Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress
Abstract
:1. Introduction
2. Salt Stress in Plants
2.1. Effect of Salt Stress on Plants
2.2. Regulatory Mechanisms and Mitigation Strategies
- (i)
- Ion Sensing and Na+ Detection: High Na+ concentrations disrupt cellular ion balance, leading to toxicity. Plants respond by activating transporters that help maintain cellular ion homeostasis. One primary response is the detection of elevated Na+ levels, which immediately triggers pathways to reduce Na+ accumulation in cells, often by directing the Na+ ions to the vacuoles or extruding them from the cytoplasm.
- (ii)
- Calcium (Ca2+) Signaling as a Secondary Messenger: In response to ion imbalance, an influx of Ca2+ into the cytoplasm occurs through calcium-permeable channels. Ca2+ acts as a crucial secondary messenger in salt stress signaling, initiating further downstream responses. The elevated Ca2+ levels activate specific proteins and transcription factors that control genes associated with salt tolerance, facilitating plants’ adaptive responses.
- (iii)
- Role of Osmosensors in Calcium Regulation: Proteins such as OSCA1—a plasma membrane calcium channel—are key to initiating calcium signaling under osmotic stress. When activated by changes in osmotic pressure, OSCA1 channels allow Ca2+ to enter the cell, facilitating rapid signal propagation throughout the plant. Mutations in OSCA1 disrupt this calcium signaling, reducing the plant’s ability to respond effectively to salt stress.
- (iv)
- Additional Osmosensors (KEA1/2 and KEA3): KEA1/2 and KEA3 proteins play roles in maintaining Ca2+ homeostasis, working alongside OSCA1 to control Ca2+ levels and enhance the plant’s response to osmotic stress. These osmosensors ensure that calcium signaling remains balanced, avoiding excessive Ca2+ levels which could be harmful, while still allowing the transmission of stress signals to initiate protective responses.
- (v)
- Ion Transport and Na+ Exclusion Mechanisms: Once calcium signaling is activated, plants initiate mechanisms to manage Na+ levels within cells. Transporters like the Na+/H+ antiporter (SOS1) on the plasma membrane help expel Na+ from the cytoplasm, while other transporters, such as the NHX antiporters in the vacuolar membrane, sequester Na+ into vacuoles. This dual approach reduces cytoplasmic Na+ concentration, protecting the cell from ion toxicity and maintaining a favorable K+/Na+ ratio, essential for cellular processes.
- (vi)
- Reactive Oxygen Species (ROS) Management: Salt stress also elevates ROS production, leading to potential oxidative damage in plant cells. Plants activate antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) to scavenge ROS, minimizing oxidative stress. ROS signaling also interacts with calcium signaling, reinforcing salt stress responses by regulating the transcription factors involved in stress resistance.
3. Plant Genetics and Salt Stress Tolerance
- (i)
- SOS1—Plasma Membrane Na+/H+ Exchanger: SOS1 encodes a plasma membrane Na+/H+ exchanger that actively extrudes Na+ ions from the cytoplasm into the external environment. This is crucial for reducing Na+ accumulation in the cell, which can be toxic at high concentrations.Mechanism: SOS1 utilizes the electrochemical gradient established by proton pumps (H+-ATPases) to exchange Na+ ions with H+ ions. When Na+ levels rise due to salt stress, SOS1 enhances the Na+ efflux, helping to maintain cellular ion balance and preventing Na+ toxicity.
- (ii)
- SOS2—Serine/Threonine Protein Kinase: SOS2 acts as a regulatory protein kinase that is involved in the phosphorylation of target proteins in the SOS pathway.Mechanism: In response to elevated salinity, SOS2 is activated by the binding of calcium ions (Ca2+) that enter the cell in response to stress signals. Once activated, SOS2 phosphorylates SOS1, enhancing its activity. It also phosphorylates other downstream targets that are involved in stress response, thereby integrating calcium signaling with Na+ homeostasis.
- (iii)
- SOS3—Calcium-Binding Protein: SOS3 acts as a calcium sensor that is essential for the activation of SOS2.Mechanism: Under salt stress, the increase in cytosolic calcium concentration activates SOS3. This activated form of SOS3 binds to SOS2, facilitating its phosphorylation activity. The SOS3-SOS2 complex plays a critical role in transducing the salinity signal, ultimately leading to the activation of SOS1.
