2D and 3D Nanostructured Metal Oxide Composites as Promising Materials for Electrochemical Energy Storage Techniques: Synthesis Methods and Properties
Abstract
:1. Introduction
2. Supercapacitors
2.1. Electric Double-Layer Capacitors
2.2. Pseudocapacitors
2.3. Symmetric, Asymmetric, and Hybrid Supercapacitors
3. Electrode Materials
3.1. TiO2
3.2. Fe2O3
3.3. Ga2O3
3.4. SnO2
4. 2D and 3D Supercapacitors Materials
4.1. Synthesis Rout for Obtaining 2D and 3D Materials
4.1.1. Top-Down Approach
4.1.2. Bottom-Up Approach
4.2. The 2D Structures
4.3. The 3D Structures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arvas, M.B.; Gençten, M.; Sahin, Y. A two-dimensional material for high capacity supercapacitors: S-doped graphene. Int. J. Energy Res. 2020, 44, 1624–1635. [Google Scholar] [CrossRef]
- Nayak, M.K.; Dogonchi, A.S.; Elmasry, Y.; Karimi, N.; Chamkha, A.J.; Alhumade, H. Free convection and second law scrutiny of NEPCM suspension inside a wavy-baffle-equipped cylinder under altered Fourier theory. J. Taiwan Inst. Chem. Eng. 2021, 128, 288–300. [Google Scholar] [CrossRef]
- Hakeem, A.K.A.; Nayak, M.K.; Makinde, O.D. Effect of Exponentially Variable Viscosity and Permeability on Blasius Flow of Carreau Nano Fluid over an Electromagnetic Plate through a Porous Medium. J. Appl. Comput. Mech. 2019, 5, 390–401. [Google Scholar] [CrossRef]
- Mabood, F.; Muhammad, T.; Nayak, M.; Waqas, H.; Makinde, O. EMHD flow of non-Newtonian nanofluids over thin needle with Robinson’s condition and Arrhenius pre-exponential factor law. Phys. Scr. 2020, 95, 115219. [Google Scholar] [CrossRef]
- Nayak, M.K.; Mabood, F.; Dogonchi, A.S.; Ramadan, K.M.; Tlili, I.; Khan, W.A. Entropy optimized assisting and opposing non-linear radiative flow of hybrid nanofluid. Waves Random Complex Media 2022, 1–22. [Google Scholar] [CrossRef]
- Chatenet, M.; Pollet, B.G.; Dekel, D.R.; Dionigi, F.; Deseure, J.; Millet, P.; Braatz, R.D.; Bazant, M.Z.; Eikerling, M.; Staffell, I.; et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments. Chem. Soc. Rev. 2022, 51, 4583–4762. [Google Scholar] [CrossRef]
- Kosowatz, J. Energy Storage Smooths the Duck Curve. Mech. Eng. 2018, 140, 30–35. [Google Scholar] [CrossRef]
- Boudoudouh, S.; Lakbir, J.; Bouattane, O. Distributed charge balancing in a 1-D grid of supercapacitors. J. Energy Storage 2022, 46, 103785. [Google Scholar] [CrossRef]
- Goodenough, J.; Abruna, H.; Buchanan, M. Basic Research Needs for Electrical Energy Storage. In Report of the Basic Energy Sciences Workshop on Electrical Energy Storage, April 2–4, 2007; USDOE Office of Science: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, X.; Sarkar, S.; Zhao, Y. Challenges and opportunities for supercapacitors. APL Mater. 2019, 7, 100901. [Google Scholar] [CrossRef]
- Burke, A. Ultracapacitors: Why, how, and where is the technology. J. Power Sources 2000, 91, 37–50. [Google Scholar] [CrossRef]
- Yao, Y.Y.; Zhang, D.; Xu, D.G. A Study of Supercapacitor Parameters and Characteristics; IEEE: New York, NY, USA, 2006; pp. 1–4. [Google Scholar]
- Miller, J.R.; Burke, A.F. Electrochemical Capacitors: Challenges and Opportunities for Real-World Applications. Electrochem. Soc. Interface 2008, 17, 53–57. [Google Scholar] [CrossRef]
- Yu, A.; Chabot, V.; Zhang, J. Electrochemical Supercapacitors for Energy Storage and Delivery. Electrochemical Energy Storage and Conversion; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar] [CrossRef]
- Afif, A.; Rahman, S.M.H.; Tasfiah Azad, A.; Zaini, J.; Islan, M.A.; Azad, A.K. Advanced materials and technologies for hybrid supercapacitors for energy storage—A review. J. Energy Storage 2019, 25, 100852. [Google Scholar] [CrossRef]
- Miller, E.E.; Hua, Y.; Tezel, F.H. Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. J. Energy Storage 2018, 20, 30–40. [Google Scholar] [CrossRef]
- Lim, J.M.; Jang, Y.S.; Nguyen, H.V.T.; Kim, J.S.; Yoon, Y.; Park, B.J.; Seo, D.H.; Lee, K.-K.; Han, Z.; Ostrikov, K.; et al. Advances in high-voltage supercapacitors for energy storage systems: Materials and electrolyte tailoring to implementation. Nanoscale Adv. 2023, 5, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, S.; Santhosh, P.C.; Mohideen, M.M.; Radhamani, A.V. A comprehensive review of metal oxides (RuO2, Co3O4, MnO2 and NiO) for supercapacitor applications and global market trends. J. Alloys Compd. 2024, 976, 173170. [Google Scholar] [CrossRef]
- Martín-Illán, J.Á.; Sierra, L.; Ocón, P.; Zamora, F. Electrochemical Double-Layer Capacitor based on Carbon@ Covalent Organic Framework Aerogels. Angew. Chem. Int. Ed. 2022, 61, e202213106. [Google Scholar] [CrossRef]
- Rakhi, R.; Ahmed, B.; Hedhili, M.; Anjum, D.; Alshareef, H. Effect of Postetch Annealing Gas Composition on the Structural and Electrochemical Properties of Ti 2 CT × MXene Electrodes for Supercapacitor Applications. Chem. Mater. 2015, 27, 5314–5323. [Google Scholar] [CrossRef]
- Winter, M.; Brodd, R.J. What Are Batteries, Fuel Cells, and Supercapacitors? Chem. Rev. 2004, 104, 4245–4270. [Google Scholar] [CrossRef]
- Zhao, X.S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.-M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C 2009, 113, 13103–13107. [Google Scholar] [CrossRef]
- Schütter, C.; Pohlmann, S.; Balducci, A. Industrial Requirements of Materials for Electrical Double Layer Capacitors: Impact on Current and Future Applications. Adv. Energy Mater. 2019, 9, 1900334. [Google Scholar] [CrossRef]
- Mendhe, A.; Panda, H. A review on electrolytes for supercapacitor device. Discov. Mater. 2023, 3, 29. [Google Scholar] [CrossRef]
