The Role of Alpha-Linolenic Acid and Other Polyunsaturated Fatty Acids in Mental Health: A Narrative Review
Abstract
:1. Introduction
2. Results
2.1. Neurodevelopmental Disorders
2.2. Eating Disorders
2.3. Psychosis
2.4. Affective Disorders
2.5. Cognitive Impairment
Study | Type of Study | Population | Area of Investigation | Evaluation/Supplement | Conclusions |
---|---|---|---|---|---|
Gustafsson et al., 2022 [31] | Prospective study | 68 pregnant women Mean age: 30.49 y.o. | ADHD | Evaluated
| Women with severe ADHD have:
|
Pinar-Martì et al., 2023 [32] | Randomized intervention, two-arm, controlled trial | 771 adolescents Mean age: 13.9 y.o. | ADHD | Supplemented with walnuts (30 g/day) | Walnuts (ALA) improved sustained attention, fluid intelligence, and ADHD symptoms. |
Pinar-Martì et al., 2023 [33] | Randomized controlled trial | 372 adolescents Mean age: 13.8 y.o. | ADHD | Evaluated
| Higher blood levels of ALA appeared to result in lower impulsivity. DHA was associated with attention performance in typically developing adolescents. |
Zielinska et al., 2019 [35] | Observational study | 39 breastfeed infants and 39 women Mean age: 30.9 y.o. and 6.6 months | Psychomotor development | Evaluated
| The following were associated with increased psychomotor development:
|
Nomura et al., 2023 [36] | Two-sample MR analysis | 72.517 participants | AN | Evaluated
| PUFAs were not associated with AN. |
Caspar-Bauguil et al., 2012 [37] | Observational study | 22 women with AN | AN | Evaluated
| Women with anorexia nervosa had
|
Osuna et al., 2023 [49] | Observational case–control study | 95 adolescents Mean age: 15 y.o. | Depression | Evaluated
| Adolescents with major depressive disorder had:
|
Zeng et al., 2022 [50] | Two-sample MR analysis | 500.199 healthy controls | Depression | Evaluated
| A higher ALA level was associated with an increased risk of depression. |
Chaves et al., 2022 [51] | Multicenter prospective cohort study | 13.879 adults Mean age: 52 y.o. | Depression | Evaluated
| Higher ALA and higher EPA levels were associated with a decreased incidence of depressive episodes. |
Fatemi et al., 2020 [52] | Cross-sectional study | 300 women Mean age: 33.5 y.o. | Anxiety | Evaluated
| Higher ALA, PUFA, and oleic acid levels were associated with a lower anxiety score in women. |
Harauma et al., 2023 [2] | Double-blind, parallel, comparison study | 250 primiparous, postpartum women | PPD | Supplemented with
| Higher ALA levels during pregnancy were associated with mental health postpartum. |
Evans et al., 2012 [53] | Cross-sectional study | 27 bipolar subjects | BD | Evaluated
| The following were associated with increased suicidal history in BD:
|
Gracious et al., 2010 [47] | Randomized, placebo-controlled trial | 51 children/adolescents Mean age: 13 y.o. | BD | Supplemented with flaxseed oil (550 mg of ALA) | Higher AA and higher DPA levels in children with BD. |
Current et al., 2023 [63] | Cross-sectional investigation trial | 833 adults Mean age: 67.1 y.o. | Cognitive status | Evaluated
| The following were associated with better spatial memory and cognitive status:
|
Dhillon et al., 2023 [64] | Observational study | 78 South Australian adults Mean age: 75.75 y.o. | AD | Evaluated
| Patients with AD had:
|
Ogawa et al., 2023 [66] | Intervention study | 60 women and men (adults) Mean age: 72 y.o. | Verbal fluency | Supplemented with flaxseed oil (3.7 g/day)
| A higher ALA level improved cognitive functions and verbal fluency. |
Yamagishi et al., 2017 [67] | Intracohort case–control study | 7586 Japanese adults from 0 to 74 y.o. | Dementia | Evaluated
| ALA is considered a new biomarker for future dementia. |
Cherubini et al., 2007 [68] | Epidemiological study | 935 older people Mean age: 72 y.o. | Dementia | Evaluated
| Patients with dementia have:
|
