Potential Utility of A Proliferation-Inducing Ligand (APRIL) in Colorectal Cancer
Abstract
:1. Introduction
2. Tumor Necrosis Factor Ligand Superfamily Member 13—APRIL
3. Colorectal Cancer
4. Role of APRIL/TNFSF13 Cytokine in Colorectal Cancer
4.1. The Role of APRIL in Large Intestine Carcinogenesis
4.2. APRIL as a Potential Biomarker of Colorectal Cancer
4.3. APRIL as a Potential Therapeutic Target in CRC
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An, S.; Kim, S.K.; Kwon, H.Y.; Kim, C.S.; Bang, H.J.; Do, H.; Kim, B.; Kim, K.; Kim, Y. Expression of Immune-Related and Inflammatory Markers and Their Prognostic Impact in Colorectal Cancer Patients. Int. J. Mol. Sci. 2023, 24, 11579. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hahne, M.; Kataoka, T.; Schröter, M.; Hofmann, K.; Irmler, M.; Bodmer, J.L.; Schneider, P.; Bornand, T.; Holler, N.; French, L.E.; et al. APRIL, a new ligand of the tumor necrosis factor family, stimulates tumor cell growth. J. Exp. Med. 1998, 188, 1185–1190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Baert, L.; Ahmed, M.C.; Manfroi, B.; Huard, B. The number 13 of the family: A proliferation inducing ligand. Curr. Opin. Immunol. 2021, 71, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Nowacka, K.H.; Jabłońska, E. Role of the APRIL molecule in solid tumors. Cytokine Growth Factor Rev. 2021, 61, 38–44, ISSN 1359-6101. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ullah, M.A.; Mackay, F. The BAFF-APRIL System in Cancer. Cancers 2023, 15, 1791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vincent, F.B.; Saulep-Easton, D.; Figgett, W.A.; Fairfax, K.A.; Mackay, F. The BAFF/APRIL system: Emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor. Rev. 2013, 24, 203–215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Laurent, S.A.; Hoffmann, F.S.; Kuhn, P.H.; Cheng, Q.; Chu, Y.; Schmidt-Supprian, M.; Hauck, S.M.; Schuh, E.; Krumbholz, M.; Rübsamen, H.; et al. γ-Secretase directly sheds the survival receptor BCMA from plasma cells. Nat. Commun. 2015, 6, 7333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nardelli, B.; Belvedere, O.; Roschke, V.; Moore, P.A.; Olsen, H.S.; Migone, T.S.; Sosnovtseva, S.; Carrell, J.A.; Feng, P.; Giri, J.G.; et al. Synthesis and release of B-lymphocyte stimulator from myeloid cells. Blood 2001, 97, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Maia, S.; Pelletier, M.; Ding, J.; Hsu, Y.M.; Sallan, S.E.; Rao, S.P.; Nadler, L.M.; Cardoso, A.A. Aberrant expression of functional BAFF-system receptors by malignant B-cell precursors impacts leukemia cell survival. PLoS ONE 2011, 6, e20787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ingold, K.; Zumsteg, A.; Tardivel, A.; Huard, B.; Steiner, Q.G.; Cachero, T.G.; Qiang, F.; Gorelik, L.; Kalled, S.L.; Acha-Orbea, H.; et al. Identification of proteoglycans as the APRIL-specific binding partners. J. Exp. Med. 2005, 201, 1375–1383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moreaux, J.; Sprynski, A.C.; Dillon, S.R.; Mahtouk, K.; Jourdan, M.; Ythier, A.; Moine, P.; Robert, N.; Jourdan, E.; Rossi, J.F.; et al. APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop. Eur. J. Haematol. 2009, 83, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.A.; O’Neill, L.A.J.; Gearing, A.J.H.; Callard, R.E. (Eds.) APRIL. In Factsbook, the Cytokine FactsBook and Webfacts, 2nd ed.; Academic Press: Cambridge, MA, USA, 2001; pp. 148–149. ISBN 9780121551421. [Google Scholar] [CrossRef]
- He, B.; Xu, W.; Santini, P.A.; Polydorides, A.D.; Chiu, A.; Estrella, J.; Shan, M.; Chadburn, A.; Villanacci, V.; Plebani, A.; et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007, 26, 812–826. [Google Scholar] [CrossRef] [PubMed]
