Impact of Missense Mutations on AFB1 Metabolism in Bovine Cytochrome P4503A Isoforms: A Computational Mutagenesis and Molecular Docking Analysis
Abstract
:1. Introduction
2. Results
2.1. Missense Variants Identification
2.2. Homology Modeling
2.3. Computational Mutagenesis and Stability Analysis
2.4. Molecular Docking of NIF into CYP3A28
2.5. Molecular Docking of AFB1 into CYP3A Isoforms
3. Discussion
4. Materials and Methods
4.1. Variant Calling and Annotation
4.2. Homology Modeling and Computational Mutagenesis of CYP3As
4.3. Molecular Docking of NIF and AFB1 into WT and Mutated CYP3A Models
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Omura, T. Forty Years of Cytochrome P450. Biochem. Biophys. Res. Commun. 1999, 266, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Rendic, S.; Carlo, F.J.D. Human Cytochrome P450 Enzymes: A Status Report Summarizing Their Reactions, Substrates, Inducers, and Inhibitors. Drug Metab. Rev. 1997, 29, 413–580. [Google Scholar] [CrossRef] [PubMed]
- Rendic, S. Summary of Information on Human CYP Enzymes: Human P450 Metabolism Data. Drug Metab. Rev. 2002, 34, 83–448. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, S.; Schaefer, O.; Kawakami, H.; Inoue, T.; Liehner, S.; Saito, A.; Ishiguro, N.; Kishimoto, W.; Ludwig-Schwellinger, E.; Ebner, T.; et al. Simultaneous Absolute Protein Quantification of Transporters, Cytochromes P450, and UDP-Glucuronosyltransferases as a Novel Approach for the Characterization of Individual Human Liver: Comparison with mRNA Levels and Activities. Drug Metab. Dispos. 2012, 40, 83–92. [Google Scholar] [CrossRef]
- Wieczorek, S.J.; Tsongalis, G.J. Pharmacogenomics: Will it change the field of medicine? Clin. Chim. Acta 2001, 308, 1–8. [Google Scholar] [CrossRef]
- Kuehl, P.; Zhang, J.; Lin, Y.; Lamba, J.; Assem, M.; Schuetz, J.; Watkins, P.B.; Daly, A.; Wrighton, S.; Hall, S.D. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001, 27, 383–391. [Google Scholar] [CrossRef]
- Elens, L.; Van Gelder, T.; Hesselink, D.A.; Haufroid, V.; Van Schaik, R.H. CYP3A4* 22: Promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013, 14, 47–62. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharm. J. 2011, 11, 274–286. [Google Scholar] [CrossRef]
- Klein, K.; Thomas, M.; Winter, S.; Nussler, A.K.; Niemi, M.; Schwab, M.; Zanger, U.M. PPARA: A novel genetic determinant of CYP3A4 in vitro and in vivo. Clin. Pharm. Ther. 2012, 91, 1044–1052. [Google Scholar] [CrossRef]
- Khalifa, H.O.; Shikoray, L.; Mohamed, M.-Y.I.; Habib, I.; Matsumoto, T. Veterinary Drug Residues in the Food Chain as an Emerging Public Health Threat: Sources, Analytical Methods, Health Impacts, and Preventive Measures. Foods 2024, 13, 1629. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority) Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; et al. Risk assessment of aflatoxins in food. EFSA J. 2020, 18, e06040. [Google Scholar] [CrossRef] [PubMed]
- Zancanella, V.; Giantin, M.; Lopparelli, R.M.; Patarnello, T.; Dacasto, M.; Negrisolo, E. Proposed New Nomenclature for Bos Taurus Cytochromes P450 Involved in Xenobiotic Drug Metabolism. J. Vet. Pharmacol. Ther. 2010, 33, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Zancanella, V.; Giantin, M.; Dacasto, M. Absolute Quantification and Modulation of Cytochrome P450 3A Isoforms in Cattle Liver. Vet. J. 2014, 202, 106–111. [Google Scholar] [CrossRef]
- Giantin, M.; Küblbeck, J.; Zancanella, V.; Prantner, V.; Sansonetti, F.; Schoeniger, A.; Tolosi, R.; Guerra, G.; Ros, S.D.; Dacasto, M.; et al. DNA Elements for Constitutive Androstane Receptor- and Pregnane X Receptor-Mediated Regulation of Bovine CYP3A28 Gene. PLoS ONE 2019, 14, e0214338. [Google Scholar] [CrossRef]
