In Vitro and Computational Response of Differential Catalysis by Phlebia brevispora BAFC 633 Laccase in Interaction with 2,4-D and Chlorpyrifos
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Pesticides on Growth and Laccase Secretion
2.2. Effect of Pesticides on Fungal Morphology
2.3. Pesticide-Induced Changes in Laccase Activity and Stability
2.4. Model Generation and Structural Validation
2.5. Characterization of Ligand Binding Pockets
2.6. Molecular Docking Analysis
2.7. MDS: Qualitative Analysis of lacI Binding to Chlorpyrifos and 2,4-D
MM/PBSA Calculation: Active Pose of Substrates
3. Materials and Methods
3.1. Fungal Strains, Inoculum Preparation, and Chemicals
3.2. Laccase Tolerance and Secretion Assay in Solid Culture in the Presence of Pesticides
3.3. Polyacrylamide Gel Electrophoresis
3.4. Effect of Pesticides on the Growth and Morphological Appearance of the Mycelium
3.5. Production of Laccase in Liquid Fermentation
3.6. Effect of Pesticides on Laccase Activity
3.7. Statistical Analysis
3.8. P. brevispora BAFC 633 Laccase Gene
3.9. Structure of the Ligands
3.10. Three-DimensionalModeling of Laccase
3.11. Characterization and Prediction of Interaction Sites in Catalytic Pockets
3.12. Evaluation of Molecular Docking
3.13. Molecular Dynamics Simulation (MDS)
Binding Free Energy Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mandal, A.; Sarkar, B.; Mandal, S.; Vithanage, M.; Patra, A.K.; Manna, M.C. Chapter 7—Impact of Agrochemicals on Soil Health. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 161–187. ISBN 978-0-08-103017-2. [Google Scholar]
- United States Environmental Protection Agency. Herbicides. Available online: https://www.epa.gov/caddis/herbicides (accessed on 8 April 2024).
- Wołejko, E.; Łozowicka, B.; Jabłońska-Trypuć, A.; Pietruszyńska, M.; Wydro, U. Chlorpyrifos Occurrence and Toxicological Risk Assessment: A Review. Int. J. Environ. Res. Public Health 2022, 19, 12209. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Wang, J.; Farooq, M.A.; Khan, M.S.S.; Xu, L.; Zhu, J.; Zhao, M.; Muños, S.; Li, Q.X.; Zhou, W. Potential Impact of the Herbicide 2,4-Dichlorophenoxyacetic Acid on Human and Ecosystems. Environ. Int. 2018, 111, 332–351. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.I.; Fariña, J.I.; Castrillo, M.L.; Rodríguez, M.D.; Nuñez, C.E.; Villalba, L.; Zapata, P.D. Biopulping of Wood Chips with Phlebia Brevispora BAFC 633 Reduces Lignin Content and Improves Pulp Quality. Int. Biodeterior. Biodegrad. 2014, 90, 29–35. [Google Scholar] [CrossRef]
- Bogale, T.T. Biotechnological Applications of White Rot Fungi: A Review. GSC Adv. Res. Rev. 2020, 5, 097–103. [Google Scholar] [CrossRef]
- Fonseca, M.I.; Molina, M.A.; Winnik, D.L.; Busi, M.V.; Fariña, J.I.; Villalba, L.L.; Zapata, P.D. Isolation of a Laccase-Coding Gene from the Lignin-Degrading Fungus Phlebia brevispora BAFC 633 and Heterologous Expression in Pichia Pastoris. J. Appl. Microbiol. 2018, 124, 1454–1468. [Google Scholar] [CrossRef]
- Baldrian, P. Fungal Laccases—Occurrence and Properties. FEMS Microbiol. Rev. 2006, 30, 215–242. [Google Scholar] [CrossRef]
