Microbiome–Metabolomics Analysis Insight into the Effects of Starvation and Refeeding on Intestinal Integrity in the Juvenile Largemouth Bass (Micropterus salmoides)
Abstract
:1. Introduction
2. Results
2.1. Comparison of Digestive/Antioxidant Enzyme Activities
2.2. Expression Levels of Antioxidant Genes
2.3. Expression Levels of Inflammation-Associated Factors
2.4. Histological Structure of the Intestine
2.5. Intestinal Microbiota Analysis
2.6. Intestinal Metabolomics Analysis
3. Discussion
4. Materials and Methods
4.1. Animals and Fish Welfare
4.2. Experimental Design and Management
4.3. Sample Collection
4.4. Digestive and Antioxidant Enzyme Activity Analysis
4.5. Histopathological Examination
4.6. Quantitative Real-Time PCR Analysis
Genes | Primer Sequences F | Primer Sequences R | Size (bp) | Tm (°C) | Reference |
---|---|---|---|---|---|
β-actin | AAAGGGAAATCGTGCGTGAC | AAGGAAGGCTGGAAGAGGG | 123 | 60 | RNA-seq byXv et al. (2024) [68] |
IL-1β | CAGCAGGCTCACAAAATAAACATCT | CGTGACTGACAGCAAAAAGAGG | 234 | 60 | RNA-seq by Lin et al. (2024) [69] |
IL-8 | CGTTGAACAGACTGGGAGAGATG | AGTGGGATGGCTTCATTATCTTGT | 126 | 60 | RNA-seq by Lin et al. (2024) [69] |
IL-10 | CGGCACAGAAATCCCAGAGC | CAGCAGGCTCACAAAATAAACATCT | 122 | 59 | RNA-seq by Lin et al. (2024) [69] |
IL-15 | GTATGCTGCTTCTGTGCCTGG | AGCGTCAGATTTCTCAATGGTGT | 157 | 60 | RNA-seq by Hu et al. (2023) [70] |
TNF-α | CTTCGTCTACAGCCAGGCATCG | TTTGGCACACCGACCTCACC | 104 | 60 | RNA-seq by Hu et al. (2023) [70] |
TGF-β1 | GCTCAAAGAGAGCGAGGATG | TCCTCTACCATTCGCAATCC | 186 | 59 | RNA-seq by Hu et al. (2023) [70] |
Nrf2 | CAGACAGTTCCTTTGCAGGC | AGGGACAAAAGCTCCATCCA | 150 | 60 | RNA-seq by Hu et al. (2023) [70] |
Keap1 | CAGCTTACATGGCCGCATC | CTTCTCTGGGTCGTAAGACTCC | 132 | 60 | RNA-seq by Hu et al. (2023) [70] |
GPx | CCCTGCAATCAGTTTGGACA | TTGGTTCAAAGCCATTCCCT | 119 | 59 | RNA-seq by Hu et al. (2023) [70] |
GCLC | TACGGTGGCACGATGTCAGA | GGCAACCTAACCTTGGAAATG | 194 | 60 | RNA-seq by Zhao et al. (2022) [71] |
HO-1 | ATCGGAGCAGATTAAGGC | TTGTACTGTGGCAGGGTG | 249 | 60 | RNA-seq by Luo et al. (2023) [72] |
4.7. 16S rRNA Gene Sequencing Analysis
4.8. Metabolite Analysis
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morshedia, V.; Kochanianb, P.; Bahmanic, M.; Yazdanic, M.A.; Pouralic, H.R.; Ashouri, G.; Pasha-Zanoosi, H. Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869. Anim. Feed. Sci. Tech. 2017, 232, 207–214. [Google Scholar] [CrossRef]
- Macdonald, A.; Speirs, D.C.; Greenstreet, S.P.R.; Heath, M.R. Exploring the influence of food and temperature on north sea sandeels using a new dynamic energy budget model, Front. Mar. Sci. 2018, 5, 339. [Google Scholar] [CrossRef]
- Chen, J.F.; Xu, M.M.; Kang, K.L.; Tang, S.G.; Guo, S.C. The effects and combinational effects of Bacillus subtilis and montmorillonite on the intestinal health status in laying hens. Poultry Sci. 2020, 99, 1311–1319. [Google Scholar] [CrossRef] [PubMed]
- Winer, D.A.; Luck, H.; Tsai, S.; Winer, S. The intestinal immune system in obesity and insulin resistance. Cell Metabol. 2016, 23, 413–426. [Google Scholar] [CrossRef]