- Giantin, M.; Rahnasto-Rilla, M.; Tolosi, R.; Lucatello, L.; Pauletto, M.; Guerra, G.; Pezzato, F.; Lopparelli, R.M.; Merlanti, R.; Carnier, P.; et al. Functional Impact of Cytochrome P450 3A (CYP3A) Missense Variants in Cattle. Sci. Rep. 2019, 9, 19672. [Google Scholar] [CrossRef]
- Dupuy, J.; Escudero, E.; Eeckhoutte, C.; Sutra, J.F.; Galtier, P.; Alvinerie, M. In vitro metabolism of 14C-moxidectin by hepatic microsomes from various species. Vet. Res. Commun. 2001, 25, 345–354. [Google Scholar] [CrossRef]
- Zweers-Zeilmaker, W.M.; Van Miert, A.S.; Horbach, G.J.; Witkamp, R.F. In vitro complex formation and inhibition of hepatic cytochrome P450 activity by different macrolides and tiamulin in goats and cattle. Res. Vet. Sci. 1999, 66, 51–55. [Google Scholar] [CrossRef]
- Nebbia, C.; Ceppa, L.; Dacasto, M.; Nachtmann, C.; Carletti, M. Oxidative monensin metabolism and cytochrome P450 3A content and functions in liver microsomes from horses, pigs, broiler chicks, cattle and rats. J. Vet. Pharmacol. Ther. 2001, 24, 399–403. [Google Scholar] [CrossRef]
- Larsen, K.; Ichinose, P.; Fernández-San Juan, R.; Lifschitz, A.; Virkel, G. Effects of Acaricides on the Activities of Monooxygeases in Bovine Liver Microsomes. J. Vet. Pharmacol. Ther. 2023, 46, 375–384. [Google Scholar] [CrossRef]
- Iori, S.; Lahtela-Kakkonen, M.; D’Onofrio, C.; Maietti, F.; Mucignat, G.; Bardhi, A.; Barbarossa, A.; Zaghini, A.; Pauletto, M.; Dacasto, M.; et al. New insights into aflatoxin B1 mechanistic toxicology in cattle liver: An integrated approach using molecular docking and biological evaluation in CYP1A1 and CYP3A74 knockout BFH12 cell lines. Arch. Toxicol. 2024, 98, 3097–3108. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Opinion of the scientific panel on contaminants in the food chain (CONTAM) related to the potential increase of consumer health risk by a possible increase of the existing maximum levels for aflatoxins in almonds, hazelnuts and pistachios and derived products. EFSA J. 2007, 5, 446. [Google Scholar] [CrossRef]
- Bedard, L.L.; Massey, T.E. Aflatoxin B1-induced DNA damage and its repair. Cancer Lett. 2006, 241, 174–183. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Q.; Wu, J.; Jiang, J.; Yan, H.; Huang, J.; Sun, Y.; Deng, Y. The metabolism and biotransformation of AFB1: Key enzymes and pathways. Biochem. Pharmacol. 2022, 199, 115005. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Opinion of the scientifc panel on contaminants in the food chain (CONTAM) related to Afatoxin B1 as undesirable substance in animal feed. EFSA J. 2004, 2, 239. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. Mycotoxins in cattle feeds and carry-over to dairy milk: A review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 172–180. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. The role of mycotoxins in the health and performance of dairy cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef]
- Jiang, Y.; Ogunade, I.M.; Vyas, D.; Adesogan, A.T. Aflatoxin in dairy cows: Toxicity, occurrence in feedstufs and milk and dietary mitigation strategies. Toxins 2021, 13, 283. [Google Scholar] [CrossRef]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin Occurrence in Feed and Feed Raw Materials Worldwide: Long-Term Analysis with Special Focus on Europe and Asia. J. Sci. Food Agric. 2013, 93, 2892–2899. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Leggieri, M.C.; Toscano, P.; Battilani, P. Predicted Aflatoxin B1 Increase in Europe Due to Climate Change: Actions and Reactions at Global Level. Toxins 2021, 13, 292. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, X.; Wu, J.; Ji, X.; Xu, Q. Research Progress in Toxicological Effects and Mechanism of Aflatoxin B1 Toxin. Peer J. 2022, 10, e13850. [Google Scholar] [CrossRef]