- Jones, S.M.; Solomon, E.I. Electron Transfer and Reaction Mechanism of Laccases. Cell. Mol. Life Sci. 2015, 72, 869–883. [Google Scholar] [CrossRef]
- Fonseca, M.I.; Fariña, J.I.; Sadañoski, M.A.; D’Errico, R.; Villalba, L.L.; Zapata, P.D. Decolorization of Kraft Liquor Effluents and Biochemical Characterization of Laccases from Phlebia brevispora BAFC 633. Int. Biodeterior. Biodegrad. 2015, 104, 443–451. [Google Scholar] [CrossRef]
- Forootanfar, H.; Faramarzi, M.A. Insights into Laccase Producing Organisms, Fermentation States, Purification Strategies, and Biotechnological Applications. Biotechnol. Prog. 2015, 31, 1443–1463. [Google Scholar] [CrossRef]
- Bruera, F.A.; Kramer, G.R.; Velázquez, J.E.; Sadañoski, M.A.; Fonseca, M.I.; Ares, A.E.; Zapata, P.D. Laccase Immobilization on Nanoporous Aluminum Oxide for Black Liquor Treatment. Surf. Interfaces 2022, 30, 101879. [Google Scholar] [CrossRef]
- Ortiz-Hernández, M.L.; Sánchez-Salinas, E.; Dantán-González, E.; Castrejón-Godínez, M.L.; Ortiz-Hernández, M.L.; Sánchez-Salinas, E.; Dantán-González, E.; Castrejón-Godínez, M.L. Pesticide Biodegradation: Mechanisms, Genetics and Strategies to Enhance the Process. In Biodegradation—Life of Science; IntechOpen: London, UK, 2013; ISBN 978-953-51-1154-2. [Google Scholar]
- Arregui, L.; Ayala, M.; Gómez-Gil, X.; Gutiérrez-Soto, G.; Hernández-Luna, C.E.; Herrera de los Santos, M.; Levin, L.; Rojo-Domínguez, A.; Romero-Martínez, D.; Saparrat, M.C.N.; et al. Laccases: Structure, Function, and Potential Application in Water Bioremediation. Microb. Cell Factories 2019, 18, 200. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.D.; Ibarra, D.; Eugenio, M.E.; Tomás-Pejó, E. Laccases as versatile enzymes: From industrial uses to novel applications. J. Chem. Technol. Biotechnol. 2020, 95, 481–494. [Google Scholar] [CrossRef]
- Rovaletti, A.; De Gioia, L.; Fantucci, P.; Greco, C.; Vertemara, J.; Zampella, G.; Bertini, L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int. J. Mol. Sci. 2023, 24, 6368. [Google Scholar] [CrossRef] [PubMed]
- Silakari, O.; Singh, P. Chapter 6—Molecular Docking Analysis: Basic Technique to Predict Drug-Receptor Interactions. In Concepts and Experimental Protocols of Modelling and Informatics in Drug Design; Academic Press: Cambridge, MA, USA, 2021; pp. 131–155. [Google Scholar]
- Stanzione, F.; Giangreco, I.; Cole, J.C. Use of Molecular Docking Computational Tools in Drug Discovery. Prog. Med. Chem. 2021, 60, 273–343. [Google Scholar] [PubMed]
- Magan, N.; Fragoeiro, S.; Bastos, C. Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi. Mycobiology 2010, 38, 238–248. [Google Scholar] [CrossRef]
- Wang, X.; Song, L.; Li, Z.; Ni, Z.; Bao, J.; Zhang, H. The Remediation of Chlorpyrifos-Contaminated Soil by Immobilized White-Rot Fungi. J. Serbian Chem. Soc. 2020, 85, 857–868. [Google Scholar] [CrossRef]
- Nicolas, V.; Oestreicher, N.; Vélot, C. Multiple Effects of a Commercial Roundup® Formulation on the Soil Filamentous Fungus Aspergillus Nidulans at Low Doses: Evidence of an Unexpected Impact on Energetic Metabolism. Environ. Sci. Pollut. Res. Int. 2016, 23, 14393–14404. [Google Scholar] [CrossRef]