- Cheng, Y.F.; Chen, Y.P.; Chen, R.; Su, Y.; Zhang, R.Q.; He, Q.F.; Wang, K.; Wen, C.; Zhou, Y.W. Dietary mannan oligosaccharide ameliorates cyclic heat stress-induced damages on intestinal oxidative status and barrier integrity of broilers. Poult. Sci. 2019, 98, 4767–4776. [Google Scholar] [CrossRef]
- Citi, S. Intestinal barriers protect against disease. Science 2018, 359, 1097–1098. [Google Scholar] [CrossRef]
- Ulluwishewa, D.; Anderson, R.C.; McNabb, W.C. Regulation of tight junction permeability by intestinal bacteria and dietary components. J. Nutr. 2011, 141, 769–776. [Google Scholar] [CrossRef]
- Caruso, G.; Denaro, M.G.; Caruso, R.; Pasquale, F.D.; Genovese, L.; Maricchiolo, G. Changes in digestive enzyme activities of red porgy Pagrus pagrus during a fasting-refeeding experiment. Fish Physiol. Biochem. 2014, 40, 1373–1382. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Zhang, X.B.; Zhao, F.; Zhou, Z. Stress responses of the intestinal digestion, antioxidant status, microbiota and non-specific immunity in Songpu mirror carp (Cyprinus carpio L.) under starvation. Fish Shellfish Immunol. 2022, 120, 411–420. [Google Scholar] [CrossRef]
- Mogensen, S.; Post, J.R. Energy allocation strategy modifies growth-survival trade offs in juvenile fish across ecological and environmental gradients. Oecologia 2012, 168, 923–933. [Google Scholar] [CrossRef]
- Xavier, B.J.; Megarajan, S.; Balla, V.; Sadu, N.H. Impact of starvation and re-feeding on growth and metabolic responses of Indian pompano (Trachinotus mookalee) juveniles. Aquaculture 2023, 572, 739514. [Google Scholar] [CrossRef]
- Pal, P.K.; Maitra, S.K. Response of gastrointestinal melatonin, antioxidants, and digestive enzymes to altered feeding conditions in carp (Catla catla). Fish Physiol. Biochem. 2018, 44, 1061. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Chen, J.C.; Man, S.N.C.; Morni, W.Z.W. Modulation of innate immunity and gene expressions in white shrimp Litopenaeus vannamei following long-term starvation and re-feeding. Results Immunol. 2012, 2, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.S.; Prakash, P.; Varghese, T.; Ishfaq, M.; Gupta, S.; Krishna, G. Temporal changes in superoxide dismutase, catalase, and heat shock protein 70 gene expression, cortisol and antioxidant enzymes activity of Labeo rohita fingerlings subjected to starvation and refeeding. Gene 2019, 692, 94–101. [Google Scholar] [CrossRef]
- Choi, C.Y.; Shin, H.S.; Choi, Y.J.; Kim, N.N.; Lee, J.; Kil, G.S. Effect of LED light spectra on starvation-induced oxidative stress in the cinnamon clown fish Amphiprion melanopus. Comp. Biochem. Physiol. Mol. Integr. Physiol. 2012, 163, 357–363. [Google Scholar] [CrossRef]
- Johnson, K.V.A.; Foster, K.R. Why does the microbiome affect behaviour? Nat. Rev. Microbiol. 2018, 16, 647–655. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Zhao, F.; Cairang, Z.M.; Zhou, Z. Role of dietary tea polyphenols on growth performance and gut health benefits in juvenile hybrid sturgeon (Acipenser baerii ♀ × A. schrenckii ♂). Fish Shellfish Immunol. 2023, 139, 108911. [Google Scholar] [CrossRef]
- Mekuchi, M.; Asakura, T.; Sakata, K.; Yamaguchi, T.; Teruya, K.; Kikuchi, J. Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus). PLoS ONE 2018, 13, e019725. [Google Scholar] [CrossRef]
