Effect of Pre-Sowing Seed Stimulation on Maize Seedling Vigour
Abstract
:1. Introduction
2. Results
2.1. Effect of Combined Application of Fish Collagen, Keratin, PHMB and Bentonite on FW and DW Contents of Maize Seedlings
2.2. Changes in Elemental Composition
2.3. Changes in Chlorophyll Fluorescence Parameters
2.4. Changes in Photosynthetic Pigments Content
2.5. FTIR Analysis on Maize Shoots
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Coatings
4.2.1. Hydrolysed Fish Collagen (FC) and Keratin (KE)
- VGAAS in this:
- (a)
- Hydride Generation Atomic Absorption Spectrometry (HGAAS)—atomic absorption spectrometry with hydride generation, used to detect metal content, e.g., As. In this method, a so-called hydride generator is used for determinations to produce volatile metal–hydrogen compounds.
- (b)
- Cold Vapour Atomic Absorption Spectrometry (CVAAS)—cold vapor atomic absorption spectrometry for Hg metal. A technique used only for Hg determinations. A hydride generator is also used for research, producing free mercury atoms.
- FAAS—This is a technique using a flame atomizer dedicated to metals, in this case Cr, Zn, Pb, Cd, Cu, which transforms the liquid sample into an aerosol introduced into the flame. The measurements were carried out with hollow cathode lamps (HCLs), using lamps appropriate for the specific element. Flame atomization was used, using background correction (deuterium lamp) for metals: As, Cd, Cr, Cu, Hg, Pb, Zn, using most sensitive analytical lines in the range below 400 nm. The deuterium lamp (D2) emits radiation in a wide range (190–400 nm), which is not absorbed significantly by the sample atoms but is subject to scattering and other background influences. The type of flame, the composition of the gas mixture and the wavelength varied according to the element being determined. A 50 mm long burner was used for the measurements.
Parameter | Fish Collagen | Keratin |
---|---|---|
Acidity of 10% solution (pH) | 3.46 | 3.91 |
Protein content (%) | 89.90 | 57.43 |
Total nitrogen content (%) | 14.30 | 16.65 |
Heavy metal content (mg kg−1) | ||
Cr (III) | <0.1 | <0.003 |
Zn | <0.05 | <0.01 |
As | <0.05 | <0.02 |
Pb | <0.10 | <0.02 |
Hg | <0.10 | <0.008 |
Cd | <0.10 | <0.005 |
Cu | <0.02 | <0.002 |
Sn | - | - |
Amino acid content (mg kg−1) | ||
Ala | 931.3 ± 19.5 | 319.0 ± 32.0 |
Gly | 2768.3 ± 422.9 | 303.0 ± 30.0 |
Val | 148.3 ± 6.7 | 339.0 ± 34.0 |
Leu | 165.7 ±15.0.9 | 479.0 ± 48.0 |
Ile | 74.0 ± 4.0 | 204.0 ± 20.4 |
Thr | 228.3 ± 10.4 | 357.0 ± 36.0 |
Ser | 275.7 ± 5.1 | 528.0 ± 53.0 |
Pro | 3606.0 ± 129.0 | 389.0 ± 39.0 |
Asp | 336.7 ± 10.4 | 415.0 ± 41.0 |
Met | 82.7 ± 1.5 | 240.0 ± 2.4 |
Hyp | 1773.3 ± 30.5 | <0.02 |
Glu | 642.0 ±12.1 | 888.0 ± 88.0 |
Phe | 140.3 ± 7.5 | 201.0 ± 20.1 |
Lys | 196.3 ± 1.5 | 197.0 ± 20.0 |
4.2.2. Poly(hexamethylenebiguanide) Hydrochloride (PHMB) Biocide
4.2.3. Bentonite (B)
4.3. Experimental Design and Seed-Coating Method
4.4. Growth Conditions
4.5. Growth Measurements
4.6. Determination of Elemental Composition
Bentonite
4.7. Chlorophyll Fluorescence Parameters
4.8. Photosynthetic Pigment Contents Determination