- Henderson, M.E.K. Fungal metabolism of certain aromatic compounds related to lignin. Pure Appl. Chem. 1963, 7, 589–602. [Google Scholar] [CrossRef]
- Baldrian, P.; Gabriel, J. Intraspecific Variability in Growth Response to Cadmium of the Wood-Rotting Fungus Piptoporus Betulinus. Mycologia 2002, 94, 428–436. [Google Scholar] [CrossRef]
- Esteve-Núñez, A.; Caballero, A.; Ramos, J.L. Biological Degradation of 2,4,6-Trinitrotoluene. Microbiol. Mol. Biol. Rev. 2001, 65, 335–352. [Google Scholar] [CrossRef]
- Cupul, W.C.; Abarca, G.H.; Vázquez, R.R.; Salmones, D.; Hernández, R.G.; Gutiérrez, E.A. Response of Ligninolytic Macrofungi to the Herbicide Atrazine: Dose-Response Bioassays. Rev. Argent. Microbiol. 2014, 46, 348–357. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhatt, K.; Chen, W.-J.; Huang, Y.; Xiao, Y.; Wu, S.; Lei, Q.; Zhong, J.; Zhu, X.; Chen, S. Bioremediation Potential of Laccase for Catalysis of Glyphosate, Isoproturon, Lignin, and Parathion: Molecular Docking, Dynamics, and Simulation. J. Hazard. Mater. 2023, 443, 130319. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Enespa. Fungal Enzymes for Bioremediation of Contaminated Soil. In Recent Advancement in White Biotechnology Through Fungi: Volume 3: Perspective for Sustainable Environments; Yadav, A.N., Singh, S., Mishra, S., Gupta, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 189–215. ISBN 978-3-030-25506-0. [Google Scholar]
- Mishra, A.; Kumar, S.; Bhatnagar, A. Chapter 7—Potential of Fungal Laccase in Decolorization of Synthetic Dyes. In Microbial Wastewater Treatment; Shah, M.P., Rodriguez-Couto, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 127–151. ISBN 978-0-12-816809-7. [Google Scholar]
- Thurston, C.F. The Structure and Function of Fungal Laccases. Microbiology 1994, 140, 19–26. [Google Scholar] [CrossRef]
- Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: A Never-Ending Story. Cell. Mol. Life Sci. 2010, 67, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.I.; Shimizu, E.; Zapata, P.D.; Villalba, L. Copper Inducing Effect on Laccase Production of White Rot Fungi Native from Misiones (Argentina). Enzym. Microb. Technol. 2010, 46, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Sadañoski, M.A.; Benítez, S.F.; Fonseca, M.I.; Velázquez, J.E.; Zapata, P.D.; Levin, L.N.; Villalba, L.L. Mycoremediation of High Concentrations of Polychlorinated Biphenyls with Pleurotus Sajor-Caju LBM 105 as an Effective and Cheap Treatment. J. Environ. Chem. Eng. 2019, 7, 103453. [Google Scholar] [CrossRef]
- Fonseca, M.I.; Molina, M.A.; Benitez, S.F.; Tejerina, M.R.; Velazquez, J.E.; Sadañoski, M.A.; Zapata, P.D. Copper improves the production of laccase by Pleurotus Sajor-Caju with ability to grow on effluents of the citrus industry. Rev. Int. Contam. Ambient. 2020, 36, 105–114. [Google Scholar] [CrossRef]
- Sing, N.N.; Zulkharnain, A.; Roslan, H.A.; Assim, Z.; Husaini, A. Bioremediation of PCP by Trichoderma and Cunninghamella Strains Isolated from Sawdust. Braz. Arch. Biol. Technol. 2014, 57, 811–820. [Google Scholar] [CrossRef]