- Zhang, X.; Kühnel, R.S.; Passerini, S.; Balducci, A. “Double-Salt” Electrolytes for High Voltage Electrochemical Double-Layer Capacitors. J. Solut. Chem. 2015, 44, 528–537. [Google Scholar] [CrossRef]
- Zhang, S.S. A review on the separators of liquid electrolyte Li-ion batteries. J. Power Sources 2007, 164, 351–364. [Google Scholar] [CrossRef]
- Deimede, V.; Elmasides, C. Separators for Lithium-Ion Batteries: A Review on the Production Processes and Recent Developments. Energy Technol. 2015, 3, 453–468. [Google Scholar] [CrossRef]
- Yasami, S.; Mazinani, S.; Abdouss, M. Developed composites materials for flexible supercapacitors electrode: “Recent progress & future aspects”. J. Energy Storage 2023, 72, 108807. [Google Scholar] [CrossRef]
- Najib, S.; Erdem, E. Current progress achieved in novel materials for supercapacitor electrodes: Mini review. Nanoscale Adv. 2019, 1, 2817–2827. [Google Scholar] [CrossRef]
- Chodankar, N.R.; Pham, H.D.; Nanjundan, A.K.; Fernando, J.F.S.; Jayaramulu, K.; Golberg, D.; Han, Y.-K.; Dubal, D.P. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small 2020, 16, 2002806. [Google Scholar] [CrossRef]
- Al Jahdaly, B.A.; Abu-Rayyan, A.; Taher, M.M.; Shoueir, K. Phytosynthesis of Co3O4 Nanoparticles as the High Energy Storage Material of an Activated Carbon/Co3O4 Symmetric Supercapacitor Device with Excellent Cyclic Stability Based on a Na2SO4 Aqueous Electrolyte. ACS Omega 2022, 7, 23673–23684. [Google Scholar] [CrossRef]
- Zhao, N.; Deng, L.; Luo, D.; Zhang, P. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl. Surf. Sci. 2020, 526, 146696. [Google Scholar] [CrossRef]
- Yin, B.-S.; Wang, Z.-B.; Zhang, S.-W.; Liu, C.; Ren, Q.-Q.; Ke, K. In Situ Growth of Free-Standing All Metal Oxide Asymmetric Supercapacitor. ACS Appl. Mater. Interfaces 2016, 8, 26019–26029. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Pham, D.T.; Sahoo, R.; Seok, J.; Luu, T.H.T.; Lee, Y.H. High energy density and enhanced stability of asymmetric supercapacitors with mesoporous MnO2@CNT and nanodot MoO3@CNT free-standing films. Energy Storage Mater. 2018, 12, 223–231. [Google Scholar] [CrossRef]
- Taira, A.; Ichiro, M.; Koji, Y.; Masayuki, M. Analyses of Capacity Loss and Improvement of Cycle Performance for a High-Voltage Hybrid Electrochemical Capacitor. J. Electrochem. Soc. 2007, 154, A798. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, G.; Li, M.-Y.; Yin, Y.-X.; Li, J.-Y.; Li, G.; Wang, W.-P.; Peng, W.; Cao, F.-F.; Guo, Y.-G. Porous carbon for high-energy density symmetrical supercapacitor and lithium-ion hybrid electrochemical capacitors. Chem. Eng. J. 2019, 375, 122020. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Wang, Z.; Lin, T.; Zhu, X.; Luo, B.; Hu, H.; Xing, W.; Yan, Z.; Wang, L. Lithiation-Induced Vacancy Engineering of Co3O4 with Improved Faradic Reactivity for High-Performance Supercapacitor. Adv. Funct. Mater. 2020, 30, 2004172. [Google Scholar] [CrossRef]
- Ratha, S.; Samantara, A. Supercapacitor: Instrumentation, Measurement and Performance Evaluation Techniques; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kung, H.H. Transition Metal Oxides, Surface Chemistry and Catalysis; Elsevier: Amsterdam, The Netherlands, 1989; Volume 45. [Google Scholar]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Ezeigwe, E.R. Recent development of mixed transition metal oxide and graphene/mixed transition metal oxide based hybrid nanostructures for advanced supercapacitors. J. Alloys Compd. 2019, 775, 1324–1356. [Google Scholar] [CrossRef]
- Rana, R.; Sonia; Phor, L.; Kumar, A.; Chahal, S. Electrode materials for supercapacitors: A comprehensive review of advancements and performance. J. Energy Storage 2024, 84, 110698. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Mariappan, V.K.; Kim, S.-J. Blue TiO2 nanosheets as a high-performance electrode material for supercapacitors. J. Colloid Interface Sci. 2019, 536, 62–70. [Google Scholar] [CrossRef]
- Anandhi, P.; Harikrishnan, S.; Senthil Kumar, V.J.; Lai, W.-C.; Mahmoud, A.E. The Enhanced Energy Density of rGO/TiO2 Based Nanocomposite as Electrode Material for Supercapacitor. Electronics 2022, 11, 1792. [Google Scholar] [CrossRef]
- Kubiak, A.; Wojciechowska, W.; Kurc, B.; Pigłowska, M.; Synoradzki, K.; Gabała, E.; Moszyński, D.; Szybowicz, M.; Siwińska-Ciesielczyk, K.; Jesionowski, T. Highly Crystalline TiO2-MoO3 Composite Materials Synthesized via a Template-Assisted Microwave Method for Electrochemical Application. Crystals 2020, 10, 493. [Google Scholar] [CrossRef]
- Sun, S.; Sun, Y.; Wen, J.; Zhang, B.; Liao, X.; Yin, G.; Huang, Z.; Pu, X. MoO3−x-deposited TiO2 nanotubes for stable and high-capacitance supercapacitor electrodes. RSC Adv. 2018, 8, 21823–21828. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.; Roy, A.; Sadhukhan, P.; Chowdhury, S.R.; Maji, P.; Bhattachrya, S.K.; Das, S. Electrochemical properties of TiO2-V2O5 nanocomposites as a high performance supercapacitors electrode material. Appl. Surf. Sci. 2018, 443, 581–591. [Google Scholar] [CrossRef]
- Xu, J.; Zheng, F.; Xi, C.; Yu, Y.; Chen, L.; Yang, W.; Hu, P.; Zhen, Q.; Bashir, S. Facile preparation of hierarchical vanadium pentoxide (V2O5)/titanium dioxide (TiO2) heterojunction composite nano-arrays for high performance supercapacitor. J. Power Sources 2018, 404, 47–55. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Q.; Wang, C.; Liu, X.; Jiang, X.; Gong, J. The Electrode Materials of Supercapacitor Based on TiO2 Nanorod/MnO2 Ultrathin Nanosheet Core/Shell Arrays. J. Nanomater. 2020, 2020, 6642236. [Google Scholar] [CrossRef]