- Mongini, P.K.; Inman, J.K.; Han, H.; Fattah, R.J.; Abramson, S.B.; Attur, M. APRIL and BAFF promote increased viability of replicating human B2 cells via mechanism involving cyclooxygenase 2. J. Immunol. 2006, 176, 6736–6751. [Google Scholar] [CrossRef] [PubMed]
- Castigli, E.; Wilson, S.A.; Elkhal, A.; Ozcan, E.; Garibyan, L.; Geha, R.S. Transmembrane activator and calcium modulator and cyclophilin ligand interactor enhances CD40-driven plasma cell differentiation. J. Allergy Clin. Immunol. 2007, 120, 885–891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, G.; Boone, T.; Delaney, J.; Hawkins, N.; Kelley, M.; Ramakrishnan, M.; McCabe, S.; Qiu, W.R.; Kornuc, M.; Xia, X.Z.; et al. APRIL and TALL-I and receptors BCMA and TACI: System for regulating humoral immunity. Nat. Immunol. 2000, 1, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Hua, C.; Audo, R.; Yeremenko, N.; Baeten, D.; Hahne, M.; Combe, B.; Morel, J.; Daïen, C. A proliferation inducing ligand (APRIL) promotes IL-10 production and regulatory functions of human B cells. J. Autoimmun. 2016, 73, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Tai, Y.T.; Lin, L.; Xing, L.; Cho, S.F.; Yu, T.; Acharya, C.; Wen, K.; Hsieh, P.A.; Dulos, J.; van Elsas, A.; et al. APRIL signaling via TACI mediates immunosuppression by T regulatory cells in multiple myeloma: Therapeutic implications. Leukemia 2019, 33, 426–438. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thangarajh, M.; Masterman, T.; Hillert, J.; Moerk, S.; Jonsson, R. A proliferation-inducing ligand (APRIL) is expressed by astrocytes and is increased in multiple sclerosis. Scand. J. Immunol. 2007, 65, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.C.; Barratt, J. The contribution of a proliferation-inducing ligand (APRIL) and other TNF superfamily members in pathogenesis and progression of IgA nephropathy. Clin. Kidney J. 2023, 16 (Suppl. 2), ii9–ii18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Xu, S.; Lam, K.P. Transmembrane Activator and CAML Interactor (TACI): Another Potential Target for Immunotherapy of Multiple Myeloma? Cancers 2020, 12, 1045. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pelekanou, V.; Kampa, M.; Kafousi, M.; Darivianaki, K.; Sanidas, E.; Tsiftsis, D.D.; Stathopoulos, E.N.; Tsapis, A.; Castanas, E. Expression of TNF-superfamily members BAFF and APRIL in breast cancer: Immunohistochemical study in 52 invasive ductal breast carcinomas. BMC Cancer 2008, 8, 76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- García-Castro, A.; Zonca, M.; Florindo-Pinheiro, D.; Carvalho-Pinto, C.E.; Cordero, A.; Gutiérrez del Fernando, B.; García-Grande, A.; Mañes, S.; Hahne, M.; González-Suárez, E.; et al. APRIL promotes breast tumor growth and metastasis and is associated with aggressive basal breast cancer. Carcinogenesis 2015, 36, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Zhi, X.; Tao, J.; Xiang, G.; Cao, H.; Liu, Z.; Yang, K.; Lv, C.; Ni, S. APRIL induces cisplatin resistance in gastric cancer cells via activation of the NF-κB pathway. Cell. Physiol. Biochem. 2015, 35, 571–585. [Google Scholar] [CrossRef] [PubMed]