- Abboud, M.A.A. Bioimpact of Application of Pesticides with Plant Growth Hormone (Gibberellic Acid) on Target and Non-Target Microorganisms. J. Saudi Chem. Soc. 2014, 18, 1005–1010. [Google Scholar] [CrossRef]
- Mensin, S.; Soytong, K.; McGovern, R.; To-anun, C. Effect of Agricultural Pesticides on the Growth and Sporulation of Nematophagous Fungi. J. Agric. Technol. 2013, 9, 953–961. [Google Scholar]
- Islam, M.R.; Tudryn, G.; Bucinell, R.; Schadler, L.; Picu, R.C. Morphology and Mechanics of Fungal Mycelium. Sci. Rep. 2017, 7, 13070. [Google Scholar] [CrossRef] [PubMed]
- Fomina, M.; Ritz, K.; Gadd, G.M. Nutritional Influence on the Ability of Fungal Mycelia to Penetrate Toxic Metal-Containing Domains. Mycol. Res. 2003, 107, 861–871. [Google Scholar] [CrossRef] [PubMed]
- Ellegaard-Jensen, L.; Aamand, J.; Kragelund, B.B.; Johnsen, A.H.; Rosendahl, S. Strains of the Soil Fungus Mortierella Show Different Degradation Potentials for the Phenylurea Herbicide Diuron. Biodegradation 2013, 24, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Prasad, N.K.; Vindal, V.; Narayana, S.L.; Ramakrishna, V.; Kunal, S.P.; Srinivas, M. In Silico Analysis of Pycnoporus cinnabarinus Laccase Active Site with Toxic Industrial Dyes. J. Mol. Model 2012, 18, 2013–2019. [Google Scholar] [CrossRef] [PubMed]
- Willard, L.; Ranjan, A.; Zhang, H.; Monzavi, H.; Boyko, R.F.; Sykes, B.D.; Wishart, D.S. VADAR: A Web Server for Quantitative Evaluation of Protein Structure Quality. Nucleic Acids Res. 2003, 31, 3316–3319. [Google Scholar] [CrossRef]
- Ahammad, F.; Alam, R.; Mahmud, R.; Akhter, S.; Talukder, E.K.; Tonmoy, A.M.; Fahim, S.; Al-Ghamdi, K.; Samad, A.; Qadri, I. Pharmacoinformatics and Molecular Dynamics Simulation-Based Phytochemical Screening of Neem Plant (Azadiractha Indica) against Human Cancer by Targeting MCM7 Protein. Brief. Bioinform. 2021, 22, bbab098. [Google Scholar] [CrossRef]
- Michel, M.; Visnes, T.; Homan, E.J.; Seashore-Ludlow, B.; Hedenström, M.; Wiita, E.; Vallin, K.; Paulin, C.B.J.; Zhang, J.; Wallner, O.; et al. Computational and Experimental Druggability Assessment of Human DNA Glycosylases. ACS Omega 2019, 4, 11642–11656. [Google Scholar] [CrossRef]
- Sunil, S.M.; Renuka, P.S.; Pruthvi, K.; Swetha, M.; Malini, S.; Veena, S.M. Isolation, Purification, and Characterization of Fungal Laccase from Pleurotus sp. Enzym. Res. 2011, 2011, e248735. [Google Scholar] [CrossRef]
- Sun, X.; Bai, R.; Zhang, Y.; Wang, Q.; Fan, X.; Yuan, J.; Cui, L.; Wang, P. Laccase-Catalyzed Oxidative Polymerization of Phenolic Compounds. Appl. Biochem. Biotechnol. 2013, 171, 1673–1680. [Google Scholar] [CrossRef]
- Tian, G.-T.; Zhang, G.-Q.; Wang, H.-X.; Ng, T.B. Purification and Characterization of a Novel Laccase from the Mushroom Pleurotus Nebrodensis. Acta Biochim. Pol. 2012, 59, 407–412. [Google Scholar] [CrossRef]
