Screening of SNP Loci Related to Leg Length Trait in Leizhou Goats Based on Whole-Genome Resequencing
Abstract
:1. Introduction
2. Results
2.1. Whole-Genome Resequencing and Mutation Detection in Leizhou Goats
2.1.1. Quality Control and Comparison of Whole-Genome Resequencing Data
2.1.2. SNP Variant Detection and Annotation
2.2. Population Structure Analysis of Leizhou Goats
2.3. Signatures of Selection in Leizhou Goat Populations
2.3.1. Leizhou Goat TL vs. SL Based on Fst
2.3.2. Leizhou Goat TL vs. SL Based on Fst and θπ Selected Regions
2.3.3. Functional Annotation of Strong Selection Signal Genes in the SL Group
2.3.4. Functional Annotation of Strong Selection Signal Genes in the TL Group
2.4. GWAS Analysis of Leg Length Traits in Leizhou Goats
2.5. Association Analysis of Candidate Gene Polymorphisms and Leg Length Traits
2.5.1. DNA Mixed Pool Detection of Candidate SNP Polymorphisms
2.5.2. Candidate Gene SNP Site Genotyping
2.5.3. Candidate Gene Polymorphism Analysis
2.5.4. Association Analysis of NC_030818.1 (g. 53666634 T > C) Gene Polymorphism and Leg Length
3. Discussion
3.1. Characterization of the Distribution of Genetic Variation in the Genomes of TL and SL Groups of Leizhou Goats
3.2. Population Genetic Structure Analysis of Leizhou Goats with TL and SL Groups
3.3. Selected Genes and Functional Analysis of TL and SL Groups in Leizhou Goats
3.4. GWAS Association Analysis of Leg Length Traits in Leizhou Goats
4. Materials and Methods
4.1. Sample Collection and DNA Extraction
4.2. DNA Library Construction and Quality Testing
4.3. Sequencing Data Quality Control and Mapping
4.4. SNP Detection and Annotation
4.5. Population Genetic Structure Analysis
4.6. Population Selection Elimination Analysis
4.7. Gene Functional Enrichment Analysis
4.8. Genome-Wide Association Analysis
4.9. Candidate SNP Gene Polymorphisms and Their Leg Length Trait Association Analysis
- (1)
- Blood genomic DNA extraction
- (2)
- Primer design
- (3)
- PCR amplification
- (4)
- PCR product digestion and Sanger sequencing
- (5)
- Select SNP loci
- (6)
- DNA mixed pool detection of candidate SNP polymorphisms
- (7)
- Candidate gene SNP site genotyping
4.10. Data Processing and Analysis
5. Conclusions
- (1)
- A total of 8,641,229 high-quality SNPs were identified in 30 Leizhou goats using whole-genome resequencing. Eight candidate genes that might be related to leg length traits in Leizhou goats were screened using selective elimination analysis, including B4GALT7, NR1D1, PARP2, SOST, GDF5, EIF2AK2, SP1, and KIF7.
- (2)
- NC_030818.1 (g. 53666634 T > C) and SHBG (g. 27088465 A > G) showed intermediate allele frequency in the Leizhou goat population. In addition, the NC_030818.1 (g. 53666634 T > C) variant was associated with leg length traits, with shorter leg lengths in the CC type and longer leg lengths in the TT type.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | Body Height/cm | Chest Depth/cm | Leg Lenth/cm |
---|---|---|---|
