Knockout of OsGAPDHC7 Gene Encoding Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Energy Metabolism in Rice Seeds
Abstract
:1. Introduction
2. Results
2.1. Confirmation and Expression of OsGAPDHs in the Rice Genome
2.2. Generation of OsGAPDHC7 Knockout Homozygous Mutants
2.3. GAPDH Activity in the gapdhc7-2 and gapdhc7-13 Lines
2.4. The gapdhc7-2 and gapdhc7-13 Lines Affect Energy Metabolism
2.5. Change in Free Amino Acid in the gapdhc7-2 and gapdhc7-13 Lines
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Phylogenetic Analysis
4.3. Gene Editing
4.4. Detection of Mutation Type
4.5. qRT-PCR Analysis
4.6. GAPDH Activity and Enzyme Analysis
4.7. Analysis of Carbohydrate and Amino Acid
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, B.; Yadav, S.P.S.; Shrestha, M.; Khadka, A.; Dahal, K.; Neupane, B.; Bhandari, S. Drought tolerance in rice (Oryza sativa L.): Impact, performance and recent trends. Selcuk J. Agric. Food Sci. 2024, 38, 169–181. [Google Scholar] [CrossRef]
- Rezvi, H.U.A.; Tahjib-Ul-Arif, M.; Azim, M.A.; Tumpa, T.A.; Tipu, M.M.H.; Najnine, F.; Dawood, M.F.A.; Skalicky, M.; Brestič, M. Rice and foodsecurity: Climate change implications and the future prospects for nutritional security. Food Energy Secur. 2023, 12, e430. [Google Scholar] [CrossRef]
- Ndikuryayo, C.; Ndayiragije, A.; Kilasi, N.L.; Kusolwa, P. Identification of drought tolerant rice (Oryza sativa L.) genotypes with Asian and African backgrounds. Plants 2023, 12, 922. [Google Scholar] [CrossRef] [PubMed]
- Sirover, M.A. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J. Cell. Biochem. 1997, 66, 133–140. [Google Scholar] [CrossRef]
- Sirover, M.A. New insights into an old protein: The functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1999, 1432, 159–184. [Google Scholar] [CrossRef]
- Ferguson, R.E.; Carroll, H.P.; Harris, A.; Maher, E.R.; Selby, P.J.; Banks, R.E. Housekeeping proteins: A preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 2005, 5, 566–571. [Google Scholar] [CrossRef]
- Arumugam Pillai, M.; Lihuang, Z.; Akiyama, T. Molecular cloning, characterization, expression and chromosomal location of OsGAPDH, a submergence responsive gene in rice (Oryza sativa L.). Theor. Appl. Genet. 2002, 105, 34–42. [Google Scholar] [CrossRef]
- Tien, Y.C.; Chuankhayan, P.; Huang, Y.C.; Chen, C.D.; Alikhajeh, J.; Chang, S.L.; Chen, C.J. Crystal structures of rice (Oryza sativa) glyceraldehyde-3-phosphate dehydrogenase complexes with NAD and sulfate suggest involvement of Phe37 in NAD binding for catalysis. Plant Mol. Biol. 2012, 80, 389–403. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Zhou, D.X. Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. Nucleic Acids Res. 2017, 45, 12241–12255. [Google Scholar] [CrossRef]
- Guo, L.; Ma, F.; Wei, F.; Fanella, B.; Allen, D.K.; Wang, X. Cytosolic phosphorylating glyceraldehyde-3-phosphate dehydrogenases affect Arabidopsis cellular metabolism and promote seed oil accumulation. Plant Cell 2014, 26, 3023–3035. [Google Scholar] [CrossRef]
- Lim, H.; Hwang, H.; Kim, T.; Kim, S.; Chung, H.; Lee, D.; Kim, S.; Park, S.; Cho, W.; Ji, H.; et al. Transcriptomic analysis of rice plants overexpressing PsGAPDH in response to salinity stress. Genes 2021, 12, 641. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, S.; Seo, J.K.; Rao, A.L.N. Functionality of host proteins in Cucumber mosaic virus replication: GAPDH is obligatory to promote interaction between replication-associated proteins. Virology 2016, 494, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Chen, C.; Yao, L.; Tran, J.; Zhang, H. Genome-wide identification, characterization, interaction network and expression profile of GAPDH gene family in sweet orange (Citrus sinensis). PeerJ 2019, 7, e7934. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Movahedi, A.; Yang, J.; Zhang, Y.; Liu, G.; Zhu, S.; Yu, C.; Chen, Y.; Zhong, F.; Zhang, J. Characteristics and molecular identification of glyceraldehyde-3-phosphate dehydrogenases in poplar. Int. J. Biol. Macromol. 2022, 219, 185–198. [Google Scholar] [CrossRef]
