The Effects of Different Respiratory Viruses on the Oxidative Stress Marker Levels in an In Vitro Model: A Pilot Study
Abstract
:1. Introduction
2. Results
2.1. Oxidative Stress Markers in the Lung Carcinoma A549 Cell Line
2.2. Oxidative Stress Markers in Lung Fibroblast MRC-5 Cell Line
3. Discussion
4. Materials and Methods
4.1. Study Objects
4.1.1. Viruses
4.1.2. Cell Lines
4.2. Test Virus Suspension Preparation
4.3. Test Cells Preparation
4.4. Test Cells Inoculation with Viruses
4.5. Preparing Cells for Oxidative Stress Marker Measurements
4.6. Oxidative Stress Markers
4.6.1. Total Oxidative Status (TOS)
4.6.2. Total Antioxidant Capacity (TAC)
4.6.3. Oxidative Stress Index (OSI)
4.6.4. Glutathione Peroxidase (GPx) Activity (EC 1.11.1.9)
4.6.5. Glutathione Reductase (GR) Activity (EC 1.8.1.7)
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boncristiani, H.F.; Criado, M.F.; Arruda, E. Respiratory viruses. In Encyclopedia of Microbiology; Academic Press: Cambridge, MA, USA, 2009; pp. 500–518. [Google Scholar] [CrossRef]
- Kim, M.I.; Lee, C. Human coronavirus OC43 as a low-risk model to study COVID-19. Viruses 2023, 15, 578. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, E.R.; Hardie, A.; Claas, E.C.; Simmonds, P.; Templeton, K.E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J. Clin. Microbiol. 2010, 48, 2940–2947. [Google Scholar] [CrossRef] [PubMed]
- Prusinkiewicz, M.A.; Mymryk, J.S. Metabolic reprogramming of the host cell by human adenovirus infection. Viruses 2019, 11, 141. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Lamson, D.M.; St George, K.; Walsh, T.J. Human rhinoviruses. Clin. Microbiol. Rev. 2013, 26, 135–162. [Google Scholar] [CrossRef] [PubMed]
- Gaudernak, E.; Seipelt, J.; Triendl, A.; Grassauer, A.; Kuechler, E. Antiviral effects of pyrrolidine dithiocarbamate on human rhinoviruses. J. Virol. 2002, 76, 6004–6015. [Google Scholar] [CrossRef]
- Paiva, C.N.; Bozza, M.T. Are reactive oxygen species always detrimental to pathogens? Antioxid. Redox Signal. 2014, 20, 1000–1034. [Google Scholar] [CrossRef]
- Behrend, L.; Henderson, G.; Zwacka, R.M. Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 2003, 31, 144–244. [Google Scholar] [CrossRef]
- Masri, F. Role of nitric oxide and its metabolites as potential markers in lung cancer. Ann. Thorac. Med. 2010, 5, 123–127. [Google Scholar] [CrossRef]
- Luo, J.; Rizvi, H.; Preeshagul, I.R.; Egger, J.V.; Hoyos, D.; Bandlamudi, C.; McCarthy, C.G.; Falcon, C.J.; Schoenfeld, A.J.; Arbour, K.C.; et al. COVID-19 in patients with lung cancer. Ann. Oncol. 2020, 31, 1386–1396. [Google Scholar] [CrossRef]
- Hajjar, L.A.; Mauad, T.; Galas, F.R.B.G.; Kumar, A.; da Silva, L.F.F.; Dolhnikoff, M.; Trielli, T.; Almeida, J.P.; Borsato, M.R.L.; Abdalla, E.; et al. Severe novel influenza A (H1N1) infection in cancer patients. Ann. Oncol. 2010, 21, 2333–2341. [Google Scholar] [CrossRef] [PubMed]
- Cay, M.; Naziroglu, M. Effects of intraperitoneally-administered vitamin E and selenium on the blood biochemical and haematological parameters in rats. Cell Biochem. Funct. 1999, 17, 143–148. [Google Scholar] [CrossRef]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Camini, F.C.; da Silva Caetano, C.C.; Almeida, L.T.; de Brito Magalhães, C.L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 2017, 162, 907–917. [Google Scholar] [CrossRef]
- Ntyonga-Pono, M.P. COVID-19 infection and oxidative stress: An under-explored approach for prevention and treatment? Pan Afr. Med. J. 2020, 35 (Suppl. S2), 12. [Google Scholar] [CrossRef]