4.9. ATR-FTIR Analysis
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rocha, I.; Ma, Y.; Carvalho, M.F.; Magalhães, C.; Janoušková, M.; Vosátka, M.; Freitas, H.; Oliveira, R.S. Seed coating with inocula of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria for nutritional enhancement of maize under different fertilisation regimes. Arch. Agron. Soil. Sci. 2018, 65, 31–43. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Królikowski, K.; Balawejder, M.; García-Lara, S.; Serna-Saldivar, S.O. Chapter 1—Corn History and Culture. In Corn, 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: St. Paul, MN, USA, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Duvick, D.N. The Contribution of Breeding to Yield Advances in maize (Zea mays L.). Adv. Argonomy 2005, 86, 83–145. [Google Scholar] [CrossRef]
- Rouf Shah, T.; Prasad, K.; Kumar, P.; Yildiz, F. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar] [CrossRef]
- Tester, M.; Langridge, P. Breeding Technologies to Increase Crop Production in a Changing World. Science 2010, 327, 818–822. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant Action of a Plant-Derived Protein Hydrolysate Produced Through Enzymatic Hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; López-Felices, B.; Román-Sánchez, I.M. Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustain. Prod. Consum. 2022, 34, 257–270. [Google Scholar] [CrossRef]
- Timorshina, S.; Popova, E.; Osmolovskiy, A. Sustainable applications of animal waste proteins. Polymers 2022, 14, 1601. [Google Scholar] [CrossRef]
- Li, Y.; Guo, R.; Lu, W.; Zhu, D. Research progress on resource utilization of leather solid waste. J. Leather Sci. Eng. 2019, 1, 6. [Google Scholar] [CrossRef]
- Karwowska, M.; Łaba, S.; Szczepański, K. Food loss and waste in meat sector—Why the consumption stage generates the most losses? Sustainability 2021, 13, 6227. [Google Scholar] [CrossRef]
- Gendaszewska, D.; Lasoń-Rydel, M.; Ławińska, K.; Grzesiak, E.; Pipiak, P. Characteristics of collagen preparations from leather wastes by the high pressure liquid chromatography method. Fibres Text. East. Eur. 2021, 5, 149. [Google Scholar] [CrossRef]
- Wieczorek, D.; Gendaszewska, D.; Miśkiewicz, K.; Słubik, A.; Ławińska, K. Biotransformation of protein-rich waste by Yarrowia lipolytica IPS21 to high-value products—Amino acid supernatants. Microbiol. Spectr. 2023, 11, 5. [Google Scholar] [CrossRef]
- Di Lullo, G.A.; Sweeney, S.M.; Körkkö, J.; Ala-Kokko, L.; Antonio, J.D.S. Mapping the Ligand-binding Sites and Disease-associated Mutations on the Most Abundant Protein in the Human, Type I Collagen. J. Biol. Chem. 2002, 277, 4223–4231. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.E.G. The Origin of Metazoan Complexity: Porifera as Integrated Animals. Integr. Comp. Biol. 2003, 43, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Shestakova, A.; Timorshina, S.; Osmolovskiy, A. Biodegradation of Keratin-Rich Husbandry Waste as a Path to Sustainable Agriculture. Sustainability 2021, 13, 8691. [Google Scholar] [CrossRef]