- Moreaux, J.; Veyrune, J.L.; De Vos, J.; Klein, B. APRIL is overexpressed in cancer: Link with tumor progression. BMC Cancer 2009, 9, 83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mhawech-Fauceglia, P.; Allal, A.; Odunsi, K.; Andrews, C.; Herrmann, F.R.; Huard, B. Role of the tumour necrosis family ligand APRIL in solid tumour development: Retrospective studies in bladder, ovarian and head and neck carcinomas. Eur. J. Cancer 2008, 44, 2097–2100. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Notas, G.; Stathopoulos, E.N.; Tsapis, A.; Castanas, E. The TNFSF Members APRIL and BAFF and Their Receptors TACI, BCMA, and BAFFR in Oncology, With a Special Focus in Breast Cancer. Front. Oncol. 2020, 10, 827. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mhawech-Fauceglia, P.; Kaya, G.; Sauter, G.; McKee, T.; Donze, O.; Schwaller, J.; Huard, B. The source of APRIL up-regulation in human solid tumor lesions. J. Leukoc. Biol. 2006, 80, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Zajkowska, M.; Mroczko, B. Angiopoietin-like Proteins in Colorectal Cancer—A Literature Review. Int. J. Mol. Sci. 2021, 22, 8439. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Simon, K. Colorectal cancer development and advances in screening. Clin. Interv. Aging 2016, 11, 967–976. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nguyen, L.H.; Goel, A.; Chung, D.C. Pathways of Colorectal Carcinogenesis. Gastroenterology 2020, 158, 291–302. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dekker, E.; Tanis, P.J.; Vleugels, J.L.A.; Kasi, P.M.; Wallace, M.B. Colorectal cancer. Lancet 2019, 394, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- Li, J.N.; Yuan, S.Y. Fecal occult blood test in colorectal cancer screening. J. Dig. Dis. 2019, 20, 62–64. [Google Scholar] [CrossRef]
- Raphael, M.J.; Wildgoose, P.; Servidio-Italiano, F.; De Vera, M.A.; Brenner, D.; D’Angelo, M.S.; McGee, R.; Berry, S.; Wong, C.; Gill, S. Breaking Down Barriers to Detection and Care in Early-Age-Onset Colorectal Cancer in Canada. Curr. Oncol. 2023, 30, 9392–9405. [Google Scholar] [CrossRef] [PubMed]
- Labianca, R.; Nordlinger, B.; Beretta, G.D.; Mosconi, S.; Mandalà, M.; Cervantes, A.; Arnold, D.; ESMO Guidelines Working Group. Early colon cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2013, 24 (Suppl. 6), vi64–vi72. [Google Scholar] [CrossRef] [PubMed]
- Das, V.; Kalita, J.; Pal, M. Predictive and prognostic biomarkers in colorectal cancer: A systematic review of recent advances and challenges. Biomed. Pharmacother. 2017, 87, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.L.; Wei, L.F.; Lin, Y.W.; Huang, L.S.; Qu, Q.Q.; Li, X.H.; Chu, L.Y.; Xu, Y.W.; Wang, W.D.; Peng, Y.H.; et al. Serum IGFBP-1 as a promising diagnostic and prognostic biomarker for colorectal cancer. Sci. Rep. 2024, 14, 1839. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, L.; Ye, L.; Hu, B. Hereditary Colorectal Cancer Syndromes: Molecular Genetics and Precision Medicine. Biomedicines 2022, 10, 3207. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kudchadkar, S.; Ahmed, S.; Mukherjee, T.; Sagar, J. Current guidelines in the surgical management of hereditary colorectal cancers. World J. Gastrointest. Oncol. 2022, 14, 833–841. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ionescu, V.A.; Gheorghe, G.; Bacalbasa, N.; Chiotoroiu, A.L.; Diaconu, C. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina 2023, 59, 1646. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sninsky, J.A.; Shore, B.M.; Lupu, G.V.; Crockett, S.D. Risk Factors for Colorectal Polyps and Cancer. Gastrointest. Endosc. Clin. N. Am. 2022, 32, 195–213. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Kelly, B.N.; Ike, A.; Berger, D.; Chan, A.; Drew, D.A.; Ljungman, D.; Mutiibwa, D.; Ricciardi, R.; Tumusiime, G.; et al. The Impact of the Gut Microbiome, Environment, and Diet in Early-Onset Colorectal Cancer Development. Cancers 2024, 16, 676. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kuru-Yaşar, R.; Üstün-Aytekin, Ö. The Crucial Roles of Diet, Microbiota, and Postbiotics in Colorectal Cancer. Curr. Nutr. Rep. 2024, 13, 126–151. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, M.; Chu, J.; Feng, S.; Guo, C.; Xue, B.; He, K.; Li, L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed. Pharmacother. 2023, 164, 114985, ISSN 07 53-3322. [Google Scholar] [CrossRef] [PubMed]