Rog et al., 2020 [42] | Observational study | 80 adults aged 18 to 65 y.o. | SCZ | Evaluated
| Lower omega-3 levels in SCZ. |
Jones et al., 2021 [43] | Two-sample Mendelian randomized study | Adults with UHR | SCZ | Evaluated
| The following were associated with a decreased risk of SCZ:
|
Thomas et al., 2022 [70] | Longitudinal study | 1412 French older adults Mean age: 75.8 y.o. | Dementia | Evaluated
| The MIND diet was associated with a lower dementia risk. |
Zhang et al., 2023 [69] | Large-scale, population-based study | 114.684 participants Mean age: 56.8 y.o. | Dementia | Evaluated
| The MIND diet containing ALA, EPA, and DHA was associated with a decreased risk of dementia. |
Amminger et al., 2015 [40] | Double-blind, randomized, controlled-trial | 81 UHR adolescents Mean age: 16.4 y.o. | Psychosis | Supplemented with marine oil fish (220 mg of PUFAs/day):
| Higher ALA levels can be used as a marker for preventing psychotic disorder. |
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Harauma, A.; Yoshihara, H.; Hoshi, Y.; Hamazaki, K.; Moriguchi, T. Effects of Varied Omega-3 Fatty Acid Supplementation on Postpartum Mental Health and the Association between Prenatal Erythrocyte Omega-3 Fatty Acid Levels and Postpartum Mental Health. Nutrients 2023, 15, 4388. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burdge, G.C. Metabolism of alpha-linolenic acid in humans. Prostaglandins Leukot. Essent. Fatty Acids 2006, 75, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Cunnane, S.C.; Ganguli, S.; Menard, C.; Liede, A.C.; Hamadeh, M.J.; Chen, Z.Y.; Wolever, T.M.; Jenkins, D.J. High alpha-linolenic acid flaxseed (Linum usitatissimum): Some nutritional properties in humans. Br. J. Nutr. 1993, 69, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.B.; Nam, Y.A.; Kim, H.S.; Hayes, A.W.; Lee, B.M. α-Linolenic acid: Nutraceutical, pharmacological and toxicological evaluation. Food Chem. Toxicol. 2014, 70, 163–178. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of a health claim related to alpha-linolenic acid and contribution to brain and nerve tissue development pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2130. [CrossRef]
- Mischoulon, D.; Freeman, M.P. Omega-3 fatty acids in Psychiatry. Psychiatr. Clin. N. Am. 2013, 36, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, L.; Brambilla, P.; Mazzocchi, A.; Harsløf, L.B.; Ciappolino, V.; Agostoni, C. DHA Effects in Brain Development and Function. Nutrients 2016, 8, 6. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mallick, R.; Basak, S.; Duttaroy, A.K. Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog. Lipid Res. 2021, 83, 101116. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Hossain, S.; Shimada, T.; Shido, O. Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity. Clin. Exp. Pharmacol. Physiol. 2006, 33, 934–939. [Google Scholar] [CrossRef] [PubMed]
- Melo, H.M.; Santos, L.E.; Ferreira, S.T. Diet-Derived Fatty Acids, Brain Inflammation, and Mental Health. Front. Neurosci. 2019, 13, 265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Hadley, K.B.; Ryan, A.S.; Forsyth, S.; Gautier, S.; Salem, N., Jr. The Essentiality of Arachidonic Acid in Infant Development. Nutrients 2016, 8, 216. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heath, R.J.; Klevebro, S.; Wood, T.R. Maternal and Neonatal Polyunsaturated Fatty Acid Intake and Risk of Neurodevelopmental Impairment in Premature Infants. Int. J. Mol. Sci. 2022, 23, 700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mazahery, H.; Stonehouse, W.; Delshad, M.; Kruger, M.C.; Conlon, C.A.; Beck, K.L.; von Hurst, P.R. Relationship between Long Chain n-3 Polyunsaturated Fatty Acids and Autism Spectrum Disorder: Systematic Review and Meta-Analysis of Case-Control and Randomised Controlled Trials. Nutrients 2017, 9, 155. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Assisi, A.; Banzi, R.; Buonocore, C.; Capasso, F.; Di Muzio, V.; Michelacci, F.; Renzo, D.; Tafuri, G.; Trotta, F.; Vitocolonna, M.; et al. Fish oil and mental health: The role of n-3 long-chain polyunsaturated fatty acids in cognitive development and neurological disorders. Int. Clin. Psychopharmacol. 2006, 21, 319–336. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Jandacek, R.; Rider, T.; Tso, P.; Hahn, C.G.; Richtand, N.M.; Stanford, K.E. Abnormalities in the fatty acid composition of the postmortem orbitofrontal cortex of schizophrenic patients: Gender differences and partial normalization with antipsychotic medications. Schizophr. Res. 2007, 91, 37–50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bozzatello, P.; Rocca, P.; Mantelli, E.; Bellino, S. Polyunsaturated Fatty Acids: What is Their Role in Treatment of Psychiatric Disorders? Int. J. Mol. Sci. 2019, 20, 5257. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hallahan, B.; Garland, M.R. Essential fatty acids and mental health. Br. J. Psychiatry 2005, 186, 275–277. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S.; Rabinovitz, S.; Carasso, R.L.; Mostofsky, D.I. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 2002, 23, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Carver, J.D.; Benford, V.J.; Han, B.; Cantor, A.B. The relationship between age and the fatty acid composition of cerebral cortex and erythrocytes in human subjects. Brain Res. Bull. 2001, 56, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Hu, X.Z.; Jacobowitz, D.M.; Chen, C.; McDonough, J.; Van Shura, K.; Lyman, M.; Marini, A.M. Alpha-linolenic acid is a potent neuroprotective agent against soman-induced neuropathology. Neurotoxicology 2012, 33, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Piermartiri, T.C.; Pan, H.; Chen, J.; McDonough, J.; Grunberg, N.; Apland, J.P.; Marini, A.M. Alpha-Linolenic Acid-Induced Increase in Neurogenesis is a Key Factor in the Improvement in the Passive Avoidance Task After Soman Exposure. Neuromol. Med. 2015, 17, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Sladek, C.D.; Aguado-Velasco, C.; Mathiasen, J.R. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J. Physiol. 1995, 484 Pt 3, 643–660. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fink, M.; Duprat, F.; Lesage, F.; Reyes, R.; Romey, G.; Heurteaux, C.; Lazdunski, M. Cloning, functional expression and brain localization of a novel unconventional outward rectifier K+ channel. EMBO J. 1996, 15, 6854–6862. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Patel, A.J.; Honoré, E.; Maingret, F.; Lesage, F.; Fink, M.; Duprat, F.; Lazdunski, M. A mammalian two pore domain mechano-gated S-like K+ channel. EMBO J. 1998, 17, 4283–4290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thapar, A.; Cooper, M.; Rutter, M. Neurodevelopmental disorders. Lancet Psychiatry 2017, 4, 339–346. [Google Scholar] [CrossRef]
- McCrocy, E.; De Brito, S.A.; Viding, E. The neurobiology and genetics of maltreatment and adversity. J. Child Psychol. Psychiatry 2015, 51, 1055–1073. [Google Scholar] [CrossRef]
- McNamara, R.K.; Vannest, J.J.; Valentine, C.J.; Tatsuoka, C.M. Role of polyunsaturated fatty acids in mental health and resilience to stress: A review of the literature. J. Clin. Psychiatry 2015, 76, e1000–e1008. [Google Scholar]
- Gustafsson, H.C.; Dunn, G.A.; Mitchell, A.J.; Holton, K.F.; Loftis, J.M.; Nigg, J.T.; Sullivan, E.L. The association between heightened ADHD symptoms and cytokine and fatty acid concentrations during pregnancy. Front. Psychiatry 2022, 13, 855265. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pinar-Martí, A.; Gignac, F.; Fernández-Barrés, S.; Romaguera, D.; Sala-Vila, A.; Lázaro, I.; Ranzani, O.T.; Persavento, C.; Delgado, A.; Carol, A.; et al. Effect of walnut consumption on neuropsychological development in healthy adolescents: A multi-school randomised controlled trial. eClinicalMedicine 2023, 59, 101954. [Google Scholar] [CrossRef] [PubMed]