- EFSA Scientific Committee (SC); More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Hernández-Jerez, A.; Bennekou, S.H.; Koutsoumanis, K.P.; Lambré, C.; Machera, K.; et al. Guidance on protocol development for EFSA generic scientific assessments. EFSA J. 2023, 21, e08312. [Google Scholar] [CrossRef]
- Liu, Y.T.; Hao, H.P.; Liu, C.X.; Wang, G.J.; Xie, H.G. Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab. Rev. 2007, 39, 699–721. [Google Scholar] [CrossRef]
- Hlavica, P. Key regulators in the architecture of substrate access/egress channels in mammalian cytochromes P450 governing flexibility in substrate oxyfunctionalization. J. Inorg. Biochem. 2023, 241, 112150. [Google Scholar] [CrossRef]
- Liu, J.; Tawa, G.J.; Wallqvist, A. Identifying Cytochrome P450 Functional Networks and Their Allosteric Regulatory Elements. PLoS ONE 2013, 8, e81980. [Google Scholar] [CrossRef]
- Saikatikorn, Y.; Lertkiatmongkol, P.; Assawamakin, A.; Ruengjitchatchawalya, M.; Tongsima, S. Study of the structural pathology caused by CYP2C9 polymorphisms towards flurbiprofen metabolism using molecular dynamics simulation. In Proceedings of the International Conference on Computational Systems-Biology and Bioinformatics, Bangkok, Thailand, 3–5 November 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 26–35. [Google Scholar]
- Flanagan, J.U.; Marechal, J.D.; Ward, R.; Kemp, C.A.; McLaughlin, L.A.; Sutcliffe, M.J.; Roberts, G.C.K.; Paine, M.J.I.; Wolf, C.R. Phe120 contributes to the regiospecificity of CYP2D6: Mutation leads to the formation of a novel dextromethorphan metabolite. Biochem. J. 2004, 380, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wu, J.; Zhang, F.; Wen, J.; Jiang, J.; Deng, Y. The critical role of porcine cytochrome P450 3A46 in the bioactivation of aflatoxin B1. Biochem. Pharmacol. 2018, 156, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F. Crystal Structure of CYP3A4 Complexed with Fluorol Identifies the Substrate Access Channel as a High-Affinity Ligand Binding Site. Int. J. Mol. Sci. 2022, 23, 12591. [Google Scholar] [CrossRef]
- Lewis, D.F.V.; Ito, Y.; Lake, B.G. Metabolism of Coumarin by Human P450s: A Molecular Modelling Study. Toxicol. Vitr. 2006, 20, 256–264. [Google Scholar] [CrossRef]
- Xu, Y.; Ye, Y.; Gao, Y.; Sun, X.; Shao, J.; Sun, X. Cytochrome P450 mediates the formation of four new citrinin metabolites. Food Biosci. 2023, 53, 102663. [Google Scholar] [CrossRef]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.S.; Thormann, A.; Flicek, P.; Cunningham, F. The Ensembl Variant Effect Predictor. Genome. Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Van der Auwera, G.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Structural basis for regiospecifc midazolam oxidation by human cytochrome P450 3A4. Proc. Natl. Acad. Sci. USA 2017, 114, 486–491. [Google Scholar] [CrossRef]
- Mongan, J.; Simmerling, C.; McCammon, J.A.; Case, D.A.; Onufriev, A. Generalized Born model with a simple, robust molecular volume correction. J. Chem. Theory Comput. 2007, 1, 156–169. [Google Scholar] [CrossRef]
Variants Identified on bosTau6 [16] | Variants Identified on bosTau9 | ||||
---|---|---|---|---|---|