- Rius, S.P.; Casati, P.; Iglesias, A.A.; Gomez-Casati, D.F. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol. 2008, 148, 1655–1667. [Google Scholar] [CrossRef]
- Anoman, A.D.; Muñoz-Bertomeu, J.; Rosa-Téllez, S.; Flores-Tornero, M.; Serrano, R.; Bueso, E.; Fernie, A.R.; Segura, J.; Ros, R. Plastidial glycolytic glyceraldehyde-3-phosphate dehydrogenase is an important determinant in the carbon and nitrogen metabolism of heterotrophic cells in Arabidopsis. Plant Physiol. 2015, 169, 1619–1637. [Google Scholar] [CrossRef]
- Ke, X.; Xiao, H.; Peng, Y.; Wang, J.; Lv, Q.; Wang, X. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state. Science 2022, 378, 971–977. [Google Scholar] [CrossRef]
- Munoz-Bertomeu, J.; Cascales-Minana, B.; Mulet, J.M.; Baroja-Fernández, E.; Pozueta-Romero, J.; Kuhn, J.M.; Segura, J.; Ros, R. Plastidial glyceraldehyde-3-phosphate dehydrogenase deficiency leads to altered root development and affects the sugar and amino acid balance in Arabidopsis. Plant Physiol. 2009, 151, 541–558. [Google Scholar] [CrossRef]
- Liu, X.; Wu, S.; Xu, J.; Sui, C.; Wei, J. Application of CRISPR/Cas9 in plant biology. Acta Pharm. Sin. B 2017, 7, 292–302. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, A.; Patel, R.; Kumar, V. Genetically modified crop regulations: Scope and opportunity using the CRISPR-Cas9 genome editing approach. Mol. Biol. Rep. 2021, 48, 4851–4863. [Google Scholar] [CrossRef]
- Valverde, F.; Ortega, J.M.; Losada, M.; Serrano, A. Sugar-mediated transcriptional regulation of the Gap gene system and concerted photosystem II functional modulation in the microalga Scenedesmus vacuolatus. Planta 2005, 221, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Gauen, G.; Herbrand, H.; Pahnke, J.; Cerff, R.; Martin, W. Gene structure, expression in Escherichia coli and biochemical properties of the NAD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts. Gene 1998, 209, 167–174. [Google Scholar] [CrossRef]
- Hajirezaei, M.R.; Biemelt, S.; Peisker, M.; Lytovchenko, A.; Fernie, A.R.; Sonnewald, U. The influence of cytosolic phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPC) on potato tuber metabolism. J. Exp. Bot. 2006, 57, 2363–2377. [Google Scholar] [CrossRef] [PubMed]
- Schwender, J.; Goffman, F.; Ohlrogge, J.B.; Shachar-Hill, Y. Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 2004, 432, 779–782. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, M.; Kiegle, E.; Leo, G.; Ezquer, I. Carbohydrate reserves and seed development: An overview. Plant Reprod. 2018, 31, 263–290. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E. Secondary metabolites and plant defense. Plant Physiol. 2006, 4, 315–344. [Google Scholar]
- Ball, S.G.; Morell, M.K. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annu. Rev. Plant Biol. 2003, 54, 207–233. [Google Scholar] [CrossRef]
- Jann, K.; Jann, B. Polysaccharide antigens of Escherichia coli. Rev. Infect. Dis. 1978, 9 (Suppl. S5), S517–S526. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Park, J.; Bae, S.; Kim, J.S. Cas-Designer: A web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 2015, 31, 4014–4016. [Google Scholar] [CrossRef]