4. Role of Transcription Factors in Salt Stress Response
5. Next-Generation Sequencing Technologies in Salt Stress Research
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Marqués, R.L.; Nørrevang, A.F.; Ache, P.; Moog, M.; Visintainer, D.; Wendt, T.; Østerberg, J.T.; Dockter, C.; Jørgensen, M.E.; Salvador, A.T.; et al. Prospects for the accelerated improvement of the resilient crop quinoa. J. Exp. Bot. 2020, 71, 5333–5347. [Google Scholar] [CrossRef]
- FAO. Agriculture organization of the United Nations the future of food and agriculture. In Trends and Challenges; FAO: Rome, Italy, 2017. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; De Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M.; et al. Options for keeping the food system within environmental limits. Nature 2018, 562, 519–525. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Ansari, M.I.; Singh, A.K. Nanobiotechnology: Mitigation of Abiotic Stress in Plants, 1st ed.; Springer: Cham, Switzerland, 2021; pp. 1–593. [Google Scholar]
- Singh, A. Soil salinity: A global threat to sustainable development. Soil Use Manag. 2022, 38, 39–67. [Google Scholar] [CrossRef]
- Hopmans, J.W.; Qureshi, A.S.; Kisekka, I.; Munns, R.; Grattan, S.R.; Rengasamy, P.; Ben-Gal, A.; Assouline, S.; Javaux, M.; Minhas, P.S.; et al. Critical knowledge gaps and research priorities in global soil salinity. Adv. Agron. 2021, 169, 1–191. [Google Scholar]
- Shabbir, R.; Singhal, R.K.; Mishra, U.N.; Chauhan, J.; Javed, T.; Hussain, S.; Kumar, S.; Anuragi, H.; Lal, D.; Chen, P. Combined Abiotic Stresses: Challenges and Potential for Crop Improvement. Agronomy 2022, 12, 2795. [Google Scholar] [CrossRef]
- Naorem, A.; Jayaraman, S.; Dang, Y.P.; Dalal, R.C.; Sinha, N.K.; Rao, C.S.; Patra, A.K. Soil constraints in an arid environment—Challenges, prospects, and implications. Agronomy 2023, 13, 220. [Google Scholar] [CrossRef]
- Liu, J.; Gu, J.; Hu, J.; Ma, H.; Tao, Y.; Li, G.; Yue, L.; Li, Y.; Chen, L.; Cao, F.; et al. Use of Mn3O4 nanozyme to improve cotton salt tolerance. Plant Biotechnol. J. 2023, 21, 1935. [Google Scholar] [CrossRef]
- Pal, P.; Kumar, A.; Ansari, M.I. Role of nitric oxide in regulation of biotic and abiotic stresses tolerance in plants. In Nitric Oxide in Developing Plant Stress Resilience; Academic Press: Cambridge, MA, USA, 2023; pp. 135–155. [Google Scholar]
- Liu, H.; Li, C.; Cai, L.; Zhang, X.; Si, J.; Tong, Y.; Wang, L.; Xu, Z.; He, W. Versatile MXenzymes Scavenging ROS for Promotion of Seed Germination under Salt Stress. J. Agric. Food Chem. 2024, 72, 24311–24324. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rathod, S.; Manohara, K.K.; Gireesh, C.; Anantha, M.S.; Sakhare, A.S.; Parmar, B.; Yadav, B.K.; Bandumula, N.; Raihan, F.; et al. Salt stress in plants and mitigation approaches. Plants 2022, 11, 717. [Google Scholar] [CrossRef] [PubMed]
- Pal, P.; Sarangi, P.K.; Singh, A.K.; Husen, A. Crosstalk of hydrogen sulfide and carbon monoxide with other plant growth regulators in plant defense, growth, and development. In Hormonal Cross-Talk, Plant Defense and Development: Plant Biology, Sustainability and Climate Change; Husen, A., Zhang, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 225–248. [Google Scholar]
- Golla, B. Agricultural production system in arid and semi-arid regions. Int. J. Agric. Sci. Food Technol. 2021, 7, 234–244. [Google Scholar]
- Ali, Q.; Shabaan, M.; Ashraf, S.; Kamran, M.; Zulfiqar, U.; Ahmad, M.; Arslan, M. Comparative efficacy of different salt tolerant rhizobial inoculants in improving growth and productivity of (Vigna radiata L.) under salt stress. Sci. Rep. 2023, 13, 17442. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.J.; Negrão, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Hassani, A.; Azapagic, A.; Shokri, N. Global predictions of primary soil salinization under changing climate in the 21st century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. Res. 2015, 22, 4056–4075. [Google Scholar] [CrossRef]
- Hualpa-Ramirez, E.; Carrasco-Lozano, E.C.; Madrid-Espinoza, J.; Tejos, R.; Ruiz-Lara, S.; Stange, C.; Norambuena, L. Stress salinity in plants: New strategies to cope with in the foreseeable scenario. Plant Physiol. Biochem. 2024, 208, 108507. [Google Scholar] [CrossRef]