TL1 | 62.0 | 34.0 | 30.5 |
TL2 | 63.0 | 33.5 | 31.0 |
TL3 | 65.0 | 32.0 | 32.0 |
TL4 | 58.5 | 34.5 | 29.0 |
TL5 | 60.5 | 31.5 | 30.0 |
TL6 | 63.5 | 34.0 | 31.5 |
TL7 | 61.8 | 30.5 | 30.8 |
TL8 | 62.8 | 33.5 | 31.3 |
TL9 | 60.0 | 33.5 | 30.0 |
TL10 | 61.5 | 33.8 | 30.8 |
TL11 | 58.5 | 33.3 | 29.5 |
TL12 | 62.0 | 32.0 | 31.5 |
TL13 | 59.0 | 31.8 | 30.5 |
TL14 | 58.0 | 30.3 | 30.5 |
TL15 | 63.0 | 28.5 | 33.5 |
SL1 | 55.5 | 31.5 | 21.5 |
SL2 | 57.0 | 32.0 | 23.5 |
SL3 | 54.5 | 33.0 | 22.5 |
SL4 | 59.0 | 29.5 | 24.5 |
SL5 | 54.0 | 30.5 | 22.5 |
SL6 | 59.5 | 32.0 | 25.5 |
SL7 | 53.5 | 31.0 | 23.0 |
SL8 | 59.0 | 31.5 | 25.5 |
SL9 | 59.0 | 30.0 | 25.5 |
SL10 | 60.0 | 30.8 | 26.3 |
SL11 | 59.3 | 29.0 | 26.0 |
SL12 | 57.5 | 30.5 | 25.5 |
SL13 | 57.5 | 28.5 | 25.8 |
SL14 | 55.0 | 27.5 | 24.8 |
SL15 | 52.0 | 29.5 | 23.5 |
Gene | Chromosome Number | Chromosomal Location | Reference Genomic Bases | Mutant Base |
---|---|---|---|---|
NC_030818.1 | NC_030808.1 | 2469037 | A | G |
NR1D1 | NC_030826.1 | 40040094 | G | C |
PARP2 | NC_030817.1 | 76236896 | C | T |
SOST | NC_030826.1 | 43291383 | G | C |
NFKBIB | NC_030825.1 | 49514296 | C | T |
SHBG | NC_030826.1 | 27088465 | A | G |
CAPN12 | NC_030825.1 | 49371761 | C | T |
FRMD5 | NC_030828.1 | 55009283 | C | T |
References
- Liu, H.; Peng, W.; Mao, K.; Yang, Y.; Wu, Q.; Wang, K.; Zeng, M.; Han, X.; Han, J.; Zhou, H. The Changes in Fecal Bacterial Communities in Goats Offered Rumen-Protected Fat. Microorganisms 2024, 12, 822. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.H.; Gong, G.; Yan, X.C.; Zhang, L.T.; Zhang, F.T.; Liu, H.F.; Lv, Q.; Wang, R.J.; Zhang, Y.J.; Wang, Z.X.; et al. Genome-wide association study of fleece traits in Inner Mongolia Cashmere goats. Anim. Genet. 2021, 52, 375–379. [Google Scholar] [CrossRef]
- Xiong, J.; Bao, J.; Hu, W.; Shang, M.; Zhang, L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front. Genet. 2023, 13, 1044017. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Lyu, Y.; Zhang, D.; Reddi, K.K.; Sun, F.; Yi, J.; Liu, C.; Li, H.; Yao, H.; Dai, J.; et al. Genomic Characteristics and Selection Signatures in Indigenous Chongming White Goat (Capra hircus). Front. Genet. 2020, 11, 901. [Google Scholar] [CrossRef]
- Lan, X.Y.; Pan, C.Y.; Chen, H.; Lei, C.Z.; Hua, L.S.; Yang, X.B.; Qiu, G.Y.; Zhang, R.F.; Lun, Y.Z. DdeI Polymorphism in Coding Region of Goat POU1F1 Gene and Its Association with Production Traits. Asian-Australasian J. Anim. Sci. 2007, 20, 1342–1348. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Y.; Han, X.; Wu, Q.; Liu, H.; Han, J.; Zhou, H. Effects of Copy Number Variations in the Plectin (PLEC) Gene on the Growth Traits and Meat Quality of Leizhou Black Goats. Animals 2023, 13, 3651. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chai, Y.; Zhang, W.; Cheng, Y.; Zhang, Z.; An, Q.; Chen, S.; Man, C.; Du, L.; Zhang, W. Whole-genome se-quencing reveals the genomic characteristics and selection signatures of hainan black goat. Genes 2022, 13, 1539. [Google Scholar] [CrossRef]
