The Effect of Metformin and Hydrochlorothiazide on Cytochrome P450 3A4 Metabolism of Ivermectin: Insights from In Silico Experimentation
Abstract
:1. Introduction
2. Results and Discussions
2.1. Stability and Flexibility of the Systems
2.2. Screening of Cytochrome P450 Enzyme Inhibition
3. Materials and Methods
3.1. Preparation of System for Molecular Docking
3.2. Molecular Docking
3.3. Molecular Dynamic Simulations
3.4. Screening of Recombinant Cytochrome P450 Activity
3.5. Time-Dependent Screening of the Compounds
3.6. Screening of Cytochrome P450 Enzyme Inhibition
3.7. IC50 Determination
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S. Leading Causes of Death in the US During the COVID-19 Pandemic, March 2020 to October 2021. JAMA Intern. Med. 2022, 182, 883–886. [Google Scholar]
- World Health Organization; World Bank. Global Civil Registration and Vital Statistics: Scaling Up Investment Plan 2015–2024. Available online: https://www.worldbank.org/en/topic/health/publication/global-civil-registration-vital-statistics-scaling-up-investment (accessed on 24 February 2022).
- Muniyappa, R.; Gubbi, S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2020, 318, E736–E741. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep. 2020, 72, 1479–1508. [Google Scholar] [CrossRef] [PubMed]
- Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antivir. Res. 2020, 178, 3–6. [Google Scholar] [CrossRef]
- van Schaik, R.H.N. CYP450 pharmacogenetics for personalizing cancer therapy. Drug Resist. Updates 2008, 11, 77–98. [Google Scholar] [CrossRef]
- Polimanti, R.; Piacentini, S. R esearch A rticle Human genetic variation of CYP450 superfamily: Lysis of functional diversity in worldwide populations. Pharmacogenomics 2012, 13, 1951–1960. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Luo, G.; Guenthner, T.; Gan, L.-S.; Humphreys, W.G. CYP3A4 Induction by Xenobiotics: Biochemistry, Experimental Methods and Impact on Drug Discovery and Development. Curr. Drug Metab. 2005, 5, 483–505. [Google Scholar] [CrossRef]
- Deeks, E.D. Ivermectin: A Review in Rosacea. Am. J. Clin. Dermatol. 2015, 16, 447–452. [Google Scholar] [CrossRef]
- Guo, Z.; Sevrioukova, I.F.; Denisov, I.G.; Zhang, X.; Chiu, T.-L.; Thomas, D.G.; Hanse, E.A.; Cuellar, R.A.; Grinkova, Y.V.; Langenfeld, V.W.; et al. Heme Binding Biguanides Target Cytochrome P450-Dependent Cancer Cell Mitochondria. Cell Chem. Biol. 2017, 24, 1259–1275.e6. [Google Scholar] [CrossRef]
- Paoli, M.; Marles-wright, J.O.N.; Smith, A.N.N. Structure—Function Relationships in Heme-Proteins; Princeton University: Princeton, NJ, USA, 2002. [Google Scholar]
- Kwon, M.; Choi, Y.A.; Choi, M.-K.; Song, I.-S. Organic cation transporter-mediated drug-drug interaction potential between berberine and metformin. Arch. Pharmacal Res. 2014, 38, 849–856. [Google Scholar] [CrossRef] [PubMed]
- He, L. Metformin and Systemic Metabolism. Trends Pharmacol. Sci. 2020, 41, 868–881. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.; Dludla, R.; Mabhida, S.; Benjeddou, M.; Louw, J.; February, F. Pharmacogenomics of amlodipine and hydrochlorothiazide therapy and the quest for improved control of hypertension: A mini review. Heart Fail. Rev. 2019, 24, 343–357. [Google Scholar] [CrossRef]
- Deodhar, M.; Al Rihani, S.B.; Arwood, M.J.; Darakjian, L.; Dow, P.; Turgeon, J.; Michaud, V. Mechanisms of cyp450 inhibition: Understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics 2020, 12, 846. [Google Scholar] [CrossRef] [PubMed]
- Van Roon, E.N.; Flikweert, S.; le Comte, M.; Langendijk, P.N.; Kwee-Zuiderwijk, W.J.; Smits, P.; Brouwers, J.R. Clinical Relevance of Drug-Drug Interactions A Structured Assessment Procedure. Drug Saf. 2005, 28, 1131–1139. [Google Scholar] [CrossRef]
- Wójcikowski, P.J.; Danek, J.; Basińska, A.; Renata, Z.; Władysława, P. In vitro inhibition of human cytochrome P450 enzymes by the novel atypical antipsychotic drug asenapine: A prediction of possible drug–drug interactions. Pharmacol. Rep. 2020, 72, 612–621. [Google Scholar] [CrossRef]
- Trubetskoy, O.V.; Gibson, J.R.; Marks, B.D. Highly miniaturized formats for in vitro drug metabolism assays using Vivid® fluorescent substrates and recombinant human cytochrome P450 enzymes. J. Biomol. Screen. 2005, 10, 56–66. [Google Scholar] [CrossRef]
- Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery. In Progress in Medicinal Chemistry, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Gorgulla, C.; Boeszoermenyi, A.; Wang, Z.-F.; Fischer, P.D.; Coote, P.W.; Das, K.M.P.; Malets, Y.S.; Radchenko, D.S.; Moroz, Y.S.; Scott, D.A.; et al. An open-source drug discovery platform enables ultra-large virtual screens. Nature 2020, 580, 663–668. [Google Scholar] [CrossRef]
- Astalakshmi, D.; Gokul, T.; Gowri Sankar, K.B.; Latha, D.; Kumar, D. Over View on Molecular Docking: A Powerful Approach for Structure Based Drug Discovery. Int. J. Pharm. Sci. Rev. Res. 2022, 77, 146–157. [Google Scholar] [CrossRef]
- de Araujo, A.D.; Hoang, H.N.; Lim, J.; Mak, J.Y.W.; Fairlie, D.P. Tuning Electrostatic and Hydrophobic Surfaces of Aromatic Rings to Enhance Membrane Association and Cell Uptake of Peptides. Angew. Chem.—Int. Ed. 2022, 61, 3–8. [Google Scholar] [CrossRef]
- Fukunishi, Y.; Yamashita, Y.; Mashimo, T.; Nakamura, H. Prediction of Protein−compound Binding Energies from Known Activity Data: Docking-score-based Method and its Applications. Mol. Inform. 2018, 37, 1700120. [Google Scholar] [CrossRef] [PubMed]
- Machaba, K.E.; Mhlongo, N.N.; Soliman, M.E.S. Induced Mutation Proves a Potential Target for TB Therapy: A Molecular Dynamics Study on LprG. Cell Biochem. Biophys. 2018, 76, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Fuglebakk, E.; Echave, J.; Reuter, N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics 2012, 28, 2431–2440. [Google Scholar] [CrossRef] [PubMed]
- Ngidi, N.T.P.; Machaba, K.E.; Mhlongo, N.N. In Silico Drug Repurposing Approach: Investigation of Mycobacterium tuberculosis FadD32 Targeted by FDA-Approved Drugs. Molecules 2022, 27, 668. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.M.; Chik, Z.; Ramachandra, M.; Subramaniam, U.; Aziddin, R.E.R.; Mohamed, Z. Evaluation of the effects of mitragyna speciosa alkaloid extract on cytochrome P450 enzymes using a high throughput assay. Molecules 2011, 16, 7344–7356. [Google Scholar] [CrossRef]
- Neodo, A.; Schulz, J.D.; Huwyler, J.; Keiser, J. In Vitro and In Vivo Drug-Drug Interaction Study of the Effects of Ivermectin and Oxantel Pamoate on Tribendimidine. Antimicrob. Agents Chemother. 2019, 63, e00762-18. [Google Scholar] [CrossRef]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021, 49, D437–D445. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [Google Scholar] [CrossRef]
- López, R. Capillary surfaces with free boundary in a wedge. Adv. Math. 2014, 262, 476–483. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Catalog, P.; Cyp, V.; Kit, S. Vivid® CYP450 Screening Kits User Guide—Table of Contents—Kit Contents; Life Technologies Corporation: Carlsbad, CA, USA, 2012. [Google Scholar]
Drug Name | 2D Structure | DS | cLogP | HBD | HBA | MW (g/mol) | RB |
---|---|---|---|---|---|---|---|
Ivermectin | −9.3 | 4.4 | 3 | 14 | 875.1 | 8 | |
Hydrochlorothiazide | −5.9 | −0.2 | 3 | 6 | 297.741 | 1 | |
Metformin | −4.4 | −0.9 | 3 | 2 | 129.164 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mtambo, T.R.; Machaba, K.E.; Chellan, N.; Ramharack, P.; Muller, C.J.F.; Mhlongo, N.N.; Hlengwa, N. The Effect of Metformin and Hydrochlorothiazide on Cytochrome P450 3A4 Metabolism of Ivermectin: Insights from In Silico Experimentation. Int. J. Mol. Sci. 2024, 25, 12089. https://doi.org/10.3390/ijms252212089
Mtambo TR, Machaba KE, Chellan N, Ramharack P, Muller CJF, Mhlongo NN, Hlengwa N. The Effect of Metformin and Hydrochlorothiazide on Cytochrome P450 3A4 Metabolism of Ivermectin: Insights from In Silico Experimentation. International Journal of Molecular Sciences. 2024; 25(22):12089. https://doi.org/10.3390/ijms252212089
Chicago/Turabian StyleMtambo, Thuli R., Kgothatso E. Machaba, Nireshni Chellan, Pritika Ramharack, Christo J. F. Muller, Ndumiso N. Mhlongo, and Nokulunga Hlengwa. 2024. "The Effect of Metformin and Hydrochlorothiazide on Cytochrome P450 3A4 Metabolism of Ivermectin: Insights from In Silico Experimentation" International Journal of Molecular Sciences 25, no. 22: 12089. https://doi.org/10.3390/ijms252212089
APA StyleMtambo, T. R., Machaba, K. E., Chellan, N., Ramharack, P., Muller, C. J. F., Mhlongo, N. N., & Hlengwa, N. (2024). The Effect of Metformin and Hydrochlorothiazide on Cytochrome P450 3A4 Metabolism of Ivermectin: Insights from In Silico Experimentation. International Journal of Molecular Sciences, 25(22), 12089. https://doi.org/10.3390/ijms252212089