- Dhanasiri, A.K.; Brunvold, L.; Brinchmann, M.F.; Bergh, K.K.; Kiron, V. Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. upon captive rearing. Microb. Ecol. 2011, 61, 20–30. [Google Scholar] [CrossRef]
- Xia, J.H.; Lin, G.; Fu, G.H.; Wan, Z.Y. The intestinal microbiome of fish under starvation. BMC Genom. 2014, 15, 266. [Google Scholar] [CrossRef]
- Tran, N.T.; Xiong, F.; Hao, Y.; Zhang, J.; Wu, S.; Wang, G. Starvation influences the microbiota assembly and expression of immunity- related genes in the intestine of grass carp (Ctenopharyngodon idellus). Aquaculture 2018, 489, 121–129. [Google Scholar] [CrossRef]
- Cao, Q.Q.; Zhao, J.; Yan, M.Y.; Luo, Z. Vitamin D3 activates the innate immune response and xenophagy against Nocardia seriolae through the VD receptor in liver of largemouth bass (Micropterus salmoides). Aquaculture 2024, 578, 740008. [Google Scholar] [CrossRef]
- Yearbook, C.F.S. China Fishery Statistics Yearbook; China Agriculture Press: Beijing, China, 2022–2023. [Google Scholar]
- Bolasina, S.N.; Tagawa, M.; Yamashita, Y. Changes on cortisol level and digestive enzyme activity in juveniles of Japanese flounder, Paralichthys olivaceus, exposed to different salinity regimes. Aquaculture 2007, 266, 255–261. [Google Scholar] [CrossRef]
- Belanger, F.; Blier, P.U.; Dutil, J.D. Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). Fish Physiol. Biochem 2002, 26, 121–128. [Google Scholar] [CrossRef]
- Krogdahl, A.; Bakke-Mckellep, A.M. Fasting and refeeding cause rapid changes in intestinal tissue mass and digestive enzyme capacities of Atlantic salmon (Salmo salar L.). Comp. Biochem. Physiol. 2005, 141A, 450–460. [Google Scholar] [CrossRef]
- Yengkokpam, S.; Sahu, N.P.; Pal, A.K.; Debnath, D.; Kumar, S.; Jain, K.K. Compensatory growth, feed intake and body composition of Labeo rohita fingerlings following feed deprivation. Aquac. Nutr. 2013, 20, 101–108. [Google Scholar] [CrossRef]
- Abolfathi, M.; Hajimoradloo, A.; Ghorbani, R.; Zamani, A. Effect of starvation and re-feeding on digestive enzyme activities in juvenile roach, Rutilus rutilus caspicus. Comp. Biochem. Physiol. 2012, 161, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Feng, L.; Liu, Y.; Jiang, W.; Wu, P.; Jiang, J.; Zhou, X. Effect of dietary isoleucine on the immunity, antioxidant status, tight junctions and microflora in the intestine of juvenile jian carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 2014, 41, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.E.; P´erez-Jim´enez, A.; Carmen Hidalgo, M.; Abellán, E.; Cardenete, G. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2004, 139, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wu, X.; Zhou, X.; Feng, L.; Liu, Y.; Jiang, W.; Zhao, Y. Glutamate ameliorates copper-induced oxidative injury by regulating antioxidant defences in fish intestine. Brit. J. Nutr. 2016, 116, 70–79. [Google Scholar] [CrossRef]
- Biller, J.D.; Takahashi, L.S. Oxidative stress and fish immune system: Phagocytosis and leukocyte respiratory burst activity. An. Acad. Bras. Ciências 2018, 90, 3403–3414. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Huang, S.; Cai, S.; Yu, H.T. Lactobacillus reuteri Ameliorates intestinal inflammation and modulates gut microbiota and metabolic disorders in dextran sulfate sodium-induced colitis in mice. Nutrients 2020, 12, 2298. [Google Scholar] [CrossRef] [PubMed]