- Eswar, D.; Karuppusamy, R.; Chellamuthu, S. Drivers of soil salinity and their correlation with climate change. Curr. Opin. Environ. Sustain. 2021, 50, 310–318. [Google Scholar] [CrossRef]
- Su, T.; Li, X.; Yang, M.; Shao, Q.; Zhao, Y.; Ma, C.; Wang, P. Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response. Front. Plant Sci. 2020, 11, 164. [Google Scholar] [CrossRef]
- Horie, T.; Karahara, I.; Katsuhara, M. Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 2012, 5, 11. [Google Scholar] [CrossRef]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards 2030/2050: The 2012 Revision; ESA Working Paper; FAO: Rome, Italy, 2012. [Google Scholar]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.; Meyer, R. Climate change, climate extremes, and global food production-Adaptation in the agricultural sector. In Resilience: The Science of Adaptation to Climate Change; Zommers, Z., Alverson, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 31–49. [Google Scholar]
- Khondoker, M.; Mandal, S.; Gurav, R.; Hwang, S. Freshwater Shortage, Salinity Increase, and Global Food Production: A Need for Sustainable Irrigation Water Desalination—A Scoping Review. Earth 2023, 4, 223–240. [Google Scholar] [CrossRef]
- Ziska, L.H.; Bunce, J.A.; Shimono, H.; Gealy, D.R.; Baker, J.T.; Newton, P.C.D.; Reynolds, M.P.; Jagadish, K.S.V.; Zhu, C.; Howden, M.; et al. Food security and climate change: On the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc. R. Soc. B Boil. Sci. 2012, 279, 4097–4105. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, W.-Y.; Yun, A.D.-J. A New Insight of Salt Stress Signaling in Plant. Mol. Cells. 2016, 39, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Q.; Liu, M.; Zhou, H.; Ma, C.; Wang, P. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 2021, 22, 4609. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Raihan, M.R.H.; Masud, A.A.C.; Rahman, K.; Nowroz, F.; Rahman, M.; Nahar, K.; Fujita, M. Regulation of reactive oxygen species and antioxidant defense in plants under salinity. Int. J. Mol. Sci. 2021, 22, 9326. [Google Scholar] [CrossRef] [PubMed]
- Nefissi Ouertani, R.; Arasappan, D.; Abid, G.; Ben Chikha, M.; Jardak, R.; Mahmoudi, H.; Mejri, S.; Ghorbel, A.; Ruhlman, T.A.; Jansen, R.K. Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. Int. J. Mol. Sci. 2021, 22, 8155. [Google Scholar] [CrossRef]
- Acharya, B.R.; Sandhu, D.; Dueñas, C.; Dueñas, M.; Pudussery, M.; Kaundal, A.; Ferreira, J.F.; Suarez, D.L.; Skaggs, T.H. Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Sci. Rep. 2022, 12, 1274. [Google Scholar]
- Acharya, B.R.; Zhao, C.; Reyes, L.; Ferreira, J.F.S.; Sandhu, D. Understanding the salt overly sensitive pathway in Prunus: Identification and characterization of NHX, CIPK, and CBL genes. Plant Genome 2024, 17, e20371. [Google Scholar] [CrossRef]
- Atta, K.; Mondal, S.; Gorai, S.; Singh, A.P.; Kumari, A.; Ghosh, T.; Roy, A.; Hembram, S.; Gaikwad, D.J.; Mondal, S.; et al. Impacts of Salinity Stress on Crop Plants: Improving Salt Tolerance through Genetic and Molecular Dissection. Front. Plant Sci. 2023, 14, 1241736. [Google Scholar] [CrossRef]
- Torche, Y.; Blair, M.; Saida, C. Biochemical, physiological and phenological genetic analysis in common bean (Phaseolus vulgaris L.) under salt stress. Annu. Agr. Sci. 2018, 63, 153–161. [Google Scholar] [CrossRef]
- Ning, L.; Kan, G.; Shao, H.; Yu, D. Physiological and transcriptional responses to salt stress in salt-tolerant and salt-sensitive soybean (Glycine max [L.] Merr.) seedlings. Land. Degrad. Dev. 2018, 29, 2707–2719. [Google Scholar] [CrossRef]
- Tokarz, B.; Wójtowicz, T.; Makowski, W.; Jędrzejczyk, R.J.; Tokarz, K.M. What is the difference between the response of grass pea (Lathyrus sativus L.) to salinity and drought stress?—A physiological study. Agronomy 2020, 10, 833. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi. J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef]
- Lim, I.; Kang, M.; Kim, B.C.; Ha, J. Metabolomic and transcriptomic changes in mungbean (Vigna radiata (L.) R. Wilczek) sprouts under salinity stress. Front. Plant Sci. 2022, 13, 1030677. [Google Scholar] [CrossRef]