- Nishimura, A.; Aichi, I.; Matsuoka, M. A protocol for Agrobacterium-mediated transformation in rice. Nat. Protoc. 2006, 1, 2796–2802. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Lee, H.J.; Bae, S.; Kim, J.H.; Kim, D.H.; Kim, H.K.; Kang, K.K. Acquisition of seed dormancy breaking in rice (Oryza sativa L.) via CRISPR/Cas9-targeted mutagenesis of OsVP1 gene. Plant Biotechnol. Rep. 2019, 13, 511–520. [Google Scholar] [CrossRef]
- Park, J.; Lim, K.; Kim, J.S.; Bae, S. Cas-analyzer: An online tool for assessing genome editing results using NGS data. Bioinformatics 2017, 33, 286–288. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Bae, S.; Lee, G.J.; Seo, P.J.; Cho, Y.G.; Kang, K.K. A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system. J. Plant Biotechnol. 2017, 44, 89–96. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Hara, M.R.; Agrawal, N.; Kim, S.F.; Cascio, M.B.; Fujimuro, M.; Ozeki, Y.; Takahashi, M.; Cheah, J.H.; Tankou, S.K.; Hester, L.D.; et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat. Cell Biol. 2005, 7, 665–674. [Google Scholar] [CrossRef]
- Bahaji, A.; Baroja-Fernández, E.; Sánchez-López, Á.M.; Muñoz, F.J.; Li, J.; Almagro, G.; Montero, M.; Pujol, P.; Galarza, R.; Kaneko, K.; et al. HPLC-MS/MS analyses show that the near-starchless aps1 and pgm leaves accumulate wild type levels of ADPglucose: Further evidence for the occurrence of important ADPglucose biosynthetic pathway (s) alternative to the pPGI-pPGM-AGP pathway. PLoS ONE 2014, 9, e104997. [Google Scholar] [CrossRef]
Amino Acid | WT | grpdhc 7-2 | grpdhc 7-13 |
---|---|---|---|
Asp | 157.2 ± 6.8 | 149.3 ± 4.4 | 162.4 ± 6.7 |
Asn | 20.4 ± 2.2 | 67.4 ± 3.2 | 72.7 ± 2.9 |
Phe | 12.4 ± 3.2 | 14.2 ± 1.8 | 13.2 ± 3.2 |
Val | 85.4 ± 6.7 | 80.8 ± 6.1 | 86.3 ± 7.2 |
Lys | 28.2 ± 1.9 | 30.2 ± 3.0 | 27.4 ± 3.2 |
Ala | 66.7 ± 3.2 | 71.2 ± 3.1 | 68.5 ± 4.2 |
Tyr | 20.4 ± 1.8 | 19.8 ± 2.2 | 22.4 ± 2.4 |
His | 40.4 ± 0.9 | 38.9 ± 1.9 | 41.3 ± 2.1 |
Met | 90.4 ± 4.15 | 89.7 ± 1.9 | 92.3 ± 7.2 |
Glu | 201.0 ± 52.4 | 198.7 ± 22.1 | 203.0 ± 38.3 |
Pro | 53.9 ± 3.7 | 62.3 ± 7.8 | 50.3 ± 11.2 |
Gly | 20.4 ± 2.7 | 9.7 ± 3.1 | 7.8 ± 1.8 |
Ile | 74.2 ± 8.5 | 72.4 ± 3.1 | 75.4 ± 2.8 |
Leu | 85.4 ± 10.1 | 81.3 ± 2.9 | 86.4 ± 7.2 |
Arg | 24.9 ± 1.8 | 24.7 ± 2.1 | 19.3 ± 7.0 |
Thr | 35.9 ± 1.2 | 32.7 ± 2.2 | 36.7 ± 2.7 |
Gln | 71.7 ± 12.4 | 137.5 ± 2.4 | 142.8 ± 12.1 |
Ser | 107.3 ± 10.3 | 67.7 ± 7.8 | 52.8 ± 7.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-Y.; Lee, Y.-J.; Lee, H.-J.; Go, J.-Y.; Lee, H.-M.; Park, J.-S.; Cho, Y.-G.; Jung, Y.-J.; Kang, K.-K. Knockout of OsGAPDHC7 Gene Encoding Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Energy Metabolism in Rice Seeds. Int. J. Mol. Sci. 2024, 25, 12470. https://doi.org/10.3390/ijms252212470
Kim J-Y, Lee Y-J, Lee H-J, Go J-Y, Lee H-M, Park J-S, Cho Y-G, Jung Y-J, Kang K-K. Knockout of OsGAPDHC7 Gene Encoding Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Energy Metabolism in Rice Seeds. International Journal of Molecular Sciences. 2024; 25(22):12470. https://doi.org/10.3390/ijms252212470
Chicago/Turabian StyleKim, Jin-Young, Ye-Ji Lee, Hyo-Ju Lee, Ji-Yun Go, Hye-Mi Lee, Jin-Shil Park, Yong-Gu Cho, Yu-Jin Jung, and Kwon-Kyoo Kang. 2024. "Knockout of OsGAPDHC7 Gene Encoding Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Energy Metabolism in Rice Seeds" International Journal of Molecular Sciences 25, no. 22: 12470. https://doi.org/10.3390/ijms252212470
APA StyleKim, J. -Y., Lee, Y. -J., Lee, H. -J., Go, J. -Y., Lee, H. -M., Park, J. -S., Cho, Y. -G., Jung, Y. -J., & Kang, K. -K. (2024). Knockout of OsGAPDHC7 Gene Encoding Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Energy Metabolism in Rice Seeds. International Journal of Molecular Sciences, 25(22), 12470. https://doi.org/10.3390/ijms252212470