- Beltrán-García, J.; Osca-Verdegal, R.; Pallardó, F.V.; Ferreres, J.; Rodríguez, M.; Mulet, S.; Sanchis-Gomar, F.; Carbonell, N.; García-Giménez, J.L. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants 2020, 9, 936. [Google Scholar] [CrossRef]
- Li, M.; Zhu, D.; Yang, J.; Yan, L.; Xiong, Z.; Lu, J.; Bi, X.; Xi, Y.; Chen, Z. Clinical treatment experience in severe and critical COVID-19. Mediat. Inflamm. 2021, 2021, 9924542. [Google Scholar] [CrossRef]
- Cecchini, R.; Cecchini, A.L. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med. Hypotheses 2020, 143, 110102. [Google Scholar] [CrossRef]
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. [Google Scholar] [CrossRef]
- Acar, A.; Ugur Cevik, M.; Evliyaoglu, O.; Uzar, E.; Tamam, Y.; Arıkanoglu, A.; Yucel, Y.; Varol, S.; Onder, H.; Taşdemir, N. Evaluation of serum oxidant/antioxidant balance in multiple sclerosis. Acta Neurol. Belg. 2012, 112, 275–280. [Google Scholar] [CrossRef]
- Yaghoubi, N.; Youssefi, M.; Jabbari, A.F.; Farzad, F.; Yavari, Z.; Zahedi, A.F. Total antioxidant capacity as a marker of severity of COVID-19 infection: Possible prognostic and therapeutic clinical application. J. Med. Virol. 2022, 94, 1558–1565. [Google Scholar] [CrossRef]
- Harma, M.; Harma, M.; Erel, O. Increased oxidative stress in patients with hydatidiform mole. Swiss Med. Wkly. 2003, 133, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Khomich, O.A.; Kochetkov, S.N.; Bartosch, B.; Ivanov, A.V. Redox biology of respiratory viral infections. Viruses 2018, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohe, R. Glutathione peroxidases and redox-regulated transcription factors. Biol. Chem. 2006, 387, 1329–1335. [Google Scholar] [CrossRef] [PubMed]
- Avissar, N.; Finkelstein, J.N.; Horowitz, S.; Willey, J.C.; Coy, E.; Frampton, M.W.; Watkins, R.H.; Khullar, P.; Xu, Y.L.; Cohen, H.J. Extracellular glu-tathione peroxidase in human lung epithelial lining fluid and in lungcells. Am. J. Physiol. 1996, 270, L173–L182. [Google Scholar]
- de Haan, J.B.; Bladier, C.; Griffiths, P.; Kelner, M.; O’Shea, R.D.; Cheung, N.S.; Bronson, R.T.; Silvestro, M.J.; Wild, S.; Zheng, S.S.; et al. Mice with ahomozygous null mutation for the most abundant glutathione peroxidase, gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J. Biol. Chem. 1998, 273, 22528–22536. [Google Scholar] [CrossRef]
- Wong, C.H.; Bozinovski, S.; Hertzog, P.J.; Hickey, M.J.; Crack, P.J. Absence ofglutathione peroxidase-1 exacerbates cerebral ischemia-reperfusioninjury by reducing post-ischemic microvascular perfusion. J. Neurochem. 2008, 107, 241–252. [Google Scholar] [CrossRef]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef]
- Ghezzi, P. Role of glutathione in immunity and inflammation in the lung. Int. J. Gen. Med. 2011, 4, 105–113. [Google Scholar] [CrossRef]
- Wróblewska, J.; Wróblewski, M.; Hołyńska-Iwan, I.; Modrzejewska, M.; Nuszkiewicz, J.; Wróblewska, W.; Woźniak, A. The Role of Glutathione in Selected Viral Diseases. Antioxidants 2023, 12, 1325. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Y.; Seth, S.; Furukawa, S.; Compans, R.W.; Jones, D.P. Inhibition of influenza infection by glutathione. Free Radic. Biol. Med. 2003, 34, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol. 2006, 33, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.J.; Wang, J.; Ito, Y.; Travanty, E.A.; Voelker, D.R.; Holmes, K.V.; Mason, R.J. Infection of human alveolar macrophages by human coronavirus strain 229E. J. Gen. Virol. 2012, 93 Pt 3, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Lie, L.K.; Synowiec, A.; Mazur, J.; Rabalski, L.; Pyrć, K. An engineered A549 cell line expressing CD13 and TMPRSS2 is permissive to clinical isolate of human coronavirus 229E. Virology 2023, 588, 109889. [Google Scholar] [CrossRef]