- Zhou, J.; Meng, C.; Li, Y.; Fu, Y.; Long, W.; Huang, H.; Liu, Y.; Lyu, P.; Xiao, S. MiRNA-423 rs6505162 and miRNA-6811 rs2292879 SNP associated with lung cancer in Hainan, China. Biosci. Rep. 2023, 43, BSR20231152. [Google Scholar] [CrossRef]
- Shastry, B.S. SNPs: Impact on gene function and phenotype. In Single Nucleotide Polymorphisms: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2009; pp. 3–22. [Google Scholar] [CrossRef]
- McKenzie, C.W.; Preston, C.C.; Finn, R.; Eyster, K.M.; Faustino, R.S.; Lee, L. Strain-specific differences in brain gene expression in a hydrocephalic mouse model with motile cilia dysfunction. Sci. Rep. 2018, 8, 13370. [Google Scholar] [CrossRef]
- McKenzie, C.W.; Lee, L. Genetic interaction between central pair apparatus genes CFAP221, CFAP54, and SPEF2 in mouse models of primary ciliary dyskinesia. Sci. Rep. 2020, 10, 12337. [Google Scholar] [CrossRef]
- Cianfanelli, V.; De Zio, D.; Di Bartolomeo, S.; Nazio, F.; Strappazzon, F.; Cecconi, F. Ambra1 at a glance. J. Cell Sci. 2015, 128, 2003–2008. [Google Scholar] [CrossRef]
- Crespi, B.; Read, S.; Ly, A.; Hurd, P. AMBRA1, Autophagy, and the Extreme Male Brain Theory of Autism. Autism Res. Treat. 2019, 2019, 1968580. [Google Scholar] [CrossRef]
- Mitjans, M.; Begemann, M.; Ju, A.; Dere, E.; Wüstefeld, L.; Hofer, S.; Hassouna, I.; Balkenhol, J.; Oliveira, B.; van der Auwera, S.; et al. Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl. Psychiatry 2017, 7, e1247. [Google Scholar] [CrossRef]
- Qin, Y.-Q.; Liu, S.-Y.; Lv, M.-L.; Sun, W.-L. Ambra1 in cancer: Implications for clinical oncology. Apoptosis 2022, 27, 720–729. [Google Scholar] [CrossRef]
- Gambarotto, L.; Metti, S.; Chrisam, M.; Cerqua, C.; Sabatelli, P.; Armani, A.; Zanon, C.; Spizzotin, M.; Castagnaro, S.; Strappazzon, F.; et al. Ambra1 deficiency impairs mitophagy in skeletal muscle. J. Cachex-Sarcopenia Muscle 2022, 13, 2211–2224. [Google Scholar] [CrossRef]
- Zhang, C. Transcriptional regulation of bone formation by the osteoblast-specific transcription factor Osx. J. Orthop. Surg. Res. 2010, 5, 37. [Google Scholar] [CrossRef]
- Liu, C.; Jia, Y.; Zhao, X.; Wang, Z.; Zhu, X.; Zhang, C.; Li, X.; Zhao, X.; Gong, T.; Zhao, H.; et al. Targeting B4GALT7 suppresses the proliferation, migration and invasion of hepatocellular carcinoma through the Cdc2/CyclinB1 and miR-338-3p/MMP2 pathway. PeerJ 2023, 11, e16450. [Google Scholar] [CrossRef]
- Boegheim, I.J.; Leegwater, P.A.; van Lith, H.A.; Back, W. Current insights into the molecular genetic basis of dwarfism in livestock. Veter- J. 2017, 224, 64–75. [Google Scholar] [CrossRef]
- Leegwater, P.A.; Vos-Loohuis, M.; Ducro, B.J.; Boegheim, I.J.; van Steenbeek, F.G.; Nijman, I.J.; Monroe, G.R.; Bastiaansen, J.W.M.; Dibbits, B.W.; van de Goor, L.H.; et al. Dwarfism with joint laxity in Friesian horses is associated with a splice site mutation in B4GALT7. BMC Genom. 2016, 17, 839. [Google Scholar] [CrossRef]