- Nithya, V.D.; Arul, N.S. Review on α-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 2016, 327, 297–318. [Google Scholar] [CrossRef]
- Chaudhari, N.; Fang, B.; Bae, T.-S.; Yu, J.-S. Low Temperature Synthesis of Single Crystalline Iron Hydroxide and Oxide Nanorods in Aqueous Media. J. Nanosci. Nanotechnol. 2011, 11, 4457–4462. [Google Scholar] [CrossRef]
- Yadav, A.A.; Hunge, Y.M.; Ko, S.; Kang, S.-W. Chemically Synthesized Iron-Oxide-Based Pure Negative Electrode for Solid-State Asymmetric Supercapacitor Devices. Materials 2022, 15, 6133. [Google Scholar] [CrossRef]
- Chaudhari, S.; Bhattacharjya, D.; Yu, J.-S. 1-Dimensional porous α-Fe2O3 nanorods as high performance electrode material for supercapacitors. RSC Adv. 2013, 3, 25120–25128. [Google Scholar] [CrossRef]
- Guo, M.; Sun, J.; Liu, Y.; Huangfu, C.; Wang, R.; Han, C.; Qu, Z.; Wang, N.; Zhao, L.; Zheng, Q. Optimizing Fe2O3-based supercapacitor cathode with tunable surface pseudocapacitance via facile in situ vulcanization process. J. Electroanal. Chem. 2021, 901, 115785. [Google Scholar] [CrossRef]
- Guo, G.; Su, Q.; Zhou, W.; Wei, M.; Wang, Y. Cycling stability of Fe2O3 nanosheets as supercapacitor sheet electrodes enhanced by MgFe2O4 nanoparticles. RSC Adv. 2023, 13, 3643–3651. [Google Scholar] [CrossRef]
- Jiang, H.; Ma, H.; Jin, Y.; Wang, L.; Gao, F.; Lu, Q. Hybrid α-Fe2O3@Ni(OH)2 nanosheet composite for high-rate-performance supercapacitor electrode. Sci. Rep. 2016, 6, 31751. [Google Scholar] [CrossRef] [PubMed]
- Nicolaescu, M.; Vajda, M.; Lazau, C.; Orha, C.; Bandas, C.; Serban, V.-A.; Codrean, C. Fabrication of Flexible Supercapacitor Electrode Materials by Chemical Oxidation of Iron-Based Amorphous Ribbons. Materials 2023, 16, 2820. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Guo, Q.; Chen, Z.; Wu, Z.; Li, P.; Tang, W. Review of Ga2O3-based optoelectronic devices. Mater. Today Phys. 2019, 11, 100157. [Google Scholar] [CrossRef]
- Ishizaki, H.; Kijima, N.; Yoshinaga, M.; Akimoto, J. Electrochemical Properties of Fe2O3/Ga2O3 Composite Electrodes for Lithium-Ion Batteries. Key Eng. Mater. 2013, 566, 119–122. [Google Scholar] [CrossRef]
- Xu, H.; Lopa, N.S.; Akbari, M.K.; Wu, D.; Hu, J.; Zhuiykov, S. Super-capacitive capabilities of wafer-scaled two-dimensional SnO2-Ga2O3 n-p heterostructures fabricated by atomic layer deposition. J. Energy Storage 2023, 57, 106182. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Wang, Z.; Yuan, R.; Xu, Z.; Dai, Y.; Wang, B.; Fu, Y.; Ye, M.; Yang, Y.; Zou, Z.; et al. A hybrid GaN/Ga2O3 structure anchored on carbon cloth as a high-performance electrode of supercapacitors. Dalton Trans. 2022, 51, 16945–16956. [Google Scholar] [CrossRef]
- Hu, Y.-L.; Fu, Z.; Ronghuo, Y.; Wang, Z.; Xu, Z.; Dai, Y.; Fu, Y.; Li, J.; Zou, Z.; Jiang, C.; et al. Effect of point defects on electrochemical performances of α-Ga2O3 microrods prepared with hydrothermal process for supercapacitor application. J. Mater. Sci. Mater. Electron. 2024, 35, 184. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Z.; Xu, J.; Lu, J.; Zhang, D.; Ni, S. High capacity Li3VO4-Ga2O3/NC as durable anode for Li-ion batteries via robust pseudocapacitive charge storage. J. Alloys Compd. 2021, 868, 159115. [Google Scholar] [CrossRef]
- Nithya, S.G.; Lolly Maria, J.; Arun, A. Review on Transition Metal Oxides and Their Composites for Energy Storage Application. In Updates on Supercapacitors; Zoran, S., Ed.; IntechOpen: Rijeka, Croatia, 2022; Chapter 4. [Google Scholar]
- Bonu, V.; Gupta, B.; Chandra, S.; Das, A.; Dhara, S.; Tyagi, A.K. Electrochemical supercapacitor performance of SnO2 quantum dots. Electrochim. Acta 2016, 203, 230–237. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, H.M.; Song, J.Y. Phase transformation of hierarchical nanobranch structure from SnO to SnO2 and its electrochemical capacitance. J. Alloys Compd. 2013, 551, 451–455. [Google Scholar] [CrossRef]
- Akkinepally, B.; Harisha, B.S.; Nadar, N.R.; Nazir, M.A.; Tighezza, A.M.; Das, H.T.; Reddy, I.N.; Shim, J.; Choi, D. Nanoscale synergy: Optimizing energy storage with SnO2 quantum dots on ZnO hexagonal prisms for advanced supercapacitors. Nanotechnol. Rev. 2024, 13, 20240047. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, L.; Zhang, Q.; Wang, C.; Xu, X. SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries and Supercapacitors. J. Nanomater. 2015, 2015, 850147. [Google Scholar] [CrossRef]
- Yin, X.-T.; Guo, X.-M. Selectivity and sensitivity of Pd-loaded and Fe-doped SnO2 sensor for CO detection. Sens. Actuators B Chem. 2014, 200, 213–218. [Google Scholar] [CrossRef]
- Turgut, G.; Sonmez, E.; Aydın, S.; Dilber, R.; Turgut, U. The effect of Mo and F double doping on structural, morphological, electrical and optical properties of spray deposited SnO2 thin films. Ceram. Int. 2014, 40, 12891–12898. [Google Scholar] [CrossRef]
- Wang, H.; Dou, K.; Teoh, W.Y.; Zhan, Y.; Hung, T.F.; Zhang, F.; Xu, J.; Zhang, R.; Rogach, A.L. Engineering of Facets, Band Structure, and Gas-Sensing Properties of Hierarchical Sn2+-Doped SnO2 Nanostructures. Adv. Funct. Mater. 2013, 23, 4847–4853. [Google Scholar] [CrossRef]
- Lokhande, C.D.; Dubal, D.P.; Joo, O.-S. Metal oxide thin film based supercapacitors. Curr. Appl. Phys. 2011, 11, 255–270. [Google Scholar] [CrossRef]
- Sahoo, B.B.; Pandey, V.S.; Dogonchi, A.S.; Mohapatra, P.K.; Thatoi, D.N.; Nayak, N.; Nayak, M.K. A state-of-art review on 2D material-boosted metal oxide nanoparticle electrodes: Supercapacitor applications. J. Energy Storage 2023, 65, 107335. [Google Scholar] [CrossRef]