- Pinar-Martí, A.; Fernández-Barrés, S.; Gignac, F.; Persavento, C.; Delgado, A.; Romaguera, D.; Lázaro, I.; Ros, E.; López-Vicente, M.; Salas-Salvadó, J.; et al. Red blood cell omega-3 fatty acids and attention scores in healthy adolescents. Eur. Child. Adolesc. Psychiatry 2023, 32, 2187–2195. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nishi, S.K.; Sala-Vila, A.; Julvez, J.; Sabaté, J.; Ros, E. Impact of Nut Consumption on Cognition across the Lifespan. Nutrients 2023, 15, 1000. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zielinska, M.A.; Hamulka, J.; Grabowicz-Chądrzyńska, I.; Bryś, J.; Wesolowska, A. Association between Breastmilk LC PUFA, Carotenoids and Psychomotor Development of Exclusively Breastfed Infants. Int. J. Environ. Res. Public Health 2019, 16, 1144. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nomura, M.; Tanaka, K.; Banno, Y.; Hara, R.; Asami, M.; Otsuka, T.; Tomata, Y. Polyunsaturated fatty acids and risk of anorexia nervosa: A Mendelian randomization study. J. Affect. Disord. 2023, 330, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Caspar-Bauguil, S.; Montastier, E.; Galinon, F.; Frisch-Benarous, D.; Salvayre, R.; Ritz, P. Anorexia nervosa patients display a deficit in membrane long chain poly-unsaturated fatty acids. Clin. Nutr. 2012, 31, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Kirkbride, J.B.; Fearon, P.; Morgan, C.; Dazzan, P.; Morgan, K.; Tarrant, J.; Jones, P.B. Neighbourhood variation in the incidence of psychotic disorders in Southeast London. Soc. Psychiatry Psychiatr. Epidemiol. 2012, 47, 457–465. [Google Scholar] [CrossRef]
- Clari, R.; McNamara, R.K.; Szeszko, P.R. Omega-3 polyunsaturated fatty acids and antioxidants for the treatment of schizophrenia: A role for magnetic resonance imaging. In Neuroimaging in Schizophrenia; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 367–383. [Google Scholar] [CrossRef]
- Amminger, G.P.; Mechelli, A.; Rice, S.; Kim, S.W.; Klier, C.M.; McNamara, R.K.; Berk, M.; McGorry, P.D.; Schäfer, M.R. Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids. Transl. Psychiatry 2015, 5, e495. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rice, S.M.; Schäfer, M.R.; Klier, C.; Mossaheb, N.; Vijayakumar, N.; Amminger, G.P. Erythrocyte polyunsaturated fatty acid levels in young people at ultra-high risk for psychotic disorder and healthy adolescent controls. Psychiatry Res. 2015, 228, 174–176. [Google Scholar] [CrossRef] [PubMed]
- Rog, J.; Błażewicz, A.; Juchnowicz, D.; Ludwiczuk, A.; Stelmach, E.; Kozioł, M.; Karakula, M.; Niziński, P.; Karakula-Juchnowicz, H. The Role of GPR120 Receptor in Essential Fatty Acids Metabolism in Schizophrenia. Biomedicines 2020, 8, 243. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jones, H.J.; Borges, M.C.; Carnegie, R.; Mongan, D.; Rogers, P.J.; Lewis, S.J.; Thompson, A.D.; Zammit, S. Associations between plasma fatty acid concentrations and schizophrenia: A two-sample Mendelian randomisation study. Lancet Psychiatry 2021, 8, 1062–1070. [Google Scholar] [CrossRef] [PubMed]
- McNamara, R.K.; Almeida, D.M. Omega-3 Polyunsaturated Fatty Acid Deficiency and Progressive Neuropathology in Psychiatric Disorders: A Review of Translational Evidence and Candidate Mechanisms. Harv. Rev. Psychiatry 2019, 27, 94–107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herrman, H.; Kieling, C.; McGorry, P.; Horton, R.; Sargent, J.; Patel, V. Reducing the global burden of depression: A Lancet-World Psychiatric Association Commission. Lancet 2019, 393, e42–e43. [Google Scholar] [CrossRef] [PubMed]