- Balasubramaniam, T.; Shen, G.; Esmaeili, N.; Zhang, H. Plants Response Mechanisms to Salinity Stress. Plants 2023, 12, 2253. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Das, R.; George Kerry, R.; Biswal, B.; Sinha, T.; Sharma, S.; Arora, P.; Kumar, M. Promising Management Strategies to Improve Crop Sustainability and to Amend Soil Salinity. Front. Environ. Sci. 2023, 10, 962581. [Google Scholar] [CrossRef]
- Raza, A.; Tabassum, J.; Fakhar, A.Z.; Sharif, R.; Chen, H.; Zhang, C.; Ju, L.; Fotopoulos, V.; Siddique, K.H.M.; Singh, R.K.; et al. Smart Reprograming of Plants against Salinity Stress Using Modern Biotechnological Tools. Crit. Rev. Biotechnol. 2023, 43, 1035–1062. [Google Scholar] [CrossRef] [PubMed]
- Chele, K.H.; Tinte, M.M.; Piater, L.A.; Dubery, I.A.; Tugizimana, F. Soil Salinity, a Serious Environmental Issue and Plant Responses: A Metabolomics Perspective. Metabolites 2021, 11, 724. [Google Scholar] [CrossRef]
- Prajapati, M.R.; Patel, R.K.; Patel, V.P.; Patel, V.B.; Modha, K.G.; Bala, M.; Patel, D.P.; Patel, A.V.; Patel, H.; Patel, G.; et al. Integrating Molecular Markers for Screening of Salinity Tolerance in Rice Genotypes. J. Adv. Biol. Biotechnol. 2024, 13, 1373–1389. [Google Scholar] [CrossRef]
- Pan, L.; Ma, J.; Li, J.; Yin, B.; Fu, C. Advances of salt stress-responsive transcription factors in plants. Sheng Wu Gong Cheng Xue Bao Chin. J. Biotechnol. 2022, 38, 50–65. [Google Scholar]
- van Zelm, E.; Zhang, Y.; Testerink, C. Salt Tolerance Mechanisms of Plants. Annu. Rev. Plant. Biol. 2020, 71, 403–433. [Google Scholar]
- Zhou, H.; Shi, H.; Yang, Y.; Feng, X.; Chen, X.; Xiao, F.; Lin, H.; Guo, Y. Insights into plant salt stress signaling and tolerance. J. Genet. Genom. 2024, 51, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Cheng, X.; Yin, D.; Chen, D.; Luo, C.; Liu, H.; Huang, C. Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Curr. Issues Mol. Biol. 2023, 45, 2861–2880. [Google Scholar] [CrossRef] [PubMed]
- Aizaz, M.; Lubna; Jan, R.; Asaf, S.; Bilal, S.; Kim, K.-M.; AL-Harrasi, A. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. Biology 2024, 13, 673. [Google Scholar] [CrossRef]
- Liu, H.; Tang, X.; Zhang, N.; Li, S.; Si, H. Role of bZIP Transcription Factors in Plant Salt Stress. Int. J. Mol. Sci. 2023, 24, 7893. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Wang, Y.; Yan, Y.; Liu, Y.; Wang, J.; Chen, S. A Review on Plant Responses to Salt Stress and Their Mechanisms of Salt Resistance. Horticulturae 2021, 7, 132. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, J.; Wei, H.; Xiao, F.; Wang, Y.; Jahan, N.; Hazman, M.; Qian, Q.; Shang, L.; Guo, L. Combining GWAS, Genome-Wide Domestication and a Transcriptomic Analysis Reveals the Loci and Natural Alleles of Salt Tolerance in Rice (Oryza sativa L.). Front. Plant Sci. 2022, 13, 912637. [Google Scholar] [CrossRef]
- Xu, W.; Wang, Y.; Xie, J.; Tan, S.; Wang, H.; Zhao, Y.; Liu, Q.; El-Kassaby, Y.A.; Zhang, D. Growth-regulating factor 15-mediated gene regulatory network enhances salt tolerance in poplar. Plant Physiol. 2023, 191, 2367–2384. [Google Scholar] [CrossRef]
- Xiao, F.; Zhou, H. Plant salt response: Perception, signaling, and tolerance. Front. Plant Sci. 2023, 13, 1053699. [Google Scholar] [CrossRef]
- Win, K.T.; Tanaka, F.; Okazaki, K.; Ohwaki, Y. The ACC Deaminase Expressing Endophyte Pseudomonas spp. Enhances NaCl Stress Tolerance by Reducing Stress-Related Ethylene Production, Resulting in Improved Growth, Photosynthetic Performance, and Ionic Balance in Tomato Plants. Plant Physiol. Biochem. 2018, 127, 599–607. [Google Scholar] [CrossRef]
- Martínez-Lorente, S.E.; Martí-Guillén, J.M.; Pedreño, M.Á.; Almagro, L.; Sabater-Jara, A.B. Higher Plant-Derived Biostimulants: Mechanisms of Action and Their Role in Mitigating Plant Abiotic Stress. Antioxidants 2024, 13, 318. [Google Scholar] [CrossRef]
- Suarez, D.L.; Celis, N.; Ferreira, J.F.S.; Reynolds, T.; Sandhu, D. Linking Genetic Determinants with Salinity Tolerance and Ion Relationships in Eggplant, Tomato and Pepper. Sci. Rep. 2021, 11, 16298. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Amoanimaa-Dede, H.; Zeng, F.; Deng, F.; Xu, S.; Chen, Z.H. Stomatal regulation and adaptation to salinity in glycophytes and halophytes. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2022; Volume 103, pp. 1–42. [Google Scholar]