- Furné, M.; Sanz, A.; García-Gallego, M.; Hidalgo, C.M.; Domezain, A.; Domezain, B.; Amalia, J.; Morales, E. Metabolic organization of the sturgeon Acipenser naccarii. A comparative study with rainbow trout Oncorhynchus mykiss. Aquaculture 2009, 289, 161–166. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Lu, Y.; Zhu, H.J.; Zhang, J.K. Recent progress and applications of small molecule inhibitors of Keap1–Nrf2 axis for neurodegenerative diseases. Eur. J. Med. Chem. 2024, 264, 115998. [Google Scholar] [CrossRef]
- Barcelos, R.P.; Bresciani, G.; Rodriguez-Miguelez, P.; Cuevas, M.J.; Soares, F.A.; Barbosa, N.V.; Gonzalez-Gallego, J. Diclofenac pretreatment effects on the toll-like receptor 4/nuclear factor kappa B-mediated inflammatory response to eccentric exercise in rat liver. Life Sci. 2016, 148, 247–253. [Google Scholar] [CrossRef]
- Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Shen, P. Apigenin, a modulator of PPARγ, attenuates HFD-induced NALFD by regulating hepatocyte lipid metabolism and oxidative stress via Nrf2 activation. Biochem. Pharmacol. 2017, 136, 136–149. [Google Scholar] [CrossRef]
- Du, Y.C.; Lai, L.; Zhang, H.; Zhong, F.R.; Cheng, H.L.; Qian, B.L.; Tan, P.; Xia, X.M.; Fu, W.G. Kaempferol from Penthorum chinense pursh suppresses HMGB1/TLR4/NF-κB signaling and NLRP3 inflammasome activation in acetaminophen-induced hepatotoxicity. Food Funct. 2020, 11, 7925–7934. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Feng, L.; Jiang, W.; Jiang, J.; Wu, P.; Zhao, J.; Kuang, S.; Tang, L. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet. Fish Shellfish Immunol. 2015, 47, 470–484. [Google Scholar] [CrossRef]
- Scapigliati, G.; Buonocore, F.; Bird, S.; Zou, J. Phylogeny of cytokines: Molecular cloning and expression analysis of sea bass Dicentrarchus labrax interleukin-1β. Fish Shellfish Immunol. 2001, 11, 711–726. [Google Scholar] [CrossRef]
- Koj, A. Termination of acute-phase response: Role of some cytokines and anti-inflammatory drugs. Gen. Pharmacol. 1998, 31, 9–18. [Google Scholar] [CrossRef]
- Sun, S.M.; Shu, Y.L.; Yu, H.; Ge, X.P.; Zhang, C.F. Starvation affects the intestinal microbiota structure and the expression of inflammatory-related genes of the juvenile blunt snout bream, Megalobrama amblycephala. Aquaculture 2020, 517, 734764. [Google Scholar] [CrossRef]
- German, D.P.; Neuberger, D.T.; Callahan, M.N.; Lizardo, N.R.; Evans, D.H. Feast to famine: The effects of food quality and quantity on the gut structure and function of a detritivorous catfish (Teleostei: Loricariidae). Comp. Biochem. Physiol. A 2010, 155, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Ostaszewska, T.; Dabrowski, K.; Kamaszewski, M.; Grochowski, P.; Verri, T.; Rzepkowska, M.; Wolnicki, J. The effect of plant protein-based diet supplemented with dipeptide or free amin acids on digestive tract morphology and PepT1 and PepT2 expressions in common carp (Cyprinus carpio L.). Comp. Biochem. Physiol. A 2010, 157, 158–169. [Google Scholar] [CrossRef] [PubMed]