- Lewinsohn, P.M.; Rohde, P.; Seeley, J.R.; Klein, D.N.; Gotlib, I.H. Natural course of adolescent major depressive disorder in a community sample: Predictors of recurrence in young adults. Am. J. Psychiatry 2000, 157, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Gracious, B.L.; Chirieac, M.C.; Costescu, S.; Finucane, T.L.; Youngstrom, E.A.; Hibbeln, J.R. Randomized, placebo-controlled trial of flax oil in pediatric bipolar disorder. Bipolar Disord. 2010, 12, 142–154. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deacon, G.; Kettle, C.; Hayes, D.; Dennis, C.; Tucci, J. Omega 3 polyunsaturated fatty acids and the treatment of depression. Crit. Rev. Food Sci. Nutr. 2017, 57, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Osuna, E.; Herter-Aeberli, I.; Probst, S.; Emery, S.; Albermann, M.; Baumgartner, N.; Strumberger, M.; Ricci, C.; Schmeck, K.; Walitza, S.; et al. Omega-3 study team. Associations of n-3 polyunsaturated fatty acid status and intake with paediatric major depressive disorder in Swiss adolescents: A case-control study. J. Affect. Disord. 2023, 339, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Lv, H.; Wang, X.; Xue, R.; Zhou, C.; Liu, X.; Yu, H. Causal effects of fatty acids on depression: Mendelian randomization study. Front. Nutr. 2022, 9, 1010476. [Google Scholar] [CrossRef] [PubMed]
- Chaves, R.D.C.S.; Aguiar, O.B.; Moreno, A.B.; Brunoni, A.R.; Molina, M.D.C.B.; Viana, M.C.; Bensoñor, I.; Griep, R.H.; da Fonseca, M.J.M. Consumption of Omega-3 and Maintenance and Incidence of Depressive Episodes: The ELSA-Brasil Study. Nutrients 2022, 14, 3227. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fatemi, F.; Siassi, F.; Qorbani, M.; Sotoudeh, G. Higher dietary fat quality is associated with lower anxiety score in women: A cross-sectional study. Ann. Gen. Psychiatry 2020, 19, 14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Evans, S.J.; Prossin, A.R.; Harrington, G.J.; Kamali, M.; Ellingrod, V.L.; Burant, C.F.; McInnis, M.G. Fats and factors: Lipid profiles associate with personality factors and suicidal history in bipolar subjects. PLoS ONE 2012, 7, e29297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aridi, Y.S.; Walker, J.L.; Wright, O.R.L. The Association between the Mediterranean Dietary Pattern and Cognitive Health: A Systematic Review. Nutrients 2017, 9, 674. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gutierrez, L.; Folch, A.; Rojas, M.; Cantero, J.L.; Atienza, M.; Folch, J.; Camins, A.; Ruiz, A.; Papandreou, C.; Bulló, M. Effects of Nutrition on Cognitive Function in Adults with or without Cognitive Impairment: A Systematic Review of Randomized Controlled Clinical Trials. Nutrients 2021, 13, 3728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Lapiscina, E.H.; Clavero, P.; Toledo, E.; Estruch, R.; Salas-Salvadó, J.; San Julián, B.; Sanchez-Tainta, A.; Ros, E.; Valls-Pedret, C.; Martinez-Gonzalez, M.Á. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Ros, E. Nuts and novel biomarkers of cardiovascular disease. Am. J. Clin. Nutr. 2009, 89, 1649S–1656S. [Google Scholar] [CrossRef] [PubMed]
- Valls-Pedret, C.; Lamuela-Raventós, R.M.; Medina-Remón, A.; Quintana, M.; Corella, D.; Pintó, X.; Martínez-González, M.Á.; Estruch, R.; Ros, E. Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J. Alzheimers Dis. 2012, 29, 773–782. [Google Scholar] [CrossRef] [PubMed]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103, Erratum in JAMA Intern. Med. 2018, 178, 1731–1732. [Google Scholar] [CrossRef] [PubMed]