- Delbaere, S.; Van Damme, T.; Syx, D.; Symoens, S.; Coucke, P.; Willaert, A.; Malfait, F. Hypomorphic zebrafish models mimic the musculoskeletal phenotype of β4GalT7-deficient Ehlers-Danlos syndrome. Matrix Biol. 2020, 89, 59–75. [Google Scholar] [CrossRef]
- Zhang-Sun, Z.-Y.; Xu, X.-Z.; Escames, G.; Lei, W.-R.; Zhao, L.; Zhou, Y.-Z.; Tian, Y.; Ren, Y.-N.; Acuña-Castroviejo, D.; Yang, Y. Targeting NR1D1 in organ injury: Challenges and prospects. Mil. Med. Res. 2023, 10, 62. [Google Scholar] [CrossRef]
- Ye, W.; Wang, Y.; Mei, B.; Hou, S.; Liu, X.; Wu, G.; Qin, L.; Zhao, K.; Huang, Q. Computational and functional characterization of four SNPs in the SOST locus associated with osteoporosis. Bone 2018, 108, 132–144. [Google Scholar] [CrossRef]
- He, J.; Zhang, H.; Wang, C.; Zhang, Z.; Yue, H.; Hu, W.; Gu, J.; Fu, W.; Hu, Y.; Li, M.; et al. Associations of Serum Sclerostin and Polymorphisms in the SOST Gene With Bone Mineral Density and Markers of Bone Metabolism in Postmenopausal Chinese Women. J. Clin. Endocrinol. Metab. 2014, 99, E665–E673. [Google Scholar] [CrossRef]
- Styrkarsdottir, U.; Thorleifsson, G.; Gudjonsson, S.A.; Sigurdsson, A.; Center, J.R.; Lee, S.H.; Nguyen, T.V.; Kwok, T.C.; Lee, J.S.; Ho, S.C.; et al. Sequence variants in the PTCH1 gene associate with spine bone mineral density and osteoporotic fractures. Nat. Commun. 2016, 7, 10129. [Google Scholar] [CrossRef]
- Murakami, T.; Ruengsinpinya, L.; Takahata, Y.; Nakaminami, Y.; Hata, K.; Nishimura, R. HOXA10 promotes Gdf5 expression in articular chondrocytes. Sci. Rep. 2023, 13, 22778. [Google Scholar] [CrossRef]
- Zhang, R.; Yao, J.; Xu, P.; Ji, B.; Luck, J.V.; Chin, B.; Lu, S.; Kelsoe, J.R.; Ma, J. A comprehensive meta-analysis of association between genetic variants of GDF5 and osteoarthritis of the knee, hip and hand. Inflamm. Res. 2015, 64, 405–414. [Google Scholar] [CrossRef]
- García-Alvarado, F.; Rosales-González, M.; Arellano-Pérez-Vertti, D.; Espino-Silva, P.; Meza-Velazquez, M.; Ruiz-Flores, P. Association Between the SNP rs143383+104T/C in the GDF5 Gene and the Risk of Knee Osteoarthritis in a Population from Northern Mexico-A Case-Control Study. Genet. Test. Mol. Biomarkers 2018, 22, 503–506. [Google Scholar] [CrossRef]
- Liu, Y.F.; Zan, L.S.; Li, K.; Zhao, S.P.; Xin, Y.P.; Lin, Q.; Tian, W.Q.; Wang, Z.W. A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds. Mol. Biol. Rep. 2009, 37, 429–434. [Google Scholar] [CrossRef]
- Xu, J.; Rogers, M.B. Modulation of Bone Morphogenetic Protein (BMP) 2 gene expression by Sp1 transcription factors. Gene 2007, 392, 221–229. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Tsuji, K.; Cox, K.; Harfe, B.D.; Rosen, V.; Tabin, C.J. Genetic Analysis of the Roles of BMP2, BMP4, and BMP7 in Limb Patterning and Skeletogenesis. PLoS Genet. 2006, 2, e216. [Google Scholar] [CrossRef]