- Kukulka, W.; Cendrowski, K.; Mijowska, E. Electrochemical performance of MOF-5 derived carbon nanocomposites with 1D, 2D and 3D carbon structures. Electrochim. Acta 2019, 307, 582–594. [Google Scholar] [CrossRef]
- Forouzandeh, P.; Pillai, S.C. Two-dimensional (2D) electrode materials for supercapacitors. Mater. Today Proc. 2021, 41, 498–505. [Google Scholar] [CrossRef]
- Zhou, R.; Lam, K.-H. Development of Supercapacitors with 3D Porous Structures. ChemElectroChem 2024, 11, e202300618. [Google Scholar] [CrossRef]
- Patil, J.V.; Mali, S.S.; Shaikh, J.S.; Bhat, T.S.; Hong, C.K.; Kim, J.H.; Patil, P.S. Hydrothermally grown 3D hierarchical TiO2 based on electrochemically anodized 1D TiO2 nanostructure for supercapacitor. Appl. Phys. A 2018, 124, 592. [Google Scholar] [CrossRef]
- Xu, L.; Tian, Y.; Liu, T.; Li, H.; Qiu, J.; Li, S.; Li, H.; Yuan, S.; Zhang, S. α-Fe2O3 nanoplates with superior electrochemical performance for lithium-ion batteries. Green Energy Environ. 2018, 3, 156–162. [Google Scholar] [CrossRef]
- Tang, X.; Huang, X.; Huang, Y.; Gou, Y.; Pastore, J.; Yang, Y.; Xiong, Y.; Qian, J.; Brock, J.D.; Lu, J.; et al. High-Performance Ga2O3 Anode for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 5519–5526. [Google Scholar] [CrossRef]
- Kebede, M.A. Tin oxide–based anodes for both lithium-ion and sodium-ion batteries. Curr. Opin. Electrochem. 2020, 21, 182–187. [Google Scholar] [CrossRef]
- Dhilip Kumar, R.; Balachandran, S.; Jagadeesh Kumar, A.; Brundha, C.; Kumar, M.; Lee, M. High-performing and ultra-stable TiO2 nanospheres as electrode materials for pseudo-supercapacitors. Mater. Lett. 2023, 335, 133812. [Google Scholar] [CrossRef]
- Bonsu, J.O.; Han, J.I. Sucrose-templated interconnected meso/macro-porous 2D symmetric graphitic carbon networks as supports for α-Fe2O3 towards improved supercapacitive behavior. RSC Adv. 2020, 10, 15751–15762. [Google Scholar] [CrossRef] [PubMed]
- Karbalaei Akbari, M.; Siraj Lopa, N.; Zhuiykov, S. Plasma-modulated supercapacitive-coupled memristive behavior of two-dimensional gallium oxide channels towards the realization of tunable semiconductor–metal nanoelectronic gates. Appl. Surf. Sci. 2024, 669, 160592. [Google Scholar] [CrossRef]
- Joshi, N.C.; Rawat, B.S.; Bisht, H.; Gajraj, V.; Kumar, N.; Chetana, S.; Gururani, P. Synthesis and supercapacitive behaviour of SnO2/r-GO nanocomposite. Synth. Met. 2022, 289, 117132. [Google Scholar] [CrossRef]
- Manikandan, K.; Dhanuskodi, S.; Maheswari, N.; Muralidharan, G. SnO2 nanoparticles for supercapacitor application. AIP Conf. Proc. 2016, 1731, 050048. [Google Scholar] [CrossRef]
- Lobinsky, A.A.; Popkov, V. Ultrathin 2D nanosheets of transition metal (hydro)oxides as prospective materials for energy storage devices: A short review. Electrochem. Mater. Technol. 2022, 1, 20221008. [Google Scholar] [CrossRef]
- Worku, Y.; Palaniyandy, N.; Srinivasu Vallabhapurapu, V.; Mamba, B.B. Nanotechnology in Advanced 2D and 3D Nanostructured Transition Metal Oxide Based Flexible Supercapacitors: A Review. ChemElectroChem 2023, 10, e202300463. [Google Scholar] [CrossRef]
- Lochmann, S.; Grothe, J.; Eckhardt, K.; Leistenschneider, D.; Borchardt, L.; Kaskel, S. Nanoimprint lithography of nanoporous carbon materials for micro-supercapacitor architectures. Nanoscale 2018, 10, 10109–10115. [Google Scholar] [CrossRef] [PubMed]
- Pitkänen, O.; Järvinen, T.; Cheng, H.; Lorite, G.S.; Dombovari, A.; Rieppo, L.; Talapatra, S.; Duong, H.M.; Tóth, G.; Juhász, K.L.; et al. On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors. Sci. Rep. 2017, 7, 16594. [Google Scholar] [CrossRef]
- Eguchi, T.; Kanamoto, Y.; Tomioka, M.; Tashima, D.; Kumagai, S. Effect of Ball Milling on the Electrochemical Performance of Activated Carbon with a Very High Specific Surface Area. Batteries 2020, 6, 22. [Google Scholar] [CrossRef]
- Raghavendra, S.; Rangaswamy, B.E.; Pradeep, N.B.; Kavya, M.P.; Kumar, M.P.P. Additively Manufactured/3D Printed Batteries and Supercapacitors. In Practical Implementations of Additive Manufacturing Technologies; Rajendrachari, S., Ed.; Springer Nature: Singapore, 2024; pp. 177–189. [Google Scholar]
- Liu, S.; Luo, C.; Chai, L.; Ren, J. Ball-milling fabrication of PPy/Ni2P/GO composites for high-performance supercapacitor electrodes. J. Solid State Electrochem. 2021, 25, 1975–1985. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Yi, M.; Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715. [Google Scholar] [CrossRef]
- Thaneswari, S.A.; Clement Lourduraj, A.J. Synthesis of Few Layer Graphene Using Mechanical Exfoliation of Kitchen Blender Method for Super Capacitor Applications. Int. J. Sci. Res. Sci. Technol. 2018, 3, 258–263. [Google Scholar]
- Liu, Y.; Tang, Q.; Xu, M.; Ren, J.; Guo, C.; Chen, C.; Geng, W.; Lei, W.; Zhao, X.; Liu, D. Efficient mechanical exfoliation of MXene nanosheets. Chem. Eng. J. 2023, 468, 143439. [Google Scholar] [CrossRef]
- Kumbhakar, P.; Chowde Gowda, C.; Mahapatra, P.L.; Mukherjee, M.; Malviya, K.D.; Chaker, M.; Chandra, A.; Lahiri, B.; Ajayan, P.M.; Jariwala, D.; et al. Emerging 2D metal oxides and their applications. Mater. Today 2021, 45, 142–168. [Google Scholar] [CrossRef]
- Lotya, M.; Hernandez, Y.; King, P.J.; Smith, R.J.; Nicolosi, V.; Karlsson, L.S.; Blighe, F.M.; De, S.; Wang, Z.; McGovern, I.T.; et al. Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620. [Google Scholar] [CrossRef] [PubMed]