- Baeverfjord, G.T.; Krogdahl, A. Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: A comparison with the intestines of fasted fish. J. Fish Dis. 2010, 19, 375–387. [Google Scholar] [CrossRef]
- Mcleese, J.M.; Moon, T.W. Seasonal changes in the intestinal mucosa of winter flounder, Pseudopleuronectes americanus (Walbaum), from Passamaquoddy Bay. New Brunswick. J. Fish Biol. 2010, 35, 381–393. [Google Scholar] [CrossRef]
- Torrecillas, S.; Montero, D.; Caballero, M.J. Effects of dietary concentrated mannan oligosaccharides supplementation on growth, gut mucosal immune system and liver lipid metabolism of European sea bass (Dicentrarchus labrax) juveniles. Fish Shellfish Immunol. 2015, 42, 508–516. [Google Scholar] [CrossRef]
- Park, M.S.; Takeda, M. Starvation suppresses cell proliferation that rebounds after refeeding in the midgut of the American cockroach, Periplaneta americana. J. Insect. Physiol. 2008, 54, 386–392. [Google Scholar] [CrossRef]
- Su, Y.Q.; Liu, X.G.; Yi, H.D.; Bi, S.; Chen, X.L. Effects of starvation and refeeding on growth, biochemical composition, enzyme activities and intestine structure of lined seahorses, Hippocampus erectus. Aquaculture 2022, 548, 737733. [Google Scholar] [CrossRef]
- Elsabagh, M.; Mohamed, R.; Moustafa, E.M.; Hamza, A.; Farrag, F.; Decamp, O.; Dawood, M.A.O.; Eltholth, M. Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquac. Nutr. 2018, 24, 1613–1622. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, K.; Wu, J.; Qiu, Q.L.; Yang, K.; Qian, Y.; Zhang, D. Changes in intestinal bacterial communities are closely associated with shrimp disease severity. Appl. Microbiol. Biotechnol. 2015, 99, 6911–6919. [Google Scholar] [CrossRef]
- Cuesta, S.; Burdisso, P.; Segev, A.; Kourrich, S.; Sperandio, V. Gut colonization by Proteobacteria alters host metabolism and modulates cocaine neurobehavioral responses. Cell Host Microbe. 2022, 30, 1615–1629.e5. [Google Scholar] [CrossRef] [PubMed]
- Kohl, K.D.; Amaya, J.; Passement, C.A.; Dearing, M.D.; Mccue, M.D. Unique and shared responses of the gut microbiota to prolonged fasting: A comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 2014, 90, 883–894. [Google Scholar] [CrossRef]
- Birg, A.; Ritz, N.L.; Lin, H.C. The unknown effect of antibiotic-induced dysbiosis on the gut microbiota. Microbiome Metabolome Diagnosis. Ther. Other Strateg. Appl. 2019, 2, 195–200. [Google Scholar] [CrossRef]
- Wang, A.; Ran, C.; Wang, Y.; Zhang, Z.; Ding, Z. Use of probiotics in aquaculture of China-a review of the past decade. Fish Shellfish Immunol. 2019, 86, 734–755. [Google Scholar] [CrossRef]
- González-Félix, M.L.; Gatlin, D.M.; Urquidez-Bejarano, P.; de la Reé-Rodríguez, C.; Duarte-Rodríguez, L.; Sánchez, F.; Casas-Reyes, A.; Yamamoto, F.Y.; Ochoa-Leyva, A.; Perez-Velazquez, M. Effects of commercial dietary prebiotic and probiotic supplements on growth, innate immune responses, and intestinal microbiota and histology of Totoaba macdonaldi. Aquaculture 2018, 491, 239–251. [Google Scholar] [CrossRef]
- Sakyi, M.E.; Cai, J.; Tang, J.F.; Abarike, E.D.; Xia, L.Q.; Li, P.F. Effects of starvation and subsequent re-feeding on intestinal microbiota, and metabolic responses in Nile tilapia, Oreochromis niloticus. Aquac. Rep. 2020, 17, 100370. [Google Scholar] [CrossRef]