- Boussora, F.; Triki, T.; Bennani, L.; Bagues, M.; Ben Ali, S.; Ferchichi, A.; Ngaz, K.; Guasmi, F. Mineral accumulation, relative water content and gas exchange are the main physiological regulating mechanisms to cope with salt stress in barley. Sci. Rep. 2024, 14, 14931. [Google Scholar] [CrossRef] [PubMed]
- EL Sabagh, A.; Islam, M.S.; Skalicky, M.; Ali Raza, M.; Singh, K.; Anwar Hossain, M.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D.; et al. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Saddique, M.; Kausar, A.; Iqra, I.; Akhter, N.; Mujahid, N.; Parveen, A.; Zaman, Q.; Hussain, S. Amino Acids Application Alleviated Salinity Stress in Spinach (Spinacia oleracea L.) by Improving Oxidative Defense, Osmolyte Accumulation, and Nutrient Balance. Turkish J. Agric. For. 2022, 46, 875–887. [Google Scholar] [CrossRef]
- Ondrasek, G.; Romic, D.; Rengel, Z. Interactions of Humates and Chlorides with Cadmium Drive Soil Cadmium Chemistry and Uptake by Radish Cultivars. Sci. Total Environ. 2020, 702, 134887. [Google Scholar] [CrossRef]
- Lin, D.; Xing, B. Phytotoxicity of Nanoparticles: Inhibition of Seed Germination and Root Growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z.; Maurović, N.; Kondres, N.; Filipović, V.; Savić, R.; Blagojevic, B.; Tanaskovik, V.; Meriño-Gergichevich, C.; Romić, D. Growth and Element Uptake by Salt-Sensitive Crops under Combined NaCl and Cd Stresses. Plants 2021, 10, 1202. [Google Scholar] [CrossRef]
- Karanikolas, P.; Bebeli, P.J.; Thanopoulos, R. Farm Economic Sustainability and Agrobiodiversity: Identifying Viable Farming Alternatives during the Economic Crisis in Greece. J. Environ. Econ. Policy 2018, 7, 69–84. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Kamran, M.; Parveen, A.; Ahmar, S.; Malik, Z.; Hussain, S.; Chattha, M.S.; Saleem, M.H.; Adil, M.; Heidari, P.; Chen, J.T. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int. J. Mol. Sci. 2019, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- Stavi, I.; Thevs, N.; Priori, S. Soil salinity and sodicity in drylands: A review of causes, effects, monitoring, and restoration measures. Front. Environ. Sci. 2021, 330, 712831. [Google Scholar] [CrossRef]
- Huihui, Z.; Yue, W.; Xin, L.; Guoqiang, H.; Yanhui, C.; Zhiyuan, T.; Jieyu, S.; Nan, X.; Guangyu, S. Chlorophyll synthesis and the photoprotective mechanism in leaves of mulberry (Morus alba L.) seedlings under NaCl and NaHCO3 stress revealed by TMT-based proteomics analyses. Ecotoxicol. Environ. Saf. 2020, 190, 110164. [Google Scholar] [CrossRef] [PubMed]
- Amombo, E.; Ashilenje, D.; Hirich, A.; Kouisni, L.; Oukarroum, A.; Ghoulam, C.; El Gharous, M.; Nilahyane, A. Exploring the correlation between salt tolerance and yield: Research advances and perspectives for salt-tolerant forage sorghum selection and genetic improvement. Planta 2022, 255, 71. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Ishitani, M.; Kim, C.; Zhu, J.K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA 2000, 97, 6896–6901. [Google Scholar] [CrossRef]
- Shahzad, B.; Shabala, L.; Zhou, M.; Venkataraman, G.; Solis, C.A.; Page, D.; Chen, Z.H.; Shabala, S. Comparing essentiality of SOS1-mediated Na+exclusion in salinity tolerance between cultivated and wild rice species. Int. J. Mol. Sci. 2022, 23, 9900. [Google Scholar] [CrossRef]
- Ganie, S.A.; Wani, S.H.; Henry, R.; Hensel, G. Improving rice salt tolerance by precision breeding in a new era. Curr. Opin. Plant Biol. 2021, 60, 101996. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Sharkhuu, A.; Batelli, G.; Bressan, R.A.; Maggio, A. The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol. Biol. 2013, 83, 405–415. [Google Scholar] [CrossRef]
- Pilarska, M.; Bartels, D.; Niewiadomska, E. Differential regulation of NAPDH oxidases in salt-tolerant Eutrema salsugineum and salt-sensitive Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 10341. [Google Scholar] [CrossRef]
- Birhanu, M.W. Transgenic Approaches of Improving Tomato (Solanum lycopersicum) to Salt Stress Tolerance. J. Biol. Agric. Healthc. 2020, 10, 1–10. [Google Scholar]