- Telkhozhayeva, M.; Teblum, E.; Konar, R.; Girshevitz, O.; Perelshtein, I.; Aviv, H.; Tischler, Y.R.; Nessim, G.D. Higher Ultrasonic Frequency Liquid Phase Exfoliation Leads to Larger and Monolayer to Few-Layer Flakes of 2D Layered Materials. Langmuir 2021, 37, 4504–4514. [Google Scholar] [CrossRef] [PubMed]
- Zainab, S.; Fraz, S.; Awan, S.U.; Hussain, D.; Rizwan, S.; Mehmood, W. Optimized time dependent exfoliation of graphite for fabrication of Graphene/GO/GrO nanocomposite based pseudo-supercapacitor. Sci. Rep. 2023, 13, 14218. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Tang, J.; Yuan, J.; Li, J.; Sun, Y.; Matsuba, Y.; Zhu, D.-M.; Qin, L.-C. Production of Few-Layer Graphene via Enhanced High-Pressure Shear Exfoliation in Liquid for Supercapacitor Applications. ACS Appl. Nano Mater. 2018, 1, 2877–2884. [Google Scholar] [CrossRef]
- Le, T.-H.; Oh, Y.; Kim, H.; Yoon, H. Exfoliation of 2D Materials for Energy and Environmental Applications. Chem.–A Eur. J. 2020, 26, 6360–6401. [Google Scholar] [CrossRef]
- Tomy, M.; Anu, M.A.; Xavier, T.S. Effect of chemical exfoliation on the specific capacitance of MoS2 decorated conducting polymer electrodes for supercapacitor applications. Appl. Phys. A 2023, 129, 818. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, Y.; Man, Z.; Chen, W.; Lu, W.; Wu, G. Electrochemical Exfoliation and Growth of Nickel–Cobalt Layered Double Hydroxides@Black Phosphorus Hetero-Nanostructure Textiles for Robust Foldable Supercapacitors. Adv. Funct. Mater. 2024, 34, 2401738. [Google Scholar] [CrossRef]
- McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and Dealloyed Materials. Annu. Rev. Mater. Res. 2016, 46, 263–286. [Google Scholar] [CrossRef]
- Scandura, G.; Kumari, P.; Palmisano, G.; Karanikolos, G.N.; Orwa, J.; Dumée, L.F. Nanoporous Dealloyed Metal Materials Processing and Applications—A Review. Ind. Eng. Chem. Res. 2023, 62, 1736–1763. [Google Scholar] [CrossRef]
- Sang, Q.; Hao, S.; Han, J.; Ding, Y. Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem 2022, 4, 100069. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Wei, C.; Tao, Y.; Xi, B.; Xiong, S.; Feng, J.; Qian, Y. Dealloying: An effective method for scalable fabrication of 0D, 1D, 2D, 3D materials and its application in energy storage. Nano Today 2021, 37, 101094. [Google Scholar] [CrossRef]
- Qiu, H.J.; Ito, Y.; Chen, M.W. Hierarchical nanoporous nickel alloy as three-dimensional electrodes for high-efficiency energy storage. Scr. Mater. 2014, 89, 69–72. [Google Scholar] [CrossRef]
- Balachandran, A.; Sreenilayam, S.; Kailasnath, M.; Thomas, S.; Brabazon, D. Nanoparticle production via laser ablation synthesis in solution method and printed electronic application—A brief review. Results Eng. 2022, 16, 100646. [Google Scholar] [CrossRef]
- Taccogna, F. Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid. J. Plasma Phys. 2015, 81, 495810509. [Google Scholar] [CrossRef]
- Romero, F.J.; Salinas-Castillo, A.; Rivadeneyra, A.; Albrecht, A.; Godoy, A.; Morales, D.P.; Rodriguez, N. In-Depth Study of Laser Diode Ablation of Kapton Polyimide for Flexible Conductive Substrates. Nanomaterials 2018, 8, 517. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Li, R.; Feng, G.; Wu, Z.; Compagnini, G.; Gulino, A.; Feng, Z.; Hu, A. High-performance stacked in-plane supercapacitors and supercapacitor array fabricated by femtosecond laser 3D direct writing on polyimide sheets. Electrochim. Acta 2017, 241, 153–161. [Google Scholar] [CrossRef]
- Zhong, H.; Huang, J.; Wu, J.; Du, J. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res. 2022, 15, 787–804. [Google Scholar] [CrossRef]
- Joshi, B.; Samuel, E.; Kim, Y.-i.; Yarin, A.L.; Swihart, M.T.; Yoon, S.S. Review of recent progress in electrospinning-derived freestanding and binder-free electrodes for supercapacitors. Coord. Chem. Rev. 2022, 460, 214466. [Google Scholar] [CrossRef]
- Huang, J.; Liu, C.; Jin, Y.; Chen, J. Hierarchical porous carbon synthesis by carbonized polymer dots-based sacrificial template for high-performance supercapacitors. Chem. Eng. J. 2023, 461, 141930. [Google Scholar] [CrossRef]
- Korotcenkov, G. Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 1: Nanofibers and Features of Their Forming. Nanomaterials 2021, 11, 1544. [Google Scholar] [CrossRef]
- Binitha, G.; Soumya, M.S.; Madhavan, A.A.; Praveen, P.; Balakrishnan, A.; Subramanian, K.R.V.; Reddy, M.V.; Nair, S.V.; Nair, A.S.; Sivakumar, N. Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J. Mater. Chem. A 2013, 1, 11698–11704. [Google Scholar] [CrossRef]
- Najafi, M.; Bellani, S.; Galli, V.; Zappia, M.I.; Bagheri, A.; Safarpour, M.; Beydaghi, H.; Eredia, M.; Pasquale, L.; Carzino, R.; et al. Carbon-α-Fe2O3 Composite Active Material for High-Capacity Electrodes with High Mass Loading and Flat Current Collector for Quasi-Symmetric Supercapacitors. Electrochem 2022, 3, 463–478. [Google Scholar] [CrossRef]
- Rane, A.V.; Kanny, K.; Abitha, V.K.; Thomas, S. Chapter 5—Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials; Mohan Bhagyaraj, S., Oluwafemi, O.S., Kalarikkal, N., Thomas, S., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 121–139. [Google Scholar]
- Ramasamy, V.; Subramanian, B. Chapter Physicochemical Approaches for Thin Film Energy Storage Devices through PVD Techniques. In Management and Applications of Energy Storage Devices; IntechOpen: Rijeka, Croatia, 2021. [Google Scholar]