- Dai, W.F.; Zhang, J.J.; Qiu, Q.F.; Chen, J.; Yang, W.; Ni, S.; Xiong, J.B. Starvation stress affects the interplay among shrimp gut microbiota, digestion and immune activities. Fish Shellfish Immunol. 2018, 80, 191–199. [Google Scholar] [CrossRef]
- Nicolas, G.R.; Chang, P.V. Deciphering the chemical lexicon of host-gut microbiota interactions. Trends Pharmacol. Sci. 2019, 40, 430–445. [Google Scholar] [CrossRef]
- Wang, L.S.; Wu, D.; Fan, Z.; Li, H.Q.; Li, J.N. Effect of yucca schidigera extract on the growth performance, intestinal antioxidant status, immune response, and tight junctions of mirror carp (Cyprinus carpio). Fish Shellfish Immunol. 2020, 103, 211–219. [Google Scholar] [CrossRef]
- Ely, S.W.; Mentzer, R.M.; Lasley, R.D.; Lee, B.K.; Bern, R.M. Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion with adenosine. J. Thorac. Cardiovasc. Surg. 1985, 90, 549–556. [Google Scholar] [CrossRef]
- Lasley, R.D.; Ely, S.W.; Berne, R.M.; Mentzer, R.M. Allopurinol enhanced adenine nucleotide repletion after myocardial ischemia in the isolated rat heart. J. Clin. Investig. 1988, 81, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.J.; Wang, F.; Liu, Y.; Liu, S.; An, Y.Y. Microbiome-metabolome responses of Fuzhuan brick tea crude polysaccharides with immune-protective benefit in cyclophosphamide-induced immunosuppressive mice. Food Res. Int. 2022, 157, 111370. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.Y.; Gao, J.Y.; Wang, L.Q.; Hou, X.N. Cananga oil inhibits Salmonella infection by mediating the homeostasis of purine metabolism and the TCA cycle. J. Ethnopharmacol. 2024, 5, 117864. [Google Scholar] [CrossRef] [PubMed]
- De Tolla, L.J.; Srinivas, S.; Whitaker, B.R.; Andrews, C.; Hecker, B.; Kane, A.S.; Reimschuessel, R. Guidelines for the care and use of fish in research. ILAR J. Instit. Laborat. Anim. Res. Nat. Res. Counc. 1995, 37, 159–173. [Google Scholar] [CrossRef]
- Liu, X.C.; Shi, H.R.; He, Q.; Lin, F.M.; Wang, Q.; Xiao, S.Q. Effect of starvation and refeeding on growth, gut microbiota and nonspecific immunity in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂). Fish Shellfish Immunol. 2020, 97, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.L.; Zhang, H.T.; Gao, L.; Chen, X.; Zhu, Q.L.; Han, T. Combined effects of crowding stress and low salinity on GH/IGF axis, antioxidant response, and HPI axis in largemouth bass (Micropterus salmoides) larvae. Aquaculture 2024, 578, 740036. [Google Scholar] [CrossRef]
- Xv, Z.C.; Chen, S.X.; Song, G.L.; Hu, H.; Lin, S.M.; Long, Y. Biochemical, histological and transcriptomic analyses for the immunological organs provide insights into heat stress-induced disease susceptibility in Largemouth Bass. Sci. Total Environ. 2024, 912, 168758. [Google Scholar] [CrossRef]
- Lin, Y.J.; Chen, J.M.; Chen, X.M.; Li, X.N.; Jin, X.Y.; Sun, J.X.; Niu, X.T.; Kong, Y.D.; Li, M.; Wang, G.Q. Effects of Ala-Gln on growth, biochemical indicators and stress-related gene expression of largemouth bass (Micropterus salmoides) under dual stress of f low rate and density. Aquac. Rep. 2024, 35, 101961. [Google Scholar] [CrossRef]