- Qian, Z.; Zhang, Y.; Kang, X.; Li, H.; Zhang, Y.; Jin, X.; Gao, X.; Xu, M.; Ma, Z.; Zhao, L.; et al. Postnatal Conditional Deletion of Bmal1 in Osteoblasts Enhances Trabecular Bone Formation Via Increased BMP2 Signals. J. Bone Miner. Res. 2020, 35, 1481–1493. [Google Scholar] [CrossRef]
- Duttenhoefer, F.; Biswas, S.K.; Igwe, J.C.; Sauerbier, S.; Bierhaus, A. Sp1-dependent regulation of PPAR? in bone metabolism. Int. J. Oral Maxillofac. Implant. 2014, 29, e107–e116. [Google Scholar] [CrossRef]
- Dehghan, M.; Pourahmad-Jaktaji, R. Sp1 binding site polymorphism of a collagen gene (rs 1800012) in womenaged 45 and over and its association with bone density. Turk. J. Med. Sci. 2015, 45, 644–650. [Google Scholar] [CrossRef]
- Karsenty, G.; Kronenberg, H.M.; Settembre, C. Genetic Control of Bone Formation. Annu. Rev. Cell Dev. Biol. 2009, 25, 629–648. [Google Scholar] [CrossRef]
- Hsu, S.-H.C.; Zhang, X.; Yu, C.; Li, Z.J.; Wunder, J.S.; Hui, C.-C.; Alman, B.A. Kif7 promotes hedgehog signaling in growth plate chondrocytes by restricting the inhibitory function of Sufu. Development 2011, 138, 3791–3801. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kronenberg, H.M. Overview of Skeletal Development. Methods Mol. Biol. 2021, 2230, 3–16. [Google Scholar] [CrossRef]
- Maruyama, T.; Jiang, M.; Hsu, W. Gpr177, a novel locus for bone mineral density and osteoporosis, regulates osteogenesis and chondrogenesis in skeletal development. J. Bone Miner. Res. 2012, 28, 1150–1159. [Google Scholar] [CrossRef]
- Morvan, F.; Boulukos, K.; Clément-Lacroix, P.; Roman, S.R.; Suc-Royer, I.; Vayssière, B.; Ammann, P.; Martin, P.; Pinho, S.; Pognonec, P.; et al. Deletion of a Single Allele of the Dkk1 Gene Leads to an Increase in Bone Formation and Bone Mass. J. Bone Miner. Res. 2006, 21, 934–945. [Google Scholar] [CrossRef]
- Gaur, T.; Lengner, C.J.; Hovhannisyan, H.; Bhat, R.A.; Bodine, P.V.N.; Komm, B.S.; Javed, A.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; et al. Canonical WNT Signaling Promotes Osteogenesis by Directly Stimulating Runx2 Gene Expression. J. Biol. Chem. 2005, 280, 33132–33140. [Google Scholar] [CrossRef]
- Karner, C.M.; Long, F. Wnt signaling and cellular metabolism in osteoblasts. Cell. Mol. Life Sci. 2016, 74, 1649–1657. [Google Scholar] [CrossRef]
- Ballhause, T.M.; Jiang, S.; Baranowsky, A.; Brandt, S.; Mertens, P.R.; Frosch, K.-H.; Yorgan, T.; Keller, J. Relevance of Notch Signaling for Bone Metabolism and Regeneration. Int. J. Mol. Sci. 2021, 22, 1325. [Google Scholar] [CrossRef]
- Gao, Y.; Fu, Z.; Guan, J.; Liu, X.; Zhang, Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem. Pharmacol. 2022, 207, 115377. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, J.; Chen, Y.; Jin, X.; Li, Z.; Wen, X.; Xia, Q.; Wang, Y. Salidroside improves angiogenesis-osteogenesis coupling by regulating the HIF-1α/VEGF signalling pathway in the bone environment. Eur. J. Pharmacol. 2020, 884, 173394. [Google Scholar] [CrossRef]