- Achour, A.; Porto, R.L.; Soussou, M.-A.; Islam, M.; Boujtita, M.; Aissa, K.A.; Le Brizoual, L.; Djouadi, A.; Brousse, T. Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. J. Power Sources 2015, 300, 525–532. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Wang, Y.; Cheng, T.; Yao, L.-Q.; Li, X.; Lai, W.-Y.; Huang, W. Printed supercapacitors: Materials, printing and applications. Chem. Soc. Rev. 2019, 48, 3229–3264. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Tang, Y.; Zhu, Z.; Wei, J.; Li, W.; Xia, H.; Jiang, Y.; Liu, Z.; Luo, Y.; Ge, X.; et al. Honeycomb-Lantern-Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance. Adv. Mater. 2018, 30, 1805468. [Google Scholar] [CrossRef]
- Orangi, J.; Hamade, F.; Davis, V.A.; Beidaghi, M. 3D Printing of Additive-Free 2D Ti3C2Tx (MXene) Ink for Fabrication of Micro-Supercapacitors with Ultra-High Energy Densities. ACS Nano 2020, 14, 640–650. [Google Scholar] [CrossRef]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef]
- Bokov, D.; Turki Jalil, A.; Chupradit, S.; Suksatan, W.; Javed Ansari, M.; Shewael, I.H.; Valiev, G.H.; Kianfar, E. Nanomaterial by Sol-Gel Method: Synthesis and Application. Adv. Mater. Sci. Eng. 2021, 2021, 5102014. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, Q.; Gao, H.; Shi, Z.; Wu, J.; Zhi, M.; Hong, Z. Nickel oxide aerogel for high performance supercapacitor electrodes. RSC Adv. 2016, 6, 112620–112624. [Google Scholar] [CrossRef]
- Ramkumar, R.; Dhakal, G.; Shim, J.-J.; Kim, W.K. NiO/Ni Nanowafer Aerogel Electrodes for High Performance Supercapacitors. Nanomaterials 2022, 12, 3813. [Google Scholar] [CrossRef]
- Kang, S.; Wang, C.; Chen, J.; Meng, T.; Jiaqiang, E. Progress on solvo/hydrothermal synthesis and optimization of the cathode materials of lithium-ion battery. J. Energy Storage 2023, 67, 107515. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Gong, T.; Liang, C.; Li, L.; Lin, X.; Ying, Z.; Liu, H. One-step hydrothermal preparation of a novel 2D MXene-based composite electrode material synergistically modified by CuS and carbon dots for supercapacitors. J. Alloys Compd. 2023, 947, 169400. [Google Scholar] [CrossRef]
- Chen, Q.; Li, H.; Wu, Z.Q.; Li, H.; Zhu, L.L.; Li, C.D.; Zhu, X.B.; Sun, Y.P. One-step magneto-solvothermal synthesis of porous network NiCo2S4 for high-performance supercapacitors. Mater. Today Chem. 2023, 30, 101585. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Hai, Z.; Li, Y.; Kan, S.; Chen, J.; Chen, X.; Zhuiykov, S.; Cui, D.; Xue, C. Facile-synthesized NiCo2O4@MnMoO4 with novel and functional structure for superior performance supercapacitors. Appl. Surf. Sci. 2018, 452, 413–422. [Google Scholar] [CrossRef]
- Bandas, C.; Nicolaescu, M.; Popescu, M.I.; Orha, C.; Căprărescu, S.; Lazau, C. One-Step Microwave-Assisted Hydrothermal Preparation of Zn-ZnO(Nw)-rGO Electrodes for Supercapacitor Applications. Materials 2023, 16, 4536. [Google Scholar] [CrossRef]
- Morariu, M.-I.; Nicolaescu, M.; Hulka, I.; Duţeanu, N.; Orha, C.; Lăzău, C.; Bandas, C. Fabrication of Cu2O/CuO Nanowires by One-Step Thermal Oxidation of Flexible Copper Mesh for Supercapacitor Applications. Batteries 2024, 10, 246. [Google Scholar] [CrossRef]
- Nasirpouri, F. Electrodeposition of 2D and 3D Meso and Nanostructures. In Electrodeposition of Nanostructured Materials; Nasirpouri, F., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 123–185. [Google Scholar]
- Yi, T.F.; Wei, T.T.; Mei, J.; Zhang, W.; Zhu, Y.; Liu, Y.G.; Luo, S.; Liu, H.; Lu, Y.; Guo, Z. Approaching High-Performance Supercapacitors via Enhancing Pseudocapacitive Nickel Oxide-Based Materials. Adv. Sustain. Syst. 2020, 4, 1900137. [Google Scholar] [CrossRef]
- Song, M.; Jin, X.; Tian, L.; Liu, L.; Feng, H.; Ding, J.; Ali, M.; Xing, Z.; Han, S. Electrochemical deposition of NiO/NiCo2O4 nanostructures for high-performance supercapacitors. Mater. Chem. Phys. 2024, 321, 129514. [Google Scholar] [CrossRef]
- Chen, K.; Shi, L.; Zhang, Y.; Liu, Z. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018–3036. [Google Scholar] [CrossRef]
- Zhang, Q.; Geng, D.; Hu, W. Chemical vapor deposition for few-layer two-dimensional materials. SmartMat 2023, 4, e1177. [Google Scholar] [CrossRef]
- Xia, J.; Chen, F.; Li, J.; Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505–509. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Rehman, M.; Lee, S.; Kim, M.; Hong, H.; Park, J.; Seo, Y. Supercapacitors based on Ti3C2Tx MXene extracted from supernatant and current collectors passivated by CVD-graphene. Sci. Rep. 2021, 11, 649. [Google Scholar] [CrossRef] [PubMed]
- Zang, X.; Jiang, Y.; Sanghadasa, M.; Lin, L. Chemical vapor deposition of 3D graphene/carbon nanotubes networks for hybrid supercapacitors. Sens. Actuators A Phys. 2020, 304, 111886. [Google Scholar] [CrossRef]
- Guan, M.; Wang, Q.; Zhang, X.; Bao, J.; Gong, X.; Liu, Y. Two-Dimensional Transition Metal Oxide and Hydroxide-Based Hierarchical Architectures for Advanced Supercapacitor Materials. Front. Chem. 2020, 8, 390. [Google Scholar] [CrossRef] [PubMed]
- Lopa, N.; Karbalaei Akbari, M.; Wu, D.; Verpoort, F.; Zhuiykov, S. Two-Dimensional SnO2 -ZnO Nanohybrid Electrode Fabricated via Atomic Layer Deposition for Electrochemical Supercapacitors. Energy Fuels 2023, 37, 3142–3151. [Google Scholar] [CrossRef]
- Lopa, N.S.; Akbari, M.K.; Zhuiykov, S. ALD-fabricated two-dimensional SnO2-In2O3 n-n nanohybrid electrode for electrochemical supercapacitors. Electrochim. Acta 2022, 434, 141322. [Google Scholar] [CrossRef]
- Li, Z.; Chang, T.; Yun, G.; Guo, J.; Yang, B. 2D tin dioxide nanoplatelets decorated graphene with enhanced performance supercapacitor. J. Alloys Compd. 2014, 586, 353–359. [Google Scholar] [CrossRef]