Position (bp) (bosTau6) | cDNA SNV (bosTau6 Transcript) | NCBI ID | Position (bp) (bosTau9) | cDNA SNV (bosTau9 Transcript) | NCBI ID |
CYP3A28 | |||||
N.A. | N.A. | N.A. | 25:36561518 | ENSBTAT00000016177 c.C313T(p.R105W) | rs447850593 |
25: 37031758 | ENSBTAT00000016177 c.A539C(p.N180T) | rs384714392 | 25:36543302 | ENSBTAT00000016177 c.A857C(p.N286T) | rs384714392 |
25: 37037420 | ENSBTAT00000016177 c.C658G(p.H220D) | rs381315842 | 25:36537640 | ENSBTAT00000016177 c.C976G(p.H326D) | rs381315842 |
25: 37037435 | ENSBTAT00000016177 c.G673C(p.V225L) | rs110013281 | 25:36537625 | ENSBTAT00000016177 c.G991C(p.V331L) | rs3423551575 |
25: 37040096 | ENSBTAT00000016177 c.G931A(p.E311K) | N.A. | N.A. | N.A. | N.A. |
25: 37042300 | ENSBTAT00000016177 c.T948G(p.N316K) | rs384081812 | 25:36532760 | ENSBTAT00000016177 c.T1266G(p.N422K) | rs384081812 |
25: 37042403 | ENSBTAT00000016177 c.G1051A(p.V351I) | rs137124349 | 25:36532657 | ENSBTAT00000016177 c.G1369A(p.V457I) | rs3423517093 |
25: 37044274 | ENSBTAT00000016177 c.G1172A(p.G391D) | rs384367918 | 25:36530786 | ENSBTAT00000016177 c.G1490A(p.G497D) | rs384367918 |
CYP3A74 | |||||
25: 37150701 | ENSBTAT00000063483 c.G589A(p.G197S) | rs384467435 | 25: 36609181 | ENSBTAT00000007170 c.G589A(p.G197S) | rs384467435 |
25: 37135166 | ENSBTAT00000063483 c.C866T(p.A289V) | rs433125080 | N.A. | N.A. | N.A. |
25: 37131297 | ENSBTAT00000063483 c.A1162G(p.I388V) | rs454167819 | 25: 36589780 | ENSBTAT00000007170 c.A1162G(p.I388V) | rs454167819 |
CYP3A76 | |||||
25: 37202239 | ENSBTAT00000007170 c.G757A(p.V253I) | rs440751676 | 25: 36660502 | ENSBTAT00000063483 c.G757A(p.V253I) | rs440751676 |
25: 37194823 | ENSBTAT00000007170 c.G1122T(p.E374D) | N.A. | 25: 36653085 | ENSBTAT00000063483 c.G1122T(p.E374D) | N.A. |
25: 37194819 | ENSBTAT00000007170 c.T1126C(p.F376L) | N.A. | 25:36653081 | ENSBTAT00000063483 c.T1126C(p.F376L) | N.A. |
CYP3A Isoform | SNV | Prime Energy (kJ/mol) |
---|---|---|
CYP3A28 | R105W | 37.32 |
N286T | 37.84 | |
H326D | −28.4 | |
V331L | −17.85 | |
N422K | 28.58 | |
V457I | −4.23 | |
CYP3A74 | G197S | 0.65 |
I388V | 0.88 | |
CYP3A76 | V253I | −0.38 |
E374D | −1.44 | |
F376L | 2.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montanucci, L.; Iori, S.; Lahtela-Kakkonen, M.; Pauletto, M.; Giantin, M.; Dacasto, M. Impact of Missense Mutations on AFB1 Metabolism in Bovine Cytochrome P4503A Isoforms: A Computational Mutagenesis and Molecular Docking Analysis. Int. J. Mol. Sci. 2024, 25, 12529. https://doi.org/10.3390/ijms252312529
Montanucci L, Iori S, Lahtela-Kakkonen M, Pauletto M, Giantin M, Dacasto M. Impact of Missense Mutations on AFB1 Metabolism in Bovine Cytochrome P4503A Isoforms: A Computational Mutagenesis and Molecular Docking Analysis. International Journal of Molecular Sciences. 2024; 25(23):12529. https://doi.org/10.3390/ijms252312529
Chicago/Turabian StyleMontanucci, Ludovica, Silvia Iori, Maija Lahtela-Kakkonen, Marianna Pauletto, Mery Giantin, and Mauro Dacasto. 2024. "Impact of Missense Mutations on AFB1 Metabolism in Bovine Cytochrome P4503A Isoforms: A Computational Mutagenesis and Molecular Docking Analysis" International Journal of Molecular Sciences 25, no. 23: 12529. https://doi.org/10.3390/ijms252312529
APA StyleMontanucci, L., Iori, S., Lahtela-Kakkonen, M., Pauletto, M., Giantin, M., & Dacasto, M. (2024). Impact of Missense Mutations on AFB1 Metabolism in Bovine Cytochrome P4503A Isoforms: A Computational Mutagenesis and Molecular Docking Analysis. International Journal of Molecular Sciences, 25(23), 12529. https://doi.org/10.3390/ijms252312529