- Patel, H.; Gupte, S.; Gahlout, M.; Gupte, A. Purification and Characterization of an Extracellular Laccase from Solid-State Culture of Pleurotus ostreatus HP-1. 3 Biotech 2014, 4, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Schirmann, J.G.; Dekker, R.F.H.; Borsato, D.; Barbosa-Dekker, A.M. Selective Control for the Laccase-Catalyzed Synthesis of Dimers from 2,6-Dimethoxyphenol: Optimization of 3,3′,5,5′-Tetramethoxy-Biphenyl-4,4′-Diol Synthesis Using Factorial Design, and Evaluation of Its Antioxidant Action in Biodiesel. Appl. Catal. A Gen. 2018, 555, 88–97. [Google Scholar] [CrossRef]
- Haibo, Z.; Yinglong, Z.; Feng, H.; Peiji, G.; Jiachuan, C. Purification and Characterization of a Thermostable Laccase with Unique Oxidative Characteristics from Trametes hirsuta. Biotechnol. Lett. 2009, 31, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Pinto, P.A.; Fraga, I.; Bezerra, R.M.F.; Dias, A.A. Phenolic and Non-Phenolic Substrates Oxidation by Laccase at Variable Oxygen Concentrations: Selection of Bisubstrate Kinetic Models from Polarographic Data. Biochem. Eng. J. 2020, 153, 107423. [Google Scholar] [CrossRef]
- Sadhasivam, S.; Savitha, S.; Swaminathan, K.; Lin, F.-H. Production, Purification and Characterization of Mid-Redox Potential Laccase from a Newly Isolated Trichoderma harzianum WL1. Process Biochem. 2008, 43, 736–742. [Google Scholar] [CrossRef]
- Zeng, S.; Qin, X.; Xia, L. Degradation of the Herbicide Isoproturon by Laccase-Mediator Systems. Biochem. Eng. J. 2017, 119, 92–100. [Google Scholar] [CrossRef]
- Baldrian, P. Increase of Laccase Activity during Interspecific Interactions of White-Rot Fungi. FEMS Microbiol. Ecol. 2004, 50, 245–253. [Google Scholar] [CrossRef]
- Zhao, Z.; Ren, D.; Zhuang, M.; Wang, Z.; Zhang, X.; Zhang, S.; Chen, W. Degradation of 2,4-D CP by the Immobilized Laccase on the Carrier of Sodium Alginate-Sodium Carboxymethyl Cellulose. Bioprocess Biosyst. Eng. 2022, 45, 1739–1751. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, X.; Zelekew, O.A.; Schott, E.; Wu, Y. Improved Stability and Activity of Laccase through de Novo and Post-Synthesis Immobilization on a Hierarchically Porous Metal–Organic Framework (ZIF-8). RSC Adv. 2023, 13, 17194–17201. [Google Scholar] [CrossRef]
- Farnet, A.M.; Criquet, S.; Tagger, S.; Gil, G.; Petit, J.L. Purification, Partial Characterization, and Reactivity with Aromatic Compounds of Two Laccases from Marasmius quercophilus Strain 17. Can. J. Microbiol. 2000, 46, 189–194. [Google Scholar] [CrossRef]
- Rivera-Hoyos, C.M.; Morales-Álvarez, E.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; RodrÍguez-Vázquez, R.; Delgado-Boada, J.M. Fungal Laccases. Fungal Biol. Rev. 2013, 27, 67–82. [Google Scholar] [CrossRef]
- Pearson, W.R. An Introduction to Sequence Similarity (“Homology”) Searching. Curr. Protoc. Bioinform. 2013, 42, 3.1.1–3.1.8. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.; Sali, A. Protein Structure Prediction and Structural Genomics. Science 2001, 294, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Christensen, N.J.; Kepp, K.P. Setting the Stage for Electron Transfer: Molecular Basis of ABTS-Binding to Four Laccases from Trametes versicolor at Variable pH and Protein Oxidation State. J. Mol. Catal. B Enzym. 2014, 100, 68–77. [Google Scholar] [CrossRef]