- Adewinbi, S.A.; Buremoh, W.; Owoeye, V.A.; Ajayeoba, Y.A.; Salau, A.O.; Busari, H.K.; Tijani, M.A.; Taleatu, B.A. Preparation and characterization of TiO2 thin film electrode for optoelectronic and energy storage Potentials: Effects of Co incorporation. Chem. Phys. Lett. 2021, 779, 138854. [Google Scholar] [CrossRef]
- Nejkar, T.M.; Mulla, N.R.; Patil, U.M.; Dubal, D.P.; Patil, R.S. SILAR synthesized α-Fe2O3 thin film anode for the development of all binder-free, high-performing Mg-ion asymmetric supercapacitors. J. Energy Storage 2024, 99, 113443. [Google Scholar] [CrossRef]
- Gund, G.S.; Dubal, D.P.; Chodankar, N.R.; Cho, J.Y.; Gomez-Romero, P.; Park, C.; Lokhande, C.D. Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel. Sci. Rep. 2015, 5, 12454. [Google Scholar] [CrossRef]
- Jacob, O.B.; Appiagyei, A.B.; Han, J.I. One-pot synthesis of ultrahigh performance nanorod structured Co3O4@Fe2O3 anchored on a resonating 2D-carbon with high potential window and surface area for supercapacitors application. Ceram. Int. 2021, 47, 23665–23669. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, S.; Xu, Y.; Xue, H.; Pang, H. Ruthenium based materials as electrode materials for supercapacitors. Chem. Eng. J. 2018, 333, 505–518. [Google Scholar] [CrossRef]
- Patil, U.M.; Kulkarni, S.B.; Jamadade, V.S.; Lokhande, C.D. Chemically synthesized hydrous RuO2 thin films for supercapacitor application. J. Alloys Compd. 2011, 509, 1677–1682. [Google Scholar] [CrossRef]
- Kashif, M.; Thangarasu, S.; Murugan, N.; Magdum, S.S.; Kim, Y.A.; Kurkuri, M.; Oh, T.-H. Interatomic interaction of 2D crumpled V2O5 nanosheets layered with Ni-MOF as a bifunctional electrocatalyst for overall water splitting and supercapacitor applications. J. Energy Storage 2024, 81, 110348. [Google Scholar] [CrossRef]
- Mane, V.J.; Malavekar, D.B.; Ubale, S.B.; Lokhande, V.C.; Lokhande, C.D. Manganese dioxide thin films deposited by chemical bath and successive ionic layer adsorption and reaction deposition methods and their supercapacitive performance. Inorg. Chem. Commun. 2020, 115, 107853. [Google Scholar] [CrossRef]
- Mane, S.A.; Kashale, A.A.; Kamble, G.P.; Kolekar, S.S.; Dhas, S.D.; Patil, M.D.; Moholkar, A.V.; Sathe, B.R.; Ghule, A.V. Facile synthesis of flower-like Bi2O3 as an efficient electrode for high performance asymmetric supercapacitor. J. Alloys Compd. 2022, 926, 166722. [Google Scholar] [CrossRef]
- Cheng, T.; Yu, B.; Cao, L.; Tan, H.; Li, X.; Zheng, X.; Li, W.; Ren, Z.; Bai, J. Synthesis and loading-dependent characteristics of nitrogen-doped graphene foam/carbon nanotube/manganese oxide ternary composite electrodes for high performance supercapacitors. J. Colloid Interface Sci. 2017, 501, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Khedekar, V.; Zaeem, S.; Das, S. Graphene-metal oxide nanocomposites for supercapacitors: A perspective review. Adv. Mater. Lett. 2018, 9, 2–19. [Google Scholar] [CrossRef]
- Amirabad, T.N.; Ensafi, A.A.; Rezaei, B. Boosting supercapacitor performance by in-situ modification of binder-free electrodes with green synthesized Zn-doped Fe2O3 nanoparticles on 2D-MoS2@rGO nanosheets. Fuel 2022, 330, 125645. [Google Scholar] [CrossRef]
- Qu, Q.; Yang, S.; Feng, X. 2D Sandwich-like Sheets of Iron Oxide Grown on Graphene as High Energy Anode Material for Supercapacitors. Adv. Mater. 2011, 23, 5574–5580. [Google Scholar] [CrossRef]
- Iqbal, M.; Saykar, N.G.; Arya, A.; Banerjee, I.; Alegaonkar, P.S.; Mahapatra, S.K. High-performance supercapacitor based on MoS2@TiO2 composite for wide range temperature application. J. Alloys Compd. 2021, 883, 160705. [Google Scholar] [CrossRef]
- Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 2010, 48, 3825–3833. [Google Scholar] [CrossRef]
- Zhu, Y.-G.; Cao, G.-S.; Sun, C.-Y.; Xie, J.; Liu, S.-Y.; Zhu, T.-J.; Zhao, X.B.; Yang, H.Y. Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of pseudocapacitor. RSC Adv. 2013, 3, 19409–19415. [Google Scholar] [CrossRef]
- Xiong, D.; Li, X.; Bai, Z.; Li, J.; Shan, H.; Fan, L.; Long, C.; Li, D.; Lu, X. Rational design of hybrid Co3O4/graphene films: Free-standing flexible electrodes for high performance supercapacitors. Electrochim. Acta 2018, 259, 338–347. [Google Scholar] [CrossRef]
- Pradeepa, S.S.; Sutharthani, K.; Fu, Y.P.; Sivakumar, M. Two-dimensional layered Ti3C2 MXene nanosheets decked with ZrO2 nanospheres for the high-performance solid-state hybrid supercapacitors. J. Energy Storage 2024, 98, 112821. [Google Scholar] [CrossRef]
- Tian, W.; Wang, X.; Zhi, C.; Zhai, T.; Liu, D.; Zhang, C.; Golberg, D.; Bando, Y. Ni(OH)2 nanosheet @ Fe2O3 nanowire hybrid composite arrays for high-performance supercapacitor electrodes. Nano Energy 2013, 2, 754–763. [Google Scholar] [CrossRef]
- Meena, A.; Talha Aqueel Ahmed, A.; Narayan Singh, A.; Jana, A.; Kim, H.; Im, H. Hierarchical Fe2O3 nanosheets anchored on CoMn layered double hydroxide nanowires for high-performance supercapacitor. Appl. Surf. Sci. 2024, 656, 159553. [Google Scholar] [CrossRef]
- Guo, W.; Li, Y.; Tang, Y.; Chen, S.; Liu, Z.; Wang, L.; Zhao, Y.; Gao, F. TiO2 Nanowire Arrays on Titanium Substrate as a Novel Binder-free Negative Electrode for Asymmetric Supercapacitor. Electrochim. Acta 2017, 229, 197–207. [Google Scholar] [CrossRef]
- Ali, A.; Ammar, M.; Mukhtar, A.; Ahmed, T.; Ali, M.; Waqas, M.; Amin, M.N.; Rasheed, A. 3D NiO nanowires@NiO nanosheets core-shell structures grown on nickel foam for high performance supercapacitor electrode. J. Electroanal. Chem. 2020, 857, 113710. [Google Scholar] [CrossRef]