- Álvarez-Castillo, E.; Felix, M.; Bengoechea, C.; Guerrero, A. Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods 2021, 10, 981. [Google Scholar] [CrossRef]
- Moreno-Hernández, J.M.; Benítez-García, I.; Mazorra-Manzano, M.A.; Ramírez-Suárez, J.C.; Sánchez, E. Strategies for production, characterization and application of protein-based biostimulants in agriculture: A review. Chil. J. Agric. Res. 2020, 80, 274–289. [Google Scholar] [CrossRef]
- Liu, S.; Wang, W.; Lu, H.; Shu, Q.; Zhang, Y.; Chen, Q. New perspectives on physiological, biochemical and bioactive components during germination of edible seeds: A review. Trends Food Sci. Technol. 2022, 123, 187–197. [Google Scholar] [CrossRef]
- Waqas, M.; Korres, N.E.; Khan, M.D.; Nizami, A.; Deeba, F.; Ali, I.; Hussainet, H. Advances in the concept and methods of seed priming. In Priming and Pretreatment of Seeds and Seedlings; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 11–43. [Google Scholar] [CrossRef]
- Matłok, N.; Piechowiak, T.; Królikowski, K.; Balawejder, M. Mechanism of reduction of drought-induced oxidative stress in maize plants by fertilizer seed coating. Agriculture 2022, 12, 662. [Google Scholar] [CrossRef]
- Tondey, M.; Kalia, A.; Singh, A.; Dheri, G.S.; Taggar, M.S.; Nepovimova, E.; Krejcar, O.; Kuca, K. Seed Priming and Coating by Nano-Scale Zinc Oxide Particles Improved Vegetative Growth, Yield and Quality of Fodder Maize (Zea mays). Agronomy 2021, 11, 729. [Google Scholar] [CrossRef]
- Skwarek, M.; Pipiak, P.; Sieczyńska, K. Wpływ zastosowania kolagenu rybiego i chlorowodorku poliheksametylenobiguanidyny na zawartość mikro-i makroelementów w roślinach kukurydzy. Przemysł Chem. 2020, 99, 1534–1537. [Google Scholar] [CrossRef]
- Skwarek, M.; Wala, M.; Kołodziejek, J.; Sieczyńska, K.; Lasoń-Rydel, M.; Ławińska, K.; Obraniak, A. Seed Coating with Biowaste Materials and Biocides—Environment-Friendly Biostimulation or Threat? Agronomy 2021, 11, 1034. [Google Scholar] [CrossRef]
- Smith, B.C. Fundamentals of Fourier Transform Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Ribeiro da Luz, B. Attenuated total reflectance spectroscopy of plant leaves: A tool for ecological and botanical studies. New Phytol. 2006, 172, 305–318. [Google Scholar] [CrossRef] [PubMed]
- Maréchal, Y.; Chanzy, H. The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J. Mol. Struct. 2000, 523, 183–196. [Google Scholar] [CrossRef]
- Kačuráková, M.; Belton, P.S.; Wilson, R.H.; Hirsch, J.; Ebringerová, A. Hydration properties of xylan-type structures: An FTIR study of xylooligosaccharides. J. Sci. Food Agric. 1988, 77, 38–44. [Google Scholar] [CrossRef]
- Faix, O. Fourier transform infrared spectroscopy. In Methods in Lignin Chemistry; Springer: Berlin/Heidelberg, Germany, 1992; pp. 83–109. [Google Scholar]
- Blackwell, J.; Vasko, P.D.; Koenig, J.L. Infrared and Raman spectra of the cellulose from the cell wall of Valonia ventricosa. J. Appl. Phys. 1970, 41, 4375–4379. [Google Scholar] [CrossRef]
- Marchessault, R.H.; Liang, C.Y. The infrared spectra of crystalline polysaccharides. VIII. Xylans. J. Polym. Sci. 1962, 59, 357–378. [Google Scholar] [CrossRef]