- Arcon, J.P.; Turjanski, A.G.; Martí, M.A.; Forli, S. Biased Docking for Protein–Ligand Pose Prediction. In Protein-Ligand Interactions and Drug Design; Ballante, F., Ed.; Springer: New York, NY, USA, 2021; pp. 39–72. ISBN 978-1-07-161209-5. [Google Scholar]
- Blanco Capurro, J.I.; Di Paola, M.; Gamarra, M.D.; Martí, M.A.; Modenutti, C.P. An Efficient Use of X-Ray Information, Homology Modeling, Molecular Dynamics and Knowledge-Based Docking Techniques to Predict Protein-Monosaccharide Complexes. Glycobiology 2019, 29, 124–136. [Google Scholar] [CrossRef]
- Makeneni, S.; Thieker, D.F.; Woods, R.J. Applying Pose Clustering and MD Simulations To Eliminate False Positives in Molecular Docking. J. Chem. Inf. Model 2018, 58, 605–614. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Datta, S.; Wani, A.B.; Dhanjal, D.S.; Romero, R.; Singh, J. Glyphosate Uptake, Translocation, Resistance Emergence in Crops, Analytical Monitoring, Toxicity and Degradation: A Review. Environ. Chem. Lett. 2020, 18, 663–702. [Google Scholar] [CrossRef]
- Sadañoski, M.A.; Velázquez, J.E.; Fonseca, M.I.; Zapata, P.D.; Levin, L.N.; Villalba, L.L. Assessing the Ability of White-Rot Fungi to Tolerate Polychlorinated Biphenyls Using Predictive Mycology. Mycology 2018, 9, 239–249. [Google Scholar] [CrossRef]
- Di Rienzo, J.; Casanoves, F.; Balzarini, M.; Gonzalez, L.; Tablada, M.; Robledo, C. InfoStat Versión 2018; Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Spain, 2019. [Google Scholar]
- Beck, S.; Berry, E.; Duke, S.; Milliken, A.; Patterson, H.; Prewett, D.; Rae, T.; Sridhar, V.; Wendland, N.; Gregory, B.; et al. Characterization of Trametes versicolor Laccase-Catalyzed Degradation of Estrogenic Pollutants: Substrate Limitation and Product Identification. Int. Biodeterior. Biodegrad. 2017, 127, 146–159. [Google Scholar] [CrossRef]
- Murugesan, K.; Arulmani, M.; Nam, I.-H.; Kim, Y.-M.; Chang, Y.-S.; Kalaichelvan, P.T. Purification and Characterization of Laccase Produced by a White Rot Fungus Pleurotus sajor-caju under Submerged Culture Condition and Its Potential in Decolorization of Azo Dyes. Appl. Microbiol. Biotechnol. 2006, 72, 939–946. [Google Scholar] [CrossRef]
- Kelley, L.A.; Sternberg, M.J.E. Protein Structure Prediction on the Web: A Case Study Using the Phyre Server. Nat. Protoc. 2009, 4, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: A Web Server for Automatic Binding Site Prediction, Analysis and Druggability Assessment. Bioinformatics 2012, 28, 2074–2075. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Arcon, J.P.; Modenutti, C.P.; Avendaño, D.; Lopez, E.D.; Defelipe, L.A.; Ambrosio, F.A.; Turjanski, A.G.; Forli, S.; Marti, M.A. AutoDock Bias: Improving Binding Mode Prediction and Virtual Screening Using Known Protein-Ligand Interactions. Bioinformatics 2019, 35, 3836–3838. [Google Scholar] [CrossRef]
- Dassault Systèmes BIOVIA. BIOVIA Discovery Studio 2017 R2: A Comprehensive Predictive Science Application for the Life Sciences; Dassault Systèmes BIOVIA: San Diego, CA, USA, 2017; Available online: https://www.3ds.com/products/biovia/discovery-studio (accessed on 10 June 2024).