- Ayadi, M.; Brini, F.; Masmoudi, K. Overexpression of a Wheat Aquaporin Gene, TdPIP2;1, Enhances Salt and Drought Tolerance in Transgenic Durum Wheat cv. Maali. Int. J. Mol. Sci. 2019, 20, 2389. [Google Scholar] [CrossRef] [PubMed]
- Geng, G.; Lv, C.; Stevanato, P.; Li, R.; Liu, H.; Yu, L.; Wang, Y. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet. Int. J. Mol. Sci. 2019, 20, 5910. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Structural Basis of Gene Regulation by the Transcription Factors Tfcp2l1 and Tfcp2. Doctoral Dissertation, Freie Universität Berlin, Berlin, Germany, 2022. [Google Scholar]
- Agarwal, P.K.; Gupta, K.; Lopato, S.; Agarwal, P. Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J. Exp. Bot. 2017, 68, 2135–2148. [Google Scholar] [CrossRef]
- Chu, M.; Chen, P.; Meng, S.; Xu, P.; Lan, W. The Arabidopsis phosphatase PP2C49 negatively regulates salt tolerance through inhibition of AtHKT1;1. J. Integr. Plant Biol. 2021, 63, 528–542. [Google Scholar] [CrossRef]
- Xu, N.; Chu, Y.; Chen, H.; Li, X.; Wu, Q.; Jin, L.; Wang, G.; Huang, J. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA–mediated regulatory pathway and ROS scavenging. PLoS Genet. 2018, 14, e1007662. [Google Scholar] [CrossRef]
- Ma, L.; Li, X.; Zhang, J.; Yi, D.; Li, F.; Wen, H.; Liu, W.; Wang, X. MsWRKY33 increases alfalfa (Medicago sativa L.) salt stress tolerance through altering the ROS scavenger via activating MsERF5 transcription. Plant Cell Environ. 2023, 46, 3887–3901. [Google Scholar] [CrossRef]
- Chaffai, R.; Ganesan, M.; Cherif, A. Transcriptional Regulation of Gene Expression in Plant Abiotic Stress Response. In Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms; Springer Nature: Singapore, 2024; pp. 303–343. [Google Scholar]
- Yousefirad, S.; Soltanloo, H.; Ramezanpour, S.S.; Zaynali Nezhad, K.; Shariati, V. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS ONE 2020, 15, e0229513. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Chandra, A. DREBs-potential transcription factors involve in combating abiotic stress tolerance in plants. Biologia 2021, 76, 3043–3055. [Google Scholar] [CrossRef]
- Hichri, I.; Muhovski, Y.; Žižková, E.; Dobrev, P.I.; Gharbi, E.; Franco-Zorrilla, J.M.; Lopez-Vidriero, I.; Solano, R.; Clippe, A.; Errachid, A.; et al. The Solanum lycopersicum WRKY3 transcription factor SlWRKY3 is involved in salt stress tolerance in tomato. Front. Plant Sci. 2017, 8, 1343. [Google Scholar] [CrossRef]
- Li, M.; Chen, R.; Jiang, Q.; Sun, X.; Zhang, H.; Hu, Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Moi. Biol. 2021, 105, 333–345. [Google Scholar] [CrossRef]
- Sarkar, T.; Thankappan, R.; Mishra, G.P.; Nawade, B.D. Advances in the development and use of DREB for improved abiotic stress tolerance in transgenic crop plants. Physiol. Mol. Biol. Plants 2019, 25, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, Z.; Zhao, K.; Yao, W.; Sun, X.; Jiang, T.; Zhou, B. Functional characterization of poplar NAC13 gene in salt tolerance. Plant Sci. 2019, 281, 1–8. [Google Scholar] [CrossRef]
- Rachowka, J.; Anielska-Mazur, A.; Bucholc, M.; Stephenson, K.; Kulik, A. SnRK2.10 kinase differentially modulates expression of hub WRKY transcription factors genes under salinity and oxidative stress in Arabidopsis thaliana. Front. Plant Sci. 2023, 14, 1135240. [Google Scholar] [CrossRef]
- Luo, G.; Cai, W.; Wang, H.; Liu, W.; Liu, X.; Shi, S.; Wang, L. Overexpression of a ‘Paulownia fortunei’MYB Factor Gene, PfMYB44, Increases Salt and Drought Tolerance in Arabidopsis thaliana. Plants 2024, 13, 2264. [Google Scholar] [CrossRef] [PubMed]
- Çakır Aydemir, B.; Yüksel Özmen, C.; Kibar, U.; Mutaf, F.; Büyük, P.B.; Bakır, M.; Ergül, A. Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock. PLoS ONE 2020, 15, e0236424. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Liu, J.; Lin, Z.; Sun, W.; Wu, Z.; Hu, H.; Zhang, Y. ERF transcription factors involved in salt response in tomato. Plant Growth Regul. 2018, 84, 573–582. [Google Scholar] [CrossRef]
- Chen, G.; Zheng, D.; Feng, N.; Zhou, H.; Mu, D.; Zhao, L.; Shen, X.; Rao, G.; Meng, F.; Huang, A. Physiological mechanisms of ABA-induced salinity tolerance in leaves and roots of rice. Sci. Rep. 2022, 12, 8228. [Google Scholar] [CrossRef]