- Forziati, F.H.; Rowen, J.W. Effect of changes in crystalline structure on the infrared absorption spectrum of cellulose. J. Res. Nat. Bur. Stand 1951, 46, 38–42. [Google Scholar] [CrossRef]
- Barsberg, S. Prediction of Vibrational Spectra of Polysaccharides Simulated IR Spectrum of Cellulose Based on Density Functional Theory (DFT). J. Phys. Chem. B 2010, 114, 11703–11708. [Google Scholar] [CrossRef]
- Türker-Kaya, S.; Huck, C.W. A review of mid-infrared and near-infrared imaging: Principles, concepts and applications in plant tissue analysis. Molecules 2017, 22, 168. [Google Scholar] [CrossRef]
- van de Weert, M.; Haris, P.I.; Hennink, W.E.; Crommelin, D.J. Fourier transform infrared spectrometric analysis of protein conformation: Effect of sampling method and stress factors. Anal. Biochem. 2001, 297, 160–169. [Google Scholar] [CrossRef]
- Baqir, H.A.; Zeboon, N.H.; Al-behadili, A.A.J. The role and importance of amino acids within plants: A review. Plant Arch. 2019, 19, 1402–1410. [Google Scholar]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Madende, M.; Hayes, M. Fish by-product use as biostimulants: An overview of the current state of the art, including relevant legislation and regulations within the EU and USA. Molecules 2020, 25, 1122. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, P.K.; Dandge, P.B. Isolation, characterization and valorizable applications of fish scale collagen in food and agriculture industries. Biocatal. Agric. Biotechnol. 2016, 7, 234–240. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2015, 7, 2049. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, S.; Eswaran, P.; Masilamani, R.P.; Natarajan, H. Chicken feather compost to promote the plant growth activity by using keratinolytic bacteria. Waste Biomass Valorization 2018, 9, 531–538. [Google Scholar] [CrossRef]
- Metomo, F.N.N.N.; Tayi, F.; Younes, E.; Amadine, O.; Zahouily, M. Production of sheep wool keratin hydrolysate and evaluation of its effectiveness in promoting maize cultivation. J. Environ. Manag. 2024, 366, 121648. [Google Scholar] [CrossRef]
- Kucinska, J.K.; Magnucka, E.G.; Oksinska, M.P.; Pietr, S.J. Bioefficacy of hen feather keratin hydrolysate and compost on vegetable plant growth. Compos. Compost. Sci. Util. 2014, 22, 179–187. [Google Scholar] [CrossRef]
- Bhavsar, P.S.; Zoccola, M.; Patrucco, A.; Montarsolo, A.; Mossotti, R.; Rovero, G.; Giansetti, M.; Tonin, C. Superheated water hydrolysis of waste wool in a semi-industrial reactor to obtain nitrogen fertilizers. ACS Sustain. Chem. Eng. 2016, 4, 6722–6731. [Google Scholar] [CrossRef]
- Gaidau, C.; Stanca, M.; Niculescu, M.D.; Alexe, C.A.; Becheritu, M.; Horoias, R.; Stanculescu, I.R. Wool keratin hydroly-sates for bioactive additives preparation. Materials 2021, 14, 4696. [Google Scholar] [CrossRef] [PubMed]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Ma, B.; Liu, J. Changes in soil biochemical properties following applica-tion of bentonite as a soil amendment. Eur. J. Soil. Biol. 2021, 102, 103251. [Google Scholar] [CrossRef]