- Hu, J.R.; Huang, L.; Wang, L.; Huang, W.; Lai, M.J.; Li, X.N.; Lin, Y.C.; Sun, Y.P. Hydrogen administration improves the growth performance of juvenile largemouth bass (Micropterus salmoides) by increasing feed intake, reducing serum lipids, activating mTOR and Nrf2 signaling pathways, and altering the intestinal microbiota. Aquac. Rep. 2023, 33, 101749. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, C.; Zhu, X.X.; Feng, L.; Liu, Y.; Jiang, W.D.; Wu, P.; Huang, X.L.; Chen, D.F.; Yang, S.Y.; et al. Dietary methionine hydroxy analogue supplementation benefits on growth, intestinal antioxidant status and microbiota in juvenile largemouth bass Micropterus salmoides. Aquaculture 2022, 556, 738279. [Google Scholar] [CrossRef]
- Luo, K.; Shi, Y.H.; Yang, K.L.; Xu, Q.Q.; Zhou, J.; Gao, W.H.; Wu, C.L.; Wang, Z.D. Effects of dietary tributyrin supplementation in low fish meal diet containing high-Clostridium autoethanogenum protein on the growth performance, antioxidative capacity, lipid metabolism and intestinal microbiota of largemouth bass (Micropterus salmoides). Aquac. Rep. 2023, 32, 101722. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Z.; An, X.; Liu, H.; Wang, F. Metabolomic profiling of Dezhou donkey sperm associated with free zability. Theriogenology 2022, 181, 131–139. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw Reads | Clean Reads | Effective Reads | Average Length/bp | Effective Rates/% | Q30 % |
---|---|---|---|---|---|---|
CON | 79,959 | 79,632 | 75,819 | 419 | 92.80 | 93.61 |
ST | 79,813 | 79,497 | 74,684 | 419 | 93.58 | 93.58 |
RE | 79,968 | 79,648 | 75,523 | 420 | 94.44 | 94.44 |
Total | 239,740 | 238,777 | 226,026 | — | — | — |
Average | — | — | — | 419 | 93.61 | 93.88 |
Item | ACE | Chao1 | Simpson | Shannon |
---|---|---|---|---|
CON | 1881.61 ± 230.34 | 1538.03 ± 62.23 a | 0.98 ± 0.00 | 8.13 ± 0.18 b |
ST | 1904.12 ± 342.81 | 1432.48 ± 150.30 ab | 0.98 ± 0.00 | 8.91 ± 0.13 a |
RE | 1941.44 ± 396.26 | 1172.01 ± 48.87 b | 0.99 ± 0.00 | 8.15 ± 0.07 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Zhang, X.; Zhao, F.; Luo, T. Microbiome–Metabolomics Analysis Insight into the Effects of Starvation and Refeeding on Intestinal Integrity in the Juvenile Largemouth Bass (Micropterus salmoides). Int. J. Mol. Sci. 2024, 25, 12500. https://doi.org/10.3390/ijms252312500
Zhao Z, Zhang X, Zhao F, Luo T. Microbiome–Metabolomics Analysis Insight into the Effects of Starvation and Refeeding on Intestinal Integrity in the Juvenile Largemouth Bass (Micropterus salmoides). International Journal of Molecular Sciences. 2024; 25(23):12500. https://doi.org/10.3390/ijms252312500
Chicago/Turabian StyleZhao, Zhenxin, Xianbo Zhang, Fei Zhao, and Tianxun Luo. 2024. "Microbiome–Metabolomics Analysis Insight into the Effects of Starvation and Refeeding on Intestinal Integrity in the Juvenile Largemouth Bass (Micropterus salmoides)" International Journal of Molecular Sciences 25, no. 23: 12500. https://doi.org/10.3390/ijms252312500
APA StyleZhao, Z., Zhang, X., Zhao, F., & Luo, T. (2024). Microbiome–Metabolomics Analysis Insight into the Effects of Starvation and Refeeding on Intestinal Integrity in the Juvenile Largemouth Bass (Micropterus salmoides). International Journal of Molecular Sciences, 25(23), 12500. https://doi.org/10.3390/ijms252312500