- Hsu, G.C.-Y.; Wang, Y.; Lu, A.Z.; Gomez-Salazar, M.A.; Xu, J.; Li, D.; Meyers, C.; Negri, S.; Wangsiricharoen, S.; Broderick, K.P.; et al. TIAM1 acts as an actin organization regulator to control adipose tissue–derived pericyte cell fate. J. Clin. Investig. 2023, 8, e159141. [Google Scholar] [CrossRef]
- Mertens, A.E.; Roovers, R.C.; Collard, J.G. Regulation of Tiam1–Rac signalling. FEBS Lett. 2003, 546, 11–16. [Google Scholar] [CrossRef]
- Ru, Q.; Lu, Y.; Bin Saifullah, A.; Blanco, F.A.; Yao, C.; Cata, J.P.; Li, D.-P.; Tolias, K.F.; Li, L. TIAM1-mediated synaptic plasticity underlies comorbid depression–like and ketamine antidepressant–like actions in chronic pain. J. Clin. Investig. 2022, 132, e158545. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw Base (bp) | Clean Base (bp) | Effective Rate (%) | Error Rate (%) | Q20 (%) | Q30 (%) | GC Content (%) |
---|---|---|---|---|---|---|---|
TL1 | 27,843,832,200 | 27,649,102,800 | 99.30 | 0.03 | 97.64 | 93.34 | 43.72 |
TL2 | 30,256,776,900 | 29,683,815,300 | 98.11 | 0.03 | 96.91 | 91.86 | 47.05 |
TL3 | 29,662,381,500 | 29,443,012,200 | 99.26 | 0.03 | 97.37 | 92.39 | 43.55 |
TL4 | 27,814,504,200 | 27,618,588,900 | 99.30 | 0.03 | 97.34 | 92.65 | 43.62 |
TL5 | 28,073,487,000 | 27,882,138,300 | 99.32 | 0.03 | 97.55 | 93.10 | 43.30 |
TL6 | 26,578,760,100 | 26,406,888,300 | 99.35 | 0.03 | 97.44 | 92.85 | 43.27 |
TL7 | 30,786,686,700 | 30,546,573,900 | 99.22 | 0.03 | 97.16 | 92.28 | 44.21 |
TL8 | 34,228,209,600 | 33,967,403,700 | 99.24 | 0.03 | 97.42 | 92.84 | 43.54 |
TL9 | 29,552,629,200 | 29,336,811,600 | 99.27 | 0.03 | 97.53 | 92.97 | 43.06 |
TL10 | 28,615,713,000 | 28,427,135,400 | 99.34 | 0.03 | 96.86 | 91.53 | 43.52 |
TL11 | 30,323,067,600 | 29,927,976,600 | 98.70 | 0.03 | 97.23 | 92.77 | 46.14 |
TL12 | 32,162,967,000 | 31,930,486,500 | 99.28 | 0.03 | 96.74 | 91.24 | 43.05 |
TL13 | 29,870,390,100 | 29,705,223,900 | 99.45 | 0.03 | 97.05 | 91.69 | 42.67 |
TL14 | 30,049,663,200 | 29,826,423,900 | 99.26 | 0.03 | 97.29 | 92.34 | 43.27 |
TL15 | 27,483,879,000 | 27,272,088,600 | 99.23 | 0.03 | 97.34 | 92.62 | 42.73 |
SL1 | 28,270,083,600 | 27,854,524,800 | 98.53 | 0.03 | 96.83 | 91.94 | 46.79 |
SL2 | 30,463,497,900 | 30,244,026,000 | 99.28 | 0.03 | 97.19 | 92.12 | 43.36 |
SL3 | 32,409,471,900 | 32,156,407,800 | 99.22 | 0.03 | 97.48 | 92.96 | 43.20 |
SL4 | 28,160,716,800 | 27,989,217,600 | 99.39 | 0.03 | 97.20 | 92.17 | 43.16 |
SL5 | 27,703,572,000 | 27,501,890,100 | 99.27 | 0.03 | 97.38 | 92.67 | 42.15 |
SL6 | 28,712,619,600 | 28,515,085,500 | 99.31 | 0.03 | 97.44 | 92.83 | 41.97 |
SL7 | 27,628,634,100 | 27,444,917,100 | 99.34 | 0.03 | 97.50 | 92.97 | 42.48 |
SL8 | 27,288,080,700 | 27,118,727,100 | 99.38 | 0.03 | 97.25 | 92.40 | 42.54 |
SL9 | 29,785,053,300 | 29,587,171,500 | 99.34 | 0.03 | 97.26 | 92.38 | 42.02 |
SL10 | 28,735,499,100 | 28,576,833,000 | 99.45 | 0.03 | 97.39 | 92.67 | 41.86 |
SL11 | 26,732,475,300 | 26,567,756,400 | 99.38 | 0.03 | 97.62 | 93.23 | 41.90 |
SL12 | 30,159,567,600 | 29,980,689,900 | 99.41 | 0.03 | 97.34 | 92.57 | 41.73 |