- Van Hove, J.; Stefanowicz, K.; De Schutter, K.; Eggermont, L.; Lannoo, N.; Al Atalah, B.; Van Damme, E.J. Transcriptional profiling of the lectin ArathEULS3 from Arabidopsis thaliana toward abiotic stresses. J. Plant Physiol. 2014, 171, 1763–1773. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef]
- Bolisetty, M.T.; Rajadinakaran, G.; Graveley, B.R. Determining exon connectivity in complex mRNAs by nanopore sequencing. Genome Biol. 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Spindel, J.; Begum, H.; Akdemir, D.; Virk, P.; Collard, B.; Redoña, E.; Atlin, G.; Jannink, J.-L.; McCouch, S.R. Genomic selection and association mapping in rice (Oryza sativa): Effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet. 2019, 2, 1004982. [Google Scholar]
- Singh, D.; Singh, C.K.; Taunk, J.; Jadon, V.; Pal, M.; Gaikwad, K. Genome wide transcriptome analysis reveals vital role of heat responsive genes in regulatory mechanisms of lentil (Lens culinaris Medikus). Sci. Rep. 2019, 9, 12976. [Google Scholar] [CrossRef]
- Ferrero-Serrano, Á.; Assmann, S.M. Phenotypic and genome-wide association with the local environment of Arabidopsis. Nat. Ecol. Evol. 2019, 3, 274–285. [Google Scholar] [CrossRef]
- Chu, C.; Wang, S.; Rudd, J.C.; Ibrahim, A.M.; Xue, Q.; Devkota, R.N.; Baker, J.A.; Baker, S.; Simoneaux, B.; Opena, G. A New Strategy for Using Historical Imbalanced Yield Data to Conduct Genome-Wide Association Studies and Develop Genomic Prediction Models for Wheat Breeding. Mol. Breed. 2021, 42, 18. [Google Scholar] [CrossRef] [PubMed]
- Abrouk, M.; Ahmed, H.I.; Cubry, P.; Šimoníková, D.; Cauet, S.; Pailles, Y.; Bettgenhaeuser, J.; Gapa, L.; Scarcelli, N.; Couderc, M.; et al. Fonio millet genome unlocks African orphan crop diversity for agriculture in a changing climate. Nat. Commun. 2020, 11, 4488. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Wang, X.; He, Y.; Xu, H.; Wang, L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1 -mediated sodium homeostasis. EMBO J. 2021, 40, e105086. [Google Scholar] [CrossRef]
- Danilevicz, M.F.; Tay Fernandez, C.G.; Marsh, J.I.; Bayer, P.E.; Edwards, D. Plant pangenomics: Approaches, applications and advancements. Curr. Opin. Plant Biol. 2020, 54, 18–25. [Google Scholar] [CrossRef]
- Gan, T.; Lin, Z.; Bao, L.; Hui, T.; Cui, X.; Huang, Y.; Wang, H.; Su, C.; Jiao, F.; Zhang, M.; et al. Comparative Proteomic analysis of tolerant and sensitive varieties reveals that phenylpropanoid biosynthesis contributes to salt tolerance in mulberry. Int. J. Mol. Sci. 2021, 22, 9402. [Google Scholar] [CrossRef]
- He, L.; Li, L.; Zhu, Y.; Pan, Y.; Zhang, X.; Han, X.; Li, M.; Chen, C.; Li, H.; Wang, C. BolTLP1, a thaumatin-like protein gene, confers tolerance to salt and drought stresses in broccoli (Brassica oleracea L. var. Italica). Int. J. Mol. Sci. 2021, 22, 11132. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, J.; Zhang, Y.; Xu, L.; Zhang, W.; Ni, M.; Zhu, Y.; Liu, L. Genome-wide identification and functional characterization of the cation proton antiporter (CPA) family related to salt stress response in radish (Raphanus sativus L.). Int. J. Mol. Sci. 2020, 21, 8262. [Google Scholar] [CrossRef]
- Chen, P.; Yang, J.; Mei, Q.; Liu, H.; Cheng, Y.; Ma, F.; Mao, K. Genome-wide analysis of the apple CBL family reveals that Mdcbl10.1 functions positively in modulating apple salt tolerance. Int. J. Mol. Sci. 2021, 22, 12430. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Chen, W.; Zhu, X.; Zhou, X.; Jin, Y.; Zhan, C.; Liu, G.; Liu, X.; Ma, D.; Qiao, Y. Genome-wide identification and characterization of wheat 14-3-3 genes unravels the role of TaGRF6-A in salt stress tolerance by binding MYB transcription factor. Int. J. Mol. Sci. 2021, 22, 1904. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Zheng, J.; Liu, C.; Liu, X.; Liu, X.; Gao, T.; Song, X.; Wei, Z.; Ma, F.; Li, C. Heterologous expression of the melatonin-related gene HIOMT improves salt tolerance in Malus domestica. Int. J. Mol. Sci. 2021, 22, 12425. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, Z.; Yao, W.; Zhao, K.; Wang, X.; Jiang, T. Functional characterization of PsnNAC036 under salinity and high temperature stresses. Int. J. Mol. Sci. 2021, 22, 2656. [Google Scholar] [CrossRef]
