elongation Ability among Maize Inbred Lines. International Journal of Molecular Sciences. 2024; 25(22):12437. https://doi.org/10.3390/ijms252212437
Chicago/Turabian StyleWen, Daxing, Xiaoyu Tian, Chenglai Wu, and Chunqing Zhang. 2024. "Comparative Analysis of Mesocotyl Elongation Ability among Maize Inbred Lines" International Journal of Molecular Sciences 25, no. 22: 12437. https://doi.org/10.3390/ijms252212437
APA StyleWen, D., Tian, X., Wu, C., & Zhang, C. (2024). Comparative Analysis of Mesocotyl Elongation Ability among Maize Inbred Lines. International Journal of Molecular Sciences, 25(22), 12437. https://doi.org/10.3390/ijms252212437