- Bandian, L.; Saeb, H.; Abedy, B. Effect of bentonite on growth indices and physiological traits of spinach (Spinacia oleracea L) under drought stress. J. Product. Dev. 2016, 2, 1–6. [Google Scholar]
- Mulaudzi, T.; Hendricks, K.; Mabiya, T.; Muthevhuli, M.; Ajayi, R.F.; Mayedwa, N.; Gehring, C.; Iwuoha, E. Calcium Improves Germination and Growth of Sorghum bicolor Seedlings under Salt Stress. Plants 2020, 9, 730. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.Q.; Wang, S.M. Calcium regulates K+/Na+ homeostasis in rice (Oryza sativa L.) under saline conditions. Plant Soil. Environ. 2012, 58, 121–127. [Google Scholar] [CrossRef]
- Salahshoor, F.; Kazemi, F. Effect of calcium on reducing salt stress in seed germination and early growth stage of Festuca ovina L. Plant Soil. Environ. 2016, 62, 460–466. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Maathuis, F.J. Sodium in plants: Perception, signalling, and regulation of sodium fluxes. J. Exp. Bot. 2014, 65, 849–858. [Google Scholar] [CrossRef]
- Subbarao, G.V.; Ito, O.; Berry, W.L.; Wheeler, R.M. Sodium—A functional plant nutrient. Crit. Rev. Plant Sci. 2003, 22, 391–416. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Madejón, P.; Ramírez-Benítez, J.E.; Corrales, I.; Barceló, J.; Poschenrieder, C. Copper-induced oxidative damage and enhanced antioxidant defenses in the root apex of maize cultivars differing in Cu tolerance. Environ. Exp. Bot. 2009, 67, 415–420. [Google Scholar] [CrossRef]
- Adhikari, T.; Sarkar, D.; Mashayekhi, H.; Xing, B. Growth and enzymatic activity of maize (Zea mays L.) plant: Solution culture test for copper dioxide nano particles. J. Plant Nutr. 2016, 39, 99–115. [Google Scholar] [CrossRef]
- Liu, J.J.; Wei, Z.; Li, J.H. Effects of copper on leaf membrane structure and root activity of maize seedling. Bot. Stud. 2014, 55, 47. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, B.M.K.Y.; Khanif, Y.M.; Saleem, M. Role of zinc in plant nutrition-a review. Am. J. Exp. Agric. 2013, 3, 374–391. [Google Scholar] [CrossRef]
- Dang, H.K.; Li, R.Q.; Sun, Y.H.; Zhang, X.W.; Li, Y.M. Absorption, accumulation and distribution of zinc in highly-yielding winter wheat. Agr. Sci. China 2010, 9, 965–973. [Google Scholar] [CrossRef]
- Cabot, C.; Martos, S.; Llugany, M.; Gallego, B.; Tolrà, R.; Poschenrieder, C. A role for zinc in plant defense against pathogens and herbivores. Front. Plant Sci. 2019, 10, 1171. [Google Scholar] [CrossRef]
- Schmidt, S.B.; Husted, S. The biochemical properties of manganese in plants. Plants 2019, 8, 381. [Google Scholar] [CrossRef]
- Zhao, X.; Du, Q.; Zhao, Y.; Wang, H.; Li, Y.; Wang, X.; Yu, H. Effects of Different Potassium Stress on Leaf Photosynthesis and Chlorophyll Fluorescence in Maize (Zea mays L.) at Seedling Stage. Agric. Sci. 2016, 7, 44–53. [Google Scholar] [CrossRef]
- Chu, R.; Zhang, Q.; Wei, Y. Effect of enhanced UV-B radiation on growth and photosynthetic physiology of Iris tectorum maxim. Photosynth. Res. 2022, 153, 177–189. [Google Scholar] [CrossRef]