- Ci, S.; Wen, Z.; Qian, Y.; Mao, S.; Cui, S.; Chen, J. NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode. Sci. Rep. 2015, 5, 11919. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, X.; Liu, H.; Li, W.; Wang, X. Synthesis and Morphology Control of Nanoporous Cu2O/Cu and Their Application as Electrode Materials for Capacitors. Nanomaterials 2019, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Jian, Z. 3D net-like Co3O4@NiO nanostructures for high performance supercapacitors. Nanoscale Adv. 2024, 6, 2096–2103. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Encinas, A.; Ruiz, M.F.; Araujo, E.; Song, S. Facile fabrication of nanoporous nickel with rational pore structure decorated with ultrathin Ni(OH)2 nanosheets as advanced supercapacitor electrodes. Scr. Mater. 2020, 178, 155–160. [Google Scholar] [CrossRef]
- Chen, P.-C.; Hsieh, S.-J.; Zou, J.; Chen, C.-C. Selectively dealloyed Ti/TiO2 network nanostructures for supercapacitor application. Mater. Lett. 2014, 133, 175–178. [Google Scholar] [CrossRef]
- Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R.K.; Yadav, R.M. Graphene-metal oxide hybrid materials with 2D and 3D morphologies for advanced supercapacitor electrodes: Status, challenges and prospects. Mater. Today Nano 2023, 24, 100399. [Google Scholar] [CrossRef]
- Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11, 1248. [Google Scholar] [CrossRef]
- Zamiri, G.; Haseeb, A.S.M.A.; Jagadish, P.; Khalid, M.; Kong, I.; Krishnan, S.G. Three-Dimensional Graphene–TiO2–SnO2 Ternary Nanocomposites for High-Performance Asymmetric Supercapacitors. ACS Omega 2022, 7, 43981–43991. [Google Scholar] [CrossRef]
- Ke, Q.; Guan, C.; Zheng, M.; Hu, Y.; Ho, K.-H.; Wang, J. 3D hierarchical SnO2@Ni(OH)2 core–shell nanowire arrays on carbon cloth for energy storage application. J. Mater. Chem. A 2015, 3, 9538–9542. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Z.; Liang, Y.; Yang, Y.; An, N.; Li, Z.; Wu, H. Growth of 3D SnO2 nanosheets on carbon cloth as a binder-free electrode for supercapacitors. J. Mater. Chem. A 2015, 3, 15057–15067. [Google Scholar] [CrossRef]
- Daulatabad, N.; Nagaraju, G.; Sekhar, S.C.; Bhimanaboina, R.; Yu, J. Three-dimensional porous SnO2/carbon cloth electrodes for high-performance lithium- and sodium-ion batteries. Appl. Surf. Sci. 2021, 538, 148033. [Google Scholar] [CrossRef]
- Tian, Y.; Hu, X.; Wang, Y.; Li, C.; Wu, X. Fe2O3 Nanoparticles Decorated on Graphene-Carbon Nanotubes Conductive Networks for Boosting the Energy Density of All-Solid-State Asymmetric Supercapacitor. ACS Sustain. Chem. Eng. 2019, 7, 9211–9219. [Google Scholar] [CrossRef]
- Ju, P.; Zhu, Z.; Shao, X.; Wang, S.; Zhao, C.; Qian, X.; Zhao, C. 3D walnut-shaped TiO2/RGO/MoO2@Mo electrode exhibiting extraordinary supercapacitor performance. J. Mater. Chem. A 2017, 5, 18777–18785. [Google Scholar] [CrossRef]
- Li, Y.; Ni, G.; Zhang, K.; Wang, D.; Li, Q.; Wang, S. Construction of 3D N-doped Ti3C2/TiO2 hollow sphere structure with superior electrochemical performance for supercapacitor. J. Alloys Compd. 2024, 970, 172526. [Google Scholar] [CrossRef]
- Li, J.; Ao, J.; Zhong, C.; Yin, T. Three-dimensional nanobranched TiO2-carbon nanotube for high performance supercapacitors. Appl. Surf. Sci. 2021, 563, 150301. [Google Scholar] [CrossRef]
- Liu, S.; Shao, S.; Changguo, X.; Li, J. Optimized 3D interconnected foam-like NiO@rGO composite as a binder-free electrode for high-performance asymmetric supercapacitor. Mater. Res. Express 2023, 10, 105505. [Google Scholar] [CrossRef]
- Prabhu, S.; Sohila, S.; Navaneethan, D.; Harish, S.; Navaneethan, M.; Ramesh, R. Three dimensional flower-like CuO/Co3O4/r-GO heterostructure for high-performance asymmetric supercapacitors. J. Alloys Compd. 2020, 846, 156439. [Google Scholar] [CrossRef]
- Abaft, E.; Ghafouri Taleghani, H.; Soleimani Lashkenari, M. 3D graphene oxide/nickel ferrite aerogel for high-performance supercapacitor application. J. Energy Storage 2024, 98, 112797. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Ni, G.; Li, Q. Facile Synthesis of NiCo2O4 Nanowire Arrays/Few-Layered Ti3C2-MXene Composite as Binder-Free Electrode for High-Performance Supercapacitors. Molecules 2022, 27, 6452. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandas, C.; Orha, C.; Nicolaescu, M.; Morariu, M.-I.; Lăzău, C. 2D and 3D Nanostructured Metal Oxide Composites as Promising Materials for Electrochemical Energy Storage Techniques: Synthesis Methods and Properties. Int. J. Mol. Sci. 2024, 25, 12521. https://doi.org/10.3390/ijms252312521
Bandas C, Orha C, Nicolaescu M, Morariu M-I, Lăzău C. 2D and 3D Nanostructured Metal Oxide Composites as Promising Materials for Electrochemical Energy Storage Techniques: Synthesis Methods and Properties. International Journal of Molecular Sciences. 2024; 25(23):12521. https://doi.org/10.3390/ijms252312521
Chicago/Turabian StyleBandas, Cornelia, Corina Orha, Mircea Nicolaescu, Mina-Ionela Morariu (Popescu), and Carmen Lăzău. 2024. "2D and 3D Nanostructured Metal Oxide Composites as Promising Materials for Electrochemical Energy Storage Techniques: Synthesis Methods and Properties" International Journal of Molecular Sciences 25, no. 23: 12521. https://doi.org/10.3390/ijms252312521
APA StyleBandas, C., Orha, C., Nicolaescu, M., Morariu, M. -I., & Lăzău, C. (2024). 2D and 3D Nanostructured Metal Oxide Composites as Promising Materials for Electrochemical Energy Storage Techniques: Synthesis Methods and Properties. International Journal of Molecular Sciences, 25(23), 12521. https://doi.org/10.3390/ijms252312521