ijms-logo

Journal Browser

Journal Browser

Genetic Analysis Based on CRISPR/Cas9 Technology: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: 30 August 2025 | Viewed by 2147

Special Issue Editors


E-Mail Website
Guest Editor
Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Chongju 28644, Republic of Korea
Interests: marker-assisted breeding (MAS); plant breeding by CRISPR/Cas9; functional genomics; GWAS; biotic and abiotic tolerance; transcriptomics; functional analysis of genes; plant biotechnology; molecular breeding in rice
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Division of Horticultural Biotechnology, Hankyung National University, Anseong 17579, Republic of Korea
Interests: functional analysis of genes via CRISPR/Cas9; functional genomics; MABc (marker-assisted backcross); transcriptomics; plant biotechnology; molecular breeding in plants
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recently, many papers have reported on studies utilizing gene editing technology using the functional genes of plants and animals. These reports suggest that gene editing technology has excellent genome editing tools and is applicable to most organisms. The ways in which mutations are obtained through gene editing such as KO, KI, NHEJ and HDR, and how this affects the expression of many other genes in the genome, as well as genetic analysis is interesting. We will be accepting papers discussing how to use the genetic resources to solve genetic problems, and apply them to new breeding programs through gene editing technology. This Special Issue of the International Journal of Molecular Sciences (IJMS) welcomes reviews and research results.

Prof. Dr. Yong-Gu Cho
Prof. Dr. Kwon-Kyoo Kang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • gene targeting (GT)
  • homology-directed repair (HDR)
  • homology-directed gene targeting (HGT)
  • CRISPR/Cas
  • targeted mutagenesis
  • precision breeding
  • genetic analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 4414 KiB  
Article
Knockout of OsGAPDHC7 Gene Encoding Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenase Affects Energy Metabolism in Rice Seeds
by Jin-Young Kim, Ye-Ji Lee, Hyo-Ju Lee, Ji-Yun Go, Hye-Mi Lee, Jin-Shil Park, Yong-Gu Cho, Yu-Jin Jung and Kwon-Kyoo Kang
Int. J. Mol. Sci. 2024, 25(22), 12470; https://doi.org/10.3390/ijms252212470 - 20 Nov 2024
Viewed by 732
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major glycolytic enzyme that plays an important role in several cellular processes, including plant hormone signaling, plant development, and transcriptional regulation. In this study, we divided it into four groups through structural analysis of eight GAPDH genes identified [...] Read more.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major glycolytic enzyme that plays an important role in several cellular processes, including plant hormone signaling, plant development, and transcriptional regulation. In this study, we divided it into four groups through structural analysis of eight GAPDH genes identified in the rice genome. Among them, the expression level of five genes of cytosolic GAPDH was shown to be different for each organ. The mutation induction of the GAPDHC7 gene by the CRISPR/Cas9 system revealed that the 7 bp and 2 bp deletion, early end codon, was used in protein production. In addition, the selected mutants showed lower plant heights compared to the wild-type plants. To investigate the effect on carbohydrate metabolism, the expression of the genes of starch-branched enzyme I (SbeI), sucrose synthase (SS), and 3-phosphoglycer phosphokinase (PGK) increased the expression of the SBeI gene threefold in the knockout lines compared to the wild-type (WT) plant, while the expression of the SS and PGK genes decreased significantly. And the starch and soluble sugar content of the knockout lines increased by more than 60% compared to the WT plant. Also, the free amino acid content was significantly increased in the Gln and Asn contents of the knockout lines compared to the WT plants, while the contents of Gly and Ser were decreased. Our results suggest that OsGAPDHC7 has a great influence on energy metabolism, such as pre-harvested sprouting and amino acid content. Full article
(This article belongs to the Special Issue Genetic Analysis Based on CRISPR/Cas9 Technology: 2nd Edition)
Show Figures

Figure 1

24 pages, 2101 KiB  
Review
Research Progress on the Mechanism and Application of the Type I CRISPR-Cas System
by Peihong Yang, Shuai Zhang, Debao Hu, Xin Li, Yiwen Guo, Hong Guo, Linlin Zhang and Xiangbin Ding
Int. J. Mol. Sci. 2024, 25(23), 12544; https://doi.org/10.3390/ijms252312544 - 22 Nov 2024
Viewed by 979
Abstract
The CRISPR-Cas system functions as an adaptive immune mechanism in archaea and bacteria, providing defense against the invasion of foreign nucleic acids. Most CRISPR-Cas systems are classified into class 1 or class 2, with further subdivision into several subtypes. The primary distinction between [...] Read more.
The CRISPR-Cas system functions as an adaptive immune mechanism in archaea and bacteria, providing defense against the invasion of foreign nucleic acids. Most CRISPR-Cas systems are classified into class 1 or class 2, with further subdivision into several subtypes. The primary distinction between class 1 and class 2 systems lies in the assembly of their effector modules. In class 1 systems, the effector complex consists of multiple proteins with distinct functions, whereas in class 2 systems, the effector is associated with a single protein. Class 1 systems account for approximately 90% of the CRISPR-Cas repertoire and are categorized into three types (type I, type IV, and type III) and 12 subtypes. To date, various CRISPR-Cas systems have been widely employed in the field of genetic engineering as essential tools and techniques for genome editing. Type I CRISPR-Cas systems remain a valuable resource for developing sophisticated application tools. This review provides a comprehensive review of the characteristics, mechanisms of action, and applications of class 1 type I CRISPR-Cas systems, as well as transposon-associated systems, offering effective approaches and insights for future research on the mechanisms of action, as well as the subsequent development and application of type I CRISPR-Cas systems. Full article
(This article belongs to the Special Issue Genetic Analysis Based on CRISPR/Cas9 Technology: 2nd Edition)
Show Figures

Figure 1

Back to TopTop