- Guidi, L.; Lo Piccolo, E.; Landi, M. Chlorophyll Fluorescence, Photoinhibition and Abiotic Stress: Does It Make Any Difference the Fact to Be a C3 or C4 Species? Front. Plant Sci. 2019, 10, 174. [Google Scholar] [CrossRef]
- Szafrańska, K.; Reiter, R.J.; Posmyk, M.M. Melatonin Application to Pisum sativum L. Seeds Positively Influences the Function of the Photosynthetic Apparatus in Growing Seedlings during Paraquat-Induced Oxidative Stress. Front. Plant Sci. 2016, 7, 1663. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio R Fd of leaves with the PAM fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Bąba, W.; Gediga, K.; Goltsev, V.; Samborska, I.A.; Cetner, M.D.; Dimitrova, S.; Piszcz, U.; Bielecki, K.; Karmowska, K.; et al. Chlorophyll fluorescence as a tool for nutrient status identification in rapeseed plants. Photosynth. Res. 2018, 136, 329–343. [Google Scholar] [CrossRef]
- Kalaji, H.M.; Oukarroum, A.; Alexandrov, V.; Kouzmanova, M.; Brestic, M.; Zivcak, M.; Samborska, I.A.; Cetner, M.D.; Allakhverdiev, S.I.; Goltsev, V. Identification of Nutrient Deficiency in Maize and Tomato Plants by in Vivo Chlorophyll a Fluorescence Measurements. Plant Physiol. Biochem. 2014, 81, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Oosterhuis, D.M.; Bednarz, C.W. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 2001, 39, 103–109. [Google Scholar] [CrossRef]
- Sharma, P.N.; Tripathi, A.; Bisht, S.S. Zinc requirement for stomatal opening in cauliflower. Plant Physiol. 1995, 107, 751–756. [Google Scholar] [CrossRef]
- Osório, J.; Osório, M.L.; Correia, P.J.; de Varennes, A.; Pestana, M. Chlorophyll Fluorescence Imaging as a Tool to Understand the Impact of Iron Deficiency and Resupply on Photosynthetic Performance of Strawberry Plants. Sci. Hortic. 2014, 165, 148–155. [Google Scholar] [CrossRef]
- da Costa, R.M.; Barrett, W.; Carli, J.; Allison, G.G. Analysis of plant cell walls by attenuated total reflectance Fourier transform infrared spectroscopy. Plant Cell Wall Methods Protoc. 2020, 2149, 297–313. [Google Scholar]
- Amer, M.W.; Alhesan, J.S.A.; Ibrahim, S.; Qussay, G.; Marshall, M.; Al-Ayed, O.S. Potential use of corn leaf waste for biofuel production in Jordan (physio-chemical study). Energy 2021, 214, 118863. [Google Scholar] [CrossRef]
- Wang, T.; Yin, J.; Liu, Y.; Lu, Q.; Zheng, Z. Effects of chemical inhomogeneity on pyrolysis behaviors of corn stalk fractions. Fuel 2014, 129, 111–115. [Google Scholar] [CrossRef]
- Danish, M.; Naqvi, M.; Farooq, U.; Naqvi, S. Characterization of South Asian agricultural residues for potential utilization in future ‘energy mix’. Energy Procedia 2015, 75, 2974–2980. [Google Scholar] [CrossRef]
- Kitajima, M.B.W.L.; Butler, W.L. Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. Biochim. Biophys. Acta BBA-Bioenerg. 1975, 376, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, U.; Schliwa, W.; Bilger, W. Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation seedlings. Photosynth. Res. 1986, 10, 51–62. [Google Scholar] [CrossRef]
- Bilger, W.; Björkman, O. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynth. Res. 1990, 25, 173–185. [Google Scholar] [CrossRef]