- Karmakar, S.; Das Sarma, J. Human coronavirus OC43 infection remodels connexin 43-mediated gap junction intercellular communication in vitro. J. Virol. 2024, 98, e0047824. [Google Scholar] [CrossRef]
- Kim, D.E.; Min, J.S.; Jang, M.S.; Lee, J.Y.; Shin, Y.S.; Park, C.M.; Song, J.H.; Kim, H.R.; Kim, S.; Jin, Y.-H.; et al. Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells. Biomolecules 2019, 9, 696. [Google Scholar] [CrossRef]
- Shinohara, M.; Uchida, K.; Shimada, S.; Segawa, Y.; Hirose, Y. [The usefulness of human lung embryonal fibroblast cells (MRC-5) for isolation of enteroviruses and adenoviruses]. Kansenshogaku Zasshi. Jpn. Assoc. Infect. Dis. 2002, 76, 432–438. [Google Scholar] [CrossRef]
- Martin-Fernandez, M.; Longshaw, S.V.; Kirby, I.; Santis, G.; Tobin, M.J.; Clarke, D.T.; Jones, G.R. Adenovirus type-5 entry and disassembly followed in living cells by FRET, fluorescence anisotropy, and FLIM. Biophys. J. 2004, 87, 1316–1327. [Google Scholar] [CrossRef]
- Shin, B.; Davis, Y.; Kong, X.; Park, S.; Lockey, R.; Mohapat, S. SiRNA for intercellular adhesion molecule-1 (ICAM-1) decreases infection of A549 cells by respiratory syncytial virus (RSV) and human rhinovirus (HRV)-16. J. Allergy Clin. Immunol. 2008, 121, S146. [Google Scholar] [CrossRef]
- Lee, W.M.; Chen, Y.; Wang, W.; Mosser, A. Infectivity assays of human rhinovirus-A and -B serotypes. Methods Protoc. 2015, 1221, 71–81. [Google Scholar] [CrossRef]
- Erel, O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Oyanagui, Y. Reevaluation of assay methods and establishment of kit for superoxide dismutase activity. Anal. Biochem. 1984, 142, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bażanów, B.; Michalczyk, K.; Kafel, A.; Chełmecka, E.; Skrzep-Poloczek, B.; Chwirot, A.; Nikiel, K.; Olejnik, A.; Suchocka, A.; Kukla, M.; et al. The Effects of Different Respiratory Viruses on the Oxidative Stress Marker Levels in an In Vitro Model: A Pilot Study. Int. J. Mol. Sci. 2024, 25, 12088. https://doi.org/10.3390/ijms252212088
Bażanów B, Michalczyk K, Kafel A, Chełmecka E, Skrzep-Poloczek B, Chwirot A, Nikiel K, Olejnik A, Suchocka A, Kukla M, et al. The Effects of Different Respiratory Viruses on the Oxidative Stress Marker Levels in an In Vitro Model: A Pilot Study. International Journal of Molecular Sciences. 2024; 25(22):12088. https://doi.org/10.3390/ijms252212088
Chicago/Turabian StyleBażanów, Barbara, Katarzyna Michalczyk, Alina Kafel, Elżbieta Chełmecka, Bronisława Skrzep-Poloczek, Aleksandra Chwirot, Kamil Nikiel, Aleksander Olejnik, Alicja Suchocka, Michał Kukla, and et al. 2024. "The Effects of Different Respiratory Viruses on the Oxidative Stress Marker Levels in an In Vitro Model: A Pilot Study" International Journal of Molecular Sciences 25, no. 22: 12088. https://doi.org/10.3390/ijms252212088
APA StyleBażanów, B., Michalczyk, K., Kafel, A., Chełmecka, E., Skrzep-Poloczek, B., Chwirot, A., Nikiel, K., Olejnik, A., Suchocka, A., Kukla, M., Bogielski, B., Jochem, J., & Stygar, D. (2024). The Effects of Different Respiratory Viruses on the Oxidative Stress Marker Levels in an In Vitro Model: A Pilot Study. International Journal of Molecular Sciences, 25(22), 12088. https://doi.org/10.3390/ijms252212088