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; et al. Scalable Molecular Dynamics on CPU and GPU Architectures with NAMD. J. Chem. Phys. 2020, 153, 044130. [Google Scholar] [CrossRef]
- Kim, S.; Oshima, H.; Zhang, H.; Kern, N.R.; Re, S.; Lee, J.; Roux, B.; Sugita, Y.; Jiang, W.; Im, W. CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations. J. Chem. Theory Comput. 2020, 16, 7207–7218. [Google Scholar] [CrossRef]
- Christensen, N.J.; Kepp, K.P. Stability Mechanisms of a Thermophilic Laccase Probed by Molecular Dynamics. PLoS ONE 2013, 8, e61985. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
Pesticide | Concentration [mg L−1] | k | τ |
---|---|---|---|
without | N/D | 1.30 ± 0.02 a | 2.13 ± 0.03 c |
with 2.4-D | 1 | 1.21 ± 0.08 ab | 2.22 ± 0.02 bc |
10 | 1.05 ± 0.02 cd | 2.4 ± 0.01 b | |
100 | 0.58 ± 0.10 f | 3.54 ± 0.30 a | |
1000 | - | - | |
with CP | 0.1 | 1.15 ± 0.06 bc | 2.16 ± 0.07 c |
1 | 1.01 ± 0.05 de | 2.23 ± 0.06 bc | |
10 | 0.93 ± 0.03 e | 2.35 ± 0.04 bc | |
100 | 0.66 ± 0.10 f | 3.55 ± 0.27 a |
Ligand | 2,4-D | Chlorpyrifos |
---|---|---|
residue AA | Gly395 | His166 |
Pro397 | Leu167 | |
Asn266 | Asp208 | |
Ala267 | Gly395 | |
Ile457 | Ile457 | |
Pro209 | Phe459 | |
Ser210 | His460 | |
Asp208 | Pro394 | |
Gln268 | Ala267 | |
Pro165 * | Pro165 | |
His166 | Ala463 | |
Leu167 * | Phe341 |
Analysis of the Ligand Movement from the T1 Site | ||||
---|---|---|---|---|
Complex | 50 ns | 100 ns | 150 ns | 250 ns |
lacI-2,4D | The ligand remains at the active site. | Moves away very soon, to a lower distal position, at ~80 ns. | Moves very fast, remains distally moving in and out for ~150 ns. | It remains attached at the distal site. |
lacI-chlorpyrifos | The ligand remains in the active site, fluctuating in its position. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala Schimpf, A.R.; Ortellado, L.E.; Gamarra, M.D.; Fonseca, M.I.; Zapata, P.D. In Vitro and Computational Response of Differential Catalysis by Phlebia brevispora BAFC 633 Laccase in Interaction with 2,4-D and Chlorpyrifos. Int. J. Mol. Sci. 2024, 25, 12527. https://doi.org/10.3390/ijms252312527
Ayala Schimpf AR, Ortellado LE, Gamarra MD, Fonseca MI, Zapata PD. In Vitro and Computational Response of Differential Catalysis by Phlebia brevispora BAFC 633 Laccase in Interaction with 2,4-D and Chlorpyrifos. International Journal of Molecular Sciences. 2024; 25(23):12527. https://doi.org/10.3390/ijms252312527
Chicago/Turabian StyleAyala Schimpf, Alan Rolando, Laura Ester Ortellado, Marcelo Daniel Gamarra, María Isabel Fonseca, and Pedro Darío Zapata. 2024. "In Vitro and Computational Response of Differential Catalysis by Phlebia brevispora BAFC 633 Laccase in Interaction with 2,4-D and Chlorpyrifos" International Journal of Molecular Sciences 25, no. 23: 12527. https://doi.org/10.3390/ijms252312527
APA StyleAyala Schimpf, A. R., Ortellado, L. E., Gamarra, M. D., Fonseca, M. I., & Zapata, P. D. (2024). In Vitro and Computational Response of Differential Catalysis by Phlebia brevispora BAFC 633 Laccase in Interaction with 2,4-D and Chlorpyrifos. International Journal of Molecular Sciences, 25(23), 12527. https://doi.org/10.3390/ijms252312527