SL13 | 26,976,734,700 | 26,800,857,300 | 99.35 | 0.03 | 97.36 | 92.31 | 41.89 |
SL14 | 26,850,299,400 | 26,678,291,100 | 99.36 | 0.03 | 97.40 | 92.72 | 42.22 |
SL15 | 27,713,181,000 | 27,538,027,500 | 99.37 | 0.03 | 97.49 | 92.91 | 42.18 |
Sample | Mapped Reads | Total Reads | Mapping Rate (%) | Average Depth (X) | Coverage_1X | Coverage_4X |
TL1 | 189,132,200 | 188,528,943 | 0.9968 | 8.12 | 0.9439 | 0.8355 |
TL2 | 189,271,354 | 188,667,959 | 0.9968 | 8.02 | 0.9452 | 0.8448 |
TL3 | 192,572,802 | 191,915,407 | 0.9966 | 8.01 | 0.9447 | 0.8461 |
TL4 | 191,883,874 | 191,247,671 | 0.9967 | 7.95 | 0.9454 | 0.8431 |
TL5 | 178,793,644 | 178,142,151 | 0.9964 | 7.05 | 0.9440 | 0.8203 |
TL6 | 183,423,434 | 182,712,676 | 0.9961 | 7.51 | 0.9416 | 0.8054 |
TL7 | 184,470,504 | 183,775,701 | 0.9962 | 7.7 | 0.9417 | 0.8101 |
TL8 | 189,772,704 | 189,135,452 | 0.9966 | 8.04 | 0.9455 | 0.8672 |
TL9 | 200,045,044 | 199,368,412 | 0.9966 | 8.4 | 0.9442 | 0.8437 |
TL10 | 177,627,374 | 176,935,396 | 0.9961 | 7.87 | 0.9438 | 0.8305 |
TL11 | 188,357,116 | 187,702,096 | 0.9965 | 7.53 | 0.9418 | 0.8203 |
TL12 | 188,983,800 | 188,337,891 | 0.9966 | 7.84 | 0.9433 | 0.8280 |
TL13 | 195,918,658 | 195,318,873 | 0.9969 | 8.34 | 0.9462 | 0.8524 |
TL14 | 195,665,504 | 194,946,296 | 0.9963 | 8.13 | 0.9456 | 0.8527 |
TL15 | 178,251,788 | 177,626,089 | 0.9965 | 7.24 | 0.9426 | 0.8213 |
SL1 | 190,994,270 | 190,372,600 | 0.9967 | 8.04 | 0.9449 | 0.8573 |
SL2 | 190,854,390 | 190,252,733 | 0.9968 | 8.02 | 0.9445 | 0.8404 |
SL3 | 184,093,670 | 183,481,304 | 0.9967 | 7.71 | 0.9448 | 0.8493 |
SL4 | 191,850,262 | 191,121,591 | 0.9962 | 7.98 | 0.9445 | 0.8491 |
SL5 | 186,145,744 | 185,600,708 | 0.9971 | 7.67 | 0.9430 | 0.8339 |
SL6 | 190,319,146 | 189,735,385 | 0.9969 | 7.91 | 0.9436 | 0.8347 |
SL7 | 182,117,432 | 181,769,071 | 0.9981 | 7.36 | 0.9400 | 0.7930 |
SL8 | 190,220,722 | 189,555,444 | 0.9965 | 8.15 | 0.9445 | 0.8611 |
SL9 | 183,563,430 | 182,896,188 | 0.9964 | 7.58 | 0.9444 | 0.8455 |
SL10 | 189,510,436 | 188,942,424 | 0.9970 | 8.10 | 0.9393 | 0.8180 |
SL11 | 192,508,250 | 191,930,578 | 0.9970 | 8.23 | 0.9457 | 0.8538 |
SL12 | 191,705,936 | 191,113,160 | 0.9969 | 8.20 | 0.9445 | 0.8539 |
SL13 | 196,962,274 | 196,290,642 | 0.9966 | 8.44 | 0.9467 | 0.8723 |
SL14 | 195,311,816 | 194,163,640 | 0.9941 | 8.50 | 0.9444 | 0.8348 |
SL15 | 194,740,420 | 193,861,415 | 0.9955 | 8.91 | 0.9466 | 0.8696 |
Category | Number of SNPs | |
---|---|---|
Upstream | 40,870 | |
Exonic | Stop gain | 244 |
Stop loss | 36 | |
Synonymous | 35,791 | |
Non-synonymous | 23,807 | |
Intronic | 2,976,338 | |
Splicing | 120 | |
Downstream | 47,182 | |
Upstream/Downstream | 1030 | |
Intergenic | 5,455,335 | |
Total | 8,641,229 |
Sites | Gene Frequency | Genotype Frequency | Chi-Square Value (χ2) | Polymorphic Information Content | Homozygosity | Heterozygosity | Number of Effective Alleles | |||
---|---|---|---|---|---|---|---|---|---|---|
1 | 0.29 (C) | 0.71 (T) | 0.06 (CC) | 0.46 (TC) | 0.48 (TT) | 2.73 | 0.33 | 0.59 | 0.41 | 1.71 |