- Esselun, C.; Dilberger, B.; Silaidos, C.V.; Koch, E.; Schebb, N.H.; Eckert, G.P. A Walnut Diet in Combination with Enriched Environment Improves Cognitive Function and Affects Lipid Metabolites in Brain and Liver of Aged NMRI Mice. Neuromol. Med. 2021, 23, 140–160. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Esselun, C.; Dieter, F.; Sus, N.; Frank, J.; Eckert, G.P. Walnut Oil Reduces Aβ Levels and Increases Neurite Length in a Cellular Model of Early Alzheimer Disease. Nutrients 2022, 14, 1694. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Current, W.; Godos, J.; Alanazi, A.M.; Lanza, G.; Ferri, R.; Caraci, F.; Grosso, G.; Galvano, F.; Castellano, S. Dietary Fats and Cognitive Status in Italian Middle-Old Adults. Nutrients 2023, 15, 1429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dhillon, V.S.; Thomas, P.; Lee, S.L.; Deo, P.; Fenech, M. Red Blood Cell Fatty Acid Profiles Are Significantly Altered in South Australian Mild Cognitive Impairment and Alzheimer’s Disease Cases Compared to Matched Controls. Int. J. Mol. Sci. 2023, 24, 14164. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Crupi, R.; Marino, A.; Cuzzocrea, S. N-3 fatty acids: Role in neurogenesis and neuroplasticity. Curr. Med. Chem. 2013, 20, 2953–2963. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Sawane, K.; Ookoshi, K.; Kawashima, R. Supplementation with Flaxseed Oil Rich in Alpha-Linolenic Acid Improves Verbal Fluency in Healthy Older Adults. Nutrients 2023, 15, 1499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yamagishi, K.; Ikeda, A.; Chei, C.L.; Noda, H.; Umesawa, M.; Cui, R.; Muraki, I.; Ohira, T.; Imano, H.; Sankai, T.; et al. IRCS Investigators. Serum α-linolenic and other ω-3 fatty acids, and risk of disabling dementia: Community-based nested case-control study. Clin. Nutr. 2017, 36, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, A.; Andres-Lacueva, C.; Martin, A.; Lauretani, F.; Iorio, A.D.; Bartali, B.; Corsi, A.; Bandinelli, S.; Mattson, M.P.; Ferrucci, L. Low plasma N-3 fatty acids and dementia in older persons: The InCHIANTI study. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 1120–1126. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Cao, X.; Li, X.; Li, X.; Hao, M.; Xia, Y.; Huang, H.; Jørgensen Høj, S.T.; Agogo, G.O.; Wang, L.; et al. Associations of midlife dietary patterns with incident dementia and brain structure: Findings from the UK Biobank study. Am. J. Clin. Nutr. 2023, 118, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Lefèvre-Arbogast, S.; Fèart, C.; Foubert-Samier, A.; Helmer, C.; Catheline, G.; Samieri, C. Association of MIND diet with brain structure and dementia in a French population. J. Prev. Alzheimers Dis. 2022, 9, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Kaye, J.A.; Swihart, T.; Howieson, D.; Dame, A.; Moore, M.M.; Karnos, T. Volume loss of the hippocampus and temporale lobe in healthy elderly persons destined to develop dementia. Neurology 1997, 48, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Magnin, E.; Maurs, C. Attention-deficit/hyperactivity disorder during adulthood. Rev. Neurol. 2017, 173, 506–515. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertoni, C.; Pini, C.; Mazzocchi, A.; Agostoni, C.; Brambilla, P. The Role of Alpha-Linolenic Acid and Other Polyunsaturated Fatty Acids in Mental Health: A Narrative Review. Int. J. Mol. Sci. 2024, 25, 12479. https://doi.org/10.3390/ijms252212479
Bertoni C, Pini C, Mazzocchi A, Agostoni C, Brambilla P. The Role of Alpha-Linolenic Acid and Other Polyunsaturated Fatty Acids in Mental Health: A Narrative Review. International Journal of Molecular Sciences. 2024; 25(22):12479. https://doi.org/10.3390/ijms252212479
Chicago/Turabian StyleBertoni, Camilla, Cecilia Pini, Alessandra Mazzocchi, Carlo Agostoni, and Paolo Brambilla. 2024. "The Role of Alpha-Linolenic Acid and Other Polyunsaturated Fatty Acids in Mental Health: A Narrative Review" International Journal of Molecular Sciences 25, no. 22: 12479. https://doi.org/10.3390/ijms252212479
APA StyleBertoni, C., Pini, C., Mazzocchi, A., Agostoni, C., & Brambilla, P. (2024). The Role of Alpha-Linolenic Acid and Other Polyunsaturated Fatty Acids in Mental Health: A Narrative Review. International Journal of Molecular Sciences, 25(22), 12479. https://doi.org/10.3390/ijms252212479