- Sarropoulou, V.; Dimassi-Theriou, K.; Therios, I.; Koukourikou-Petridou, M. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiol. Biochem. 2021, 61, 162–168. [Google Scholar] [CrossRef]
- Wintermans, J.F.; de Mots, A. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 1965, 109, 448–453. [Google Scholar] [CrossRef]
- Porra, R.J.; Thompson, W.A.; Kriedemann, P.E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta BBA-Bioenerg. 1989, 975, 384–394. [Google Scholar] [CrossRef]
- Yang, C.M.; Chang, K.W.; Yin, M.H.; Hung, H.M. Methods for the determination of the chlorophylls and their derivatives. Taiwania 1998, 43, 116–122. [Google Scholar] [CrossRef]
Variant | Ca [g kg−1 DW] | K [g kg−1 DW] | Mg [g kg−1 DW] | Na [g kg−1 DW] | P [g kg−1 DW] | Cr [g kg−1 DW] | Cu [g kg−1 DW] | Fe [g kg−1 DW] | Mn [g kg−1 DW] | Zn [g kg−1 DW] |
---|---|---|---|---|---|---|---|---|---|---|
Seeds | ||||||||||
NT | 0.10 ± 0.0 a | 9.0 ± 0.4 b | 1.6 ± 0.0 ab | 0.004 ± 0.0 a | 4.8 ± 0.1 a | ND | 0.0023 ± 0.0 a | 0.04 ± 0.0 a | 0.0181 ± 0.0 bc | 0.0498 ± 0.0 a |
H+B | 0.25 ± 0.0 e *** | 9.0 ± 0.4 b | 2.0 ± 0.2 c * | 0.37 ± 0.0 d *** | 5.2 ± 0.1 a ** | 0.0013 ± 0.0 a | 0.0027 ± 0.0 ab *** | 0.06 ± 0.0 c*** | 0.0268 ± 0.0 d *** | 0.0551 ± 0.1 ab |
FC+P | 0.16 ± 0.0 c | 7.6 ± 0.0 a | 1.6 ± 0.0 a | 0.01 ± 0.0 c | 4.9 ± 0.2 a | ND | 0.0039 ± 0.0 c | 0.06 ± 0.0 b | 0.0135 ± 0.0 a | 0.0635 ± 0.0 b |
FC+P+B | 0.24 ± 0.0 de *** | 7.7 ± 0.1 a | 1.8 ± 0.0 bc *** | 0.57 ± 0.0 f *** | 4.8 ± 0.3 a | 0.002 ± 0.0 b | 0.0029 ± 0.0 b *** | 0.07 ± 0.0 c*** | 0.0293 ± 0.0 e *** | 0.0541 ± 0.0 ab *** |
KE+P | 0.13 ± 0.0 b | 7.4 ± 0.4 a | 1.8 ± 0.0 bc | 0.01 ± 0.0 b | 4.9 ± 0.0 a | ND | 0.0039 ± 0.0 c | 0.06 ± 0.0 c | 0.0157 ± 0.0 ab | 0.0579 ± 0.0 ab |
KE+P+B | 0.24 ± 0.0 d *** | 7.7 ± 0.1 a | 1.8 ± 0.0 abc | 0.40 ± 0.0 e *** | 4.9 ± 0.2 a | 0.0026 ± 0.0 c | 0.0065 ± 0.0 d *** | 0.14 ± 0.0 d*** | 0.0200 ± 0.0 c ** | 0.0511 ± 0.0 a ** |
Roots | ||||||||||
NT | 23.3 ± 1.7 a | 5.4 ± 0.0 b | 1.6 ± 0.0 a | 0.93 ± 0.0 a | 1.3 ± 0.0 a | 0.0049 ± 0.0 b | 0.0710 ± 0.0 b | 3.0 ± 0.0 a | 0.0671 ± 0.0 a | 0.0235 ± 0.0 a |
H+B | 32.6 ± 0.1 d *** | 7.0 ± 0.0 d *** | 1.9 ± 0.0 c *** | 1.26 ± 0.0 a *** | 1.8 ± 0.0 d *** | 0.0051 ± 0.0 c *** | 0.0079 ± 0.0 b *** | 4.6 ± 0.0 f *** | 0.0838 ± 0.0 f *** | 0.0793 ± 0.0 e *** |
FC+P | 29.1 ± 0.3 b | 6.0 ± 0.2 c | 1.8 ± 0.1 b | 2.79 ± 1.0 b | 1.7 ± 0.0 c | 0.0040 ± 0.0 a | 0.0060 ± 0.0 a | 3.5 ± 0.0 c | 0.0694 ± 0.0 b | 0.0280 ± 0.0 b |
FC+P+B | 31.7 ± 0.1 cd *** | 4.1 ± 0.0 a *** | 1.9 ± 0.0 bc | 0.65 ± 0.0 a ** | 1.3 ± 0.0 a *** | 0.0076 ± 0.0 d *** | 0.0160 ± 0.0 c *** | 3.4 ± 0.0 b ** | 0.0729 ± 0.0 c *** | 0.0475 ± 0.0 c *** |
KE+P | 33.3 ± 0.1 d | 5.8 ± 0.0 c | 2.2 ± 0.0 d | 0.75 ± 0.0 a | 1.9 ± 0.0 e | 0.0118 ± 0.0 f | 0.0362 ± 0.0 d | 3.6 ± 0.0 d | 0.080.0 ± 0.0 d | 0.0547 ±0.0 d |
KE+P+B | 30.9 ± 0.2 c *** | 4.3 ± 0.0 a *** | 1.8 ± 0.0 bc *** | 0.47 ± 0.0 a ** | 1.3 ± 0.0 b *** | 0.0082 ± 0.0 e *** | 0.0401 ± 0.0 e *** | 3.8 ± 0.0 e *** | 0.0826 ± 0.0 e *** | 0.0462 ± 0.0 c *** |
Shoots | ||||||||||