- Burgos-Molina, A.M.; Téllez Santana, T.; Redondo, M.; Bravo Romero, M.J. The Crucial Role of Inflammation and the Immune System in Colorectal Cancer Carcinogenesis: A Comprehensive Perspective. Int. J. Mol. Sci. 2024, 25, 6188. [Google Scholar] [CrossRef]
- Lascano, V.; Zabalegui, L.F.; Cameron, K.; Guadagnoli, M.; Jansen, M.; Burggraaf, M.; Versloot, M.; Rodermond, H.; van der Loos, C.; Carvalho-Pinto, C.E.; et al. The TNF family member APRIL promotes colorectal tumorigenesis. Cell Death Differ. 2012, 19, 1826–1835. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van Attekum, M.; Kater, A.; Eldering, E. The APRIL paradox in normal versus malignant B cell biology. Cell Death Dis. 2016, 7, e2276. [Google Scholar] [CrossRef]
- Nishio, M.; Endo, T.; Tsukada, N.; Ohata, J.; Kitada, S.; Reed, J.C.; Zvaifler, N.J.; Kipps, T.J. Nurselike cells express BAFF and APRIL, which can promote survival of chronic lymphocytic leukemia cells via a paracrine pathway distinct from that of SDF-1alpha. Blood 2005, 106, 1012–1020. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, Z.-Z.; Ansell, S.M.; Witzig, T.E.; Novak, A.J. APRIL Promotes Survival and Proliferation of T Cells: Implications for T-Cell Lymphoma. Blood 2004, 104, 2652. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Q.; Xue, Z.; Wu, P.; Yang, X. In vitro and in vivo evaluation of a humanized anti-APRIL antibody. Curr. Mol. Med. 2013, 13, 464–465. [Google Scholar] [PubMed]
- Guo, Y.W.; Wen, Z.F.; Zheng, F.P.; Li, Y.W.; Feng, Z.Y. Expression of APRIL in colorectal carcinoma tissues and effects of chemotherapeutic agents on APRIL expression in colorectal carcinoma SW480 cells. Ai Zheng 2008, 27, 369–373. (In Chinese) [Google Scholar] [PubMed]
- Wang, F.; Chen, L.; Ni, H.; Wang, G.; Ding, W.; Cong, H.; Ju, S.; Yang, S.; Wang, H. APRIL depletion induces cell cycle arrest and apoptosis through blocking TGF-β1/ERK signaling pathway in human colorectal cancer cells. Mol. Cell. Biochem. 2013, 383, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, F.; Ding, W.; Wang, J.; Jing, R.; Li, H.; Wang, X.; Wang, Y.; Ju, S.; Wang, H. APRIL induces tumorigenesis and metastasis of colorectal cancer cells via activation of the PI3K/Akt pathway. PLoS ONE 2013, 8, e55298. [Google Scholar] [CrossRef]
- Xu, J.; Ding, W.F.; Shao, K.K.; Wang, X.D.; Wang, G.H.; Li, H.Q.; Wang, H.M. Transcription of promoter from the human APRIL gene regulated by Sp1 and NF-kB. Neoplasma 2012, 59, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wang, J.; Wang, F.; Wang, G.; Wu, Q.; Ju, S.; Cong, H.; Wang, H. Serum sAPRIL: A potential tumor-associated biomarker to colorectal cancer. Clin. Biochem. 2013, 46, 1590–1594. [Google Scholar] [CrossRef] [PubMed]
- Lascano, V.; Hahne, M.; Papon, L.; Cameron, K.; Röeder, C.; Schafmayer, C.; Driessen, L.; van Eenennaam, H.; Kalthoff, H.; Medema, J.P. Circulating APRIL levels are correlated with advanced disease and prognosis in rectal cancer patients. Oncogenesis 2015, 4, e136. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mei, H.J.; Wang, H.; Zheng, X.B.; Jin, Q.; Wang, Y.; Huang, F.; Zhang, S. The relationship of A Proliferation-Inducing Ligand expression with the clinical pathology and prognosis in colorectal carcinoma. Zhonghua Yi Xue Za Zhi 2016, 96, 3232–3235. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- He, X.Q.; Guan, J.; Liu, F.; Li, J.; He, M.R. Identification of the sAPRIL binding peptide and its growth inhibition effects in the colorectal cancer cells. PLoS ONE 2015, 10, e0120564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Arévalo, B.; Blázquez-García, M.; Valverde, A.; Serafín, V.; Montero-Calle, A.; Solís-Fernández, G.; Barderas, R.; Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Simultaneous electrochemical immunosensing of relevant cytokines to diagnose and track cancer and autoimmune diseases. Bioelectrochemistry 2022, 146, 108157. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wang, J.; Sun, B.; Ju, S.; Yuan, H.; Wang, X.; Wang, Y.; Wang, H. APRIL knockdown suppresses migration and invasion of human colon carcinoma cells. Clin. Biochem. 2009, 42, 1694–1698. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.H.; Lu, M.H.; Wang, J.C.; Wang, F.; Ding, W.F.; Wang, Y.G.; Ju, S.Q.; Wang, H.M. Abnormal expression of APRIL in colorectal cancer cells promotes tumor growth and metastasis. Zhonghua Zhong Liu Za Zhi 2013, 35, 249–255. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ding, W.; Wang, J.; Jing, R.; Wang, X.; Cong, H.; Wang, Y.; Ju, S.; Wang, H. Identification of microRNA-target interaction in APRIL-knockdown colorectal cancer cells. Cancer Gene Ther. 2011, 18, 500–509. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shao, K.; Wang, J.; Wang, G.; Xu, J.; Cao, J.; Ju, S.; Wang, H. Simultaneous knockdown of APRIL via multiple shRNAs reduces the malignancy of SW480 cells. Oncol. Rep. 2012, 28, 1613–1618. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wang, G.; Shao, K.; Wang, F.; Huang, H.; Ju, S.; Cong, H.; Wang, H. Amelioration of colorectal cancer using negative lipidoid nanoparticles to encapsulate siRNA against APRIL by enema delivery mode. Pathol. Oncol. Res. 2014, 20, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Sun, A.M.; Wang, L.H.; He, M.R. Lentivirus-mediated RNA interference suppresses APRIL expression and enhances chemosensitivity in colorectal cancer cells. Nan Fang Yi Ke Da Xue Xue Bao 2011, 31, 1600–1604. (In Chinese) [Google Scholar] [PubMed]
- Calu, V.; Ionescu, A.; Stanca, L.; Geicu, O.I.; Iordache, F.; Pisoschi, A.M.; Serban, A.I.; Bilteanu, L. Key biomarkers within the colorectal cancer related inflammatory microenvironment. Sci. Rep. 2021, 11, 7940. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Signaling Pathway | Effect on Crc Cells | Reference |
---|---|---|
NF-κB Pathway | Promotes cell survival and inflammatory responses | [54,55] |
PI3K/AKT Pathway | Induces tumorigenesis and cell metastasis | [55] |
MAPK/ERK Pathway | Stimulates cell proliferation and migration | [56] |
TGF-β1/ERK Pathway | Stimulates cell cycle and inhibits apoptosis | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajkowska, M.; Orywal, K.; Gryko, M. Potential Utility of A Proliferation-Inducing Ligand (APRIL) in Colorectal Cancer. Int. J. Mol. Sci. 2024, 25, 12496. https://doi.org/10.3390/ijms252312496
Zajkowska M, Orywal K, Gryko M. Potential Utility of A Proliferation-Inducing Ligand (APRIL) in Colorectal Cancer. International Journal of Molecular Sciences. 2024; 25(23):12496. https://doi.org/10.3390/ijms252312496
Chicago/Turabian StyleZajkowska, Monika, Karolina Orywal, and Mariusz Gryko. 2024. "Potential Utility of A Proliferation-Inducing Ligand (APRIL) in Colorectal Cancer" International Journal of Molecular Sciences 25, no. 23: 12496. https://doi.org/10.3390/ijms252312496
APA StyleZajkowska, M., Orywal, K., & Gryko, M. (2024). Potential Utility of A Proliferation-Inducing Ligand (APRIL) in Colorectal Cancer. International Journal of Molecular Sciences, 25(23), 12496. https://doi.org/10.3390/ijms252312496