2 | 0.56 (G) | 0.44 (A) | 0.09 (AA) | 0.21 (GG) | 0.70 (AG) | 16.49 | 0.37 | 0.51 | 0.49 | 1.97 |
3 | 0.04 (T) | 0.96 (C) | 0.94 (CC) | 0.01 (TT) | 0.05 (CT) | 2.52 | 0.07 | 0.93 | 0.07 | 1.08 |
4 | 0.95 (C) | 0.05 (T) | 0.91 (CC) | 0.01 (TT) | 0.08 (CT) | 4.68 | 0.09 | 0.9 | 0.1 | 1.11 |
Genotype | Frequency | Leg Length/(cm) |
---|---|---|
CC | 16 | 24.156 ± 1.080 a |
TC | 114 | 28.278 ± 0.404 b |
TT | 119 | 30.408 ± 0.396 c |
Sites | Chromosome | Gene ID | Upstream Primers (5′–3′) | Downstream Primers (5′–3′) |
---|---|---|---|---|
g. 53666634 T > C | NC_030818.1 | 102191807 | TCCCTCCCCCAAATGTGATG | TCATCTTGTGGGAGCCGATT |
g. 40040094 G > C | NC_030826.1 | 102176826 | CCATTGCTGTTGGGCTGGT | AGGCCCTGAACAGTTTACGC |
g. 76236896 C > T | NC_030817.1 | 102179855 | AGTGCCATTAGGACCAGCAAG | ATACGGACCTGGTTGGGGTTA |
g. 43291383 G > C | NC_030826.1 | 102185686 | GGGATGATTTCCGTGGCATC | TGGCACTATGCAGCTCTCTC |
g. 49514296 C > T | NC_030825.1 | 102181421 | TCGTAGTGGCTGGTAAACACA | GAATCACTGCTGCCCAAGGT |
g. 27088465 A > G | NC_030826.1 | 102191733 | GCCCACAGCAAGCAAATGAC | CCCTGGCTCAAAACCACCAT |
g. 49371337 C > T | NC_030825.1 | 102178102 | GTCCTTGTTCCCGTGAGTGT | GCCCAGCTCATCTGCATCTT |
g. 55009283 C > T | NC_030828.1 | 102186636 | ACCACAGGCTTTTCTGGAGG | GAGAGTCAGAGACAAGCGGG |
Component | Volume |
---|---|
Two × SuperTaq PCR StarMix | 25 μL |
Forward primers (10 μM) | 2.5 μL |
Reverse primers (10 μM) | 5.5 μL |
DNA | 50 ng |
Sterile, enzyme-free water | Complement to 50 μL |
Process | Temperature | Time | Number of Cycles |
---|---|---|---|
Pre-denaturation | 95 °C | 2 min | / |
Denaturation | 95 °C | 15 s | 35 circulate |
Anneal | 50–72 °C | 15 s | |
Extend | 72 °C | 15 s/kb | |
Terminal extension | 72 °C | 5 min | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Dong, S.; Lv, J.; Li, Y.; Sun, B.; Guo, Y.; Deng, M.; Liu, D.; Liu, G. Screening of SNP Loci Related to Leg Length Trait in Leizhou Goats Based on Whole-Genome Resequencing. Int. J. Mol. Sci. 2024, 25, 12450. https://doi.org/10.3390/ijms252212450
Liu J, Dong S, Lv J, Li Y, Sun B, Guo Y, Deng M, Liu D, Liu G. Screening of SNP Loci Related to Leg Length Trait in Leizhou Goats Based on Whole-Genome Resequencing. International Journal of Molecular Sciences. 2024; 25(22):12450. https://doi.org/10.3390/ijms252212450
Chicago/Turabian StyleLiu, Jinyang, Shucan Dong, Jianda Lv, Yaokun Li, Baoli Sun, Yongqing Guo, Ming Deng, Dewu Liu, and Guangbin Liu. 2024. "Screening of SNP Loci Related to Leg Length Trait in Leizhou Goats Based on Whole-Genome Resequencing" International Journal of Molecular Sciences 25, no. 22: 12450. https://doi.org/10.3390/ijms252212450
APA StyleLiu, J., Dong, S., Lv, J., Li, Y., Sun, B., Guo, Y., Deng, M., Liu, D., & Liu, G. (2024). Screening of SNP Loci Related to Leg Length Trait in Leizhou Goats Based on Whole-Genome Resequencing. International Journal of Molecular Sciences, 25(22), 12450. https://doi.org/10.3390/ijms252212450