NT | 14.1 ± 0.1 c | 56.6 ± 1.4 c | 4.6 ± 0.1 bc | 0.26 ± 0.0 b | 12.1 ± 0.1 c | 0.0029 ± 0.0 e | 0.0101 ± 0.0 d | 0.39 ± 0.0 d | 0.0412 ± 0.0 c | 0.1347 ± 0.0 c |
H+B | 14.5 ± 0.2 d * | 50.2 ± 0.8 a *** | 3.9 ± 0.0 a *** | 0.43 ± 0.0 d *** | 11.9 ± 0.2 c | 0.0022 ± 0.0 c *** | 0.0084 ± 0.0 c *** | 0.37 ± 0.0 c *** | 0.0375 ± 0.0 b *** | 0.1586 ± 0.0 e *** |
FC+P | 14.0 ± 0.1 bc | 53.0 ± 0.8 ab | 4.4 ± 0.0 b | 0.23 ± 0.0 a | 11.6 ± 0.1 b | 0.0013 ± 0.0 a | 0.0066 ± 0.0 a | 0.32 ± 0.0 a | 0.0428 ± 0.0 d | 0.1411 ± 0.0 d |
FC+P+B | 13.1 ± 0.1 a *** | 55.1 ± 1.4 bc | 4.8 ± 0.2 bcd * | 0.31 ± 0.0 c *** | 9.7 ± 0.0 a *** | 0.0028 ± 0.0 d *** | 0.0164 ± 0.0 f *** | 0.33 ± 0.0 b** | 0.0353 ± 0.0 a *** | 0.1313 ± 0.0 b *** |
KE+P | 14.0 ± 0.0 c | 52.7 ± 1.9 ab * | 4.9 ± 0.3 cd | 0.23 ± 0.0 a | 11.4 ± 0.0 b | 0.0056 ± 0.0 f | 0.0150 ± 0.0 e | 0.67 ± 0.0 e | 0.0491 ± 0.0 e | 0.1630 ± 0.0 f |
KE+P+B | 13.7 ± 0.1 b *** | 51.6 ± 0.9 a | 5.0 ± 0.1 d | 0.27 ± 0.0 b *** | 11.5 ± 0.1 b | 0.0015 ± 0.0 b *** | 0.0076 ± 0.0 b *** | 0.39 ± 0.0 d *** | 0.0429 ± 0.0 d *** | 0.1258 ± 0.0 a *** |
Element | Content (mg kg−1 DW) |
---|---|
Al | 1669.7 ± 15.6 |
As | 48.4 ± 0.9 |
B | 233.0 ± 12.3 |
Ba | 192.1 ± 7.9 |
Ca | 3241.4 ± 214.2 |
Cr | 7.8 ± 0.1 |
Cu | 9.4 ± 0.1 |
Fe | 5639.7 ± 214.2 |
K | 1905.5 ± 49.1 |
Li | 100.5 ± 0.8 |
Mg | 940.5 ± 24.1 |
Mn | 389.8 ± 4.6 |
Na | 8804.8 ± 479.5 |
Ni | 11.4 ± 0.1 |
Pb | 17.9 ± 0.5 |
Sb | 23.3 ± 0.8 |
Sr | 64.8 ± 2.7 |
Ti | 420.4 ± 3.7 |
V | 2.4 ± 0.1 |
Zr | 38.0 ± 0.7 |
Zn | 45.9 ± 1.2 |
Acronym | Binder | Bentonite (B) Addition | Weight of 100 Seeds [g] | Amount of Binder or Binder and Bentonite Used to Envelope 100 Seeds [g] |
---|---|---|---|---|
NT | Non-treated | - | 14.20 ± 0.08 | - |
H+B | H2O | + | 14.05 ± 0.84 | 0.43 |
FC+P | Fish collagen + PHMB | - | 14.98 ± 0.81 | 0.30 |
FC+P+B | Fish collagen + PHMB | + | 14.78 ± 0.64 | 0.95 |
KE+P | Keratin + PHMB | - | 15.52 ± 0.07 | 0.26 |
KE+P+B | Keratin + PHMB | + | 14.47 ± 0.01 | 1.08 |
Available Nutrients | Content [mg kg−1 Soil] |
---|---|
P | 392.4 |
K | 538.1 |
Mg | 1031.2 |
Mn | 78.7 |
Cu | 17.9 |
Zn | 27.6 |
Fe | 3296.9 |
Ca | 17,411.7 |
Na | 291.6 |
B | 7.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pipiak, P.; Sieczyńska, K.; Gendaszewska, D.; Skwarek-Fadecka, M. Effect of Pre-Sowing Seed Stimulation on Maize Seedling Vigour. Int. J. Mol. Sci. 2024, 25, 12480. https://doi.org/10.3390/ijms252212480
Pipiak P, Sieczyńska K, Gendaszewska D, Skwarek-Fadecka M. Effect of Pre-Sowing Seed Stimulation on Maize Seedling Vigour. International Journal of Molecular Sciences. 2024; 25(22):12480. https://doi.org/10.3390/ijms252212480
Chicago/Turabian StylePipiak, Paulina, Katarzyna Sieczyńska, Dorota Gendaszewska, and Monika Skwarek-Fadecka. 2024. "Effect of Pre-Sowing Seed Stimulation on Maize Seedling Vigour" International Journal of Molecular Sciences 25, no. 22: 12480. https://doi.org/10.3390/ijms252212480
APA StylePipiak, P., Sieczyńska, K., Gendaszewska, D., & Skwarek-Fadecka, M. (2024). Effect of Pre-Sowing Seed Stimulation on Maize Seedling Vigour. International Journal of Molecular Sciences, 25(22), 12480. https://doi.org/10.3390/ijms252212480