- Min, M.-H.; Maung, T.Z.; Cao, Y.; Phitaktansakul, R.; Lee, G.-S.; Chu, S.-H.; Kim, K.-W.; Park, Y.-J. Haplotype analysis of BADH1 by next-generation sequencing reveals association with salt tolerance in rice during domestication. Int. J. Mol. Sci. 2021, 22, 7578. [Google Scholar] [CrossRef]
- Witzel, K.; Matros, A.; Bertsch, U.; Aftab, T.; Rutten, T.; Ramireddy, E.; Melzer, M.; Kunze, G.; Mock, H.-P. The jacalin-related lectin HvHorcH is involved in the physiological response of barley roots to salt stress. Int. J. Mol. Sci. 2021, 22, 10248. [Google Scholar] [CrossRef]
- Yu, Z.; Yan, H.; Liang, L.; Zhang, Y.; Yang, H.; Li, W.; Choi, J.; Huang, J.; Deng, S. A C2H2-type zinc-finger protein from Millettia pinnata, MpZFP1, enhances salt tolerance in transgenic Arabidopsis. Int. J. Mol. Sci. 2021, 22, 10832. [Google Scholar] [CrossRef]
- Chun, H.J.; Baek, D.; Jin, B.J.; Cho, H.M.; Park, M.S.; Lee, S.H.; Lim, L.H.; Cha, Y.J.; Bae, D.-W.; Kim, S.T.; et al. Microtubule dynamics plays a vital role in plant adaptation and tolerance to salt stress. Int. J. Mol. Sci. 2021, 22, 5957. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Z.; Gao, J.; Wang, P.; Hu, T.; Wang, Z.; Hou, Y.-J.; Wan, Y.; Liu, W.; Xie, S.; et al. Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Rep. 2018, 23, 3340–3351.e5. [Google Scholar] [CrossRef]
- Farruggia, D.; Tortorici, N.; Iacuzzi, N.; Alaimo, F.; Leto, C.; Tuttolomondo, T. Biostimulants Improve Plant Performance of Rosemary Growth in Agricultural Organic System. Agronomy 2024, 14, 158. [Google Scholar] [CrossRef]
- Mmbando, G.S.; Ngongolo, K. The current status of the use of genetic modification and editing to improve biodiversity and ecological sustainability. All Life 2024, 17, 241719. [Google Scholar] [CrossRef]
- Ntanasi, T.; Ntatsi, G.; Karavidas, I.; Ziogas, I.; Karaolani, M.; Fortis, D.; Zioviris, G.; Fotopoulos, V.; Schubert, A.; Guillaume, M.; et al. Impact of Salinity Stress on Fruit Quality of Different Mediterranean Cherry-Type Tomato Landraces. Acta Hortic. 2023, 1372, 301–307. [Google Scholar] [CrossRef]
- Lohani, N.; Singh, M.B.; Bhalla, P.L. Biological Parts for Engineering Abiotic Stress Tolerance in Plants. Biodes Res. 2022, 2022, 9819314. [Google Scholar] [CrossRef]
- Nazir, R.; Mandal, S.; Mitra, S.; Ghorai, M.; Das, N.; Jha, N.K.; Majumder, M.; Pandey, D.K.; Dey, A. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat. Physiol. Plant. 2022, 174, e13642. [Google Scholar] [CrossRef]
- Chen, F.; Chen, L.; Yan, Z.; Xu, J.; Feng, L.; He, N.; Guo, M.; Zhao, J.; Chen, Z.; Chen, H.; et al. Recent advances of CRISPR-based genome editing for enhancing staple crops. Front. Plant Sci. 2024, 15, 1478398. [Google Scholar] [CrossRef]
- Kumar, M.; Prusty, M.R.; Pandey, M.K.; Singh, P.K.; Bohra, A.; Guo, B.; Varshney, R.K. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Front. Plant Sci. 2023, 14, 1157678. [Google Scholar] [CrossRef] [PubMed]
- Bantis, F.; Koukounaras, A. Ascophyllum nodosum and Silicon-Based Biostimulants Differentially Affect the Physiology and Growth of Watermelon Transplants under Abiotic Stress Factors: The Case of Salinity. Plants 2023, 12, 433. [Google Scholar] [CrossRef]
- Enthoven, L.; Van den Broeck, G. Local Food Systems: Reviewing Two Decades of Research. Agric. Syst. 2021, 193, 103226. [Google Scholar] [CrossRef]
- Lazaridi, E.; Kapazoglou, A.; Gerakari, M.; Kleftogianni, K.; Passa, K.; Sarri, E.; Papasotiropoulos, V.; Tani, E.; Bebeli, P.J. Crop Landraces and Indigenous Varieties: A Valuable Source of Genes for Plant Breeding. Plants 2024, 13, 758. [Google Scholar] [CrossRef]
- Thanopoulos, R.; Negri, V.; Pinheiro de Carvalho, M.A.A.; Petrova, S.; Chatzigeorgiou, T.; Terzopoulos, P.; Ralli, P.; Suso, M.J.; Bebeli, P.J. Landrace Legislation in the World: Status and Perspectives with Emphasis in EU System; Springer: Dordrecht, The Netherlands, 2024. [Google Scholar]
Aspect | Description | Examples/Impacts | References |
---|---|---|---|
Physiological Effects | Salt stress negatively affects various physiological processes, including water uptake, photosynthesis, stomatal conductance, and nutrient acquisition. | Water uptake: This is reduced due to osmotic stress, leading to dehydration and wilting. Photosynthesis: This decreases due to stomatal closure and a reduced chlorophyll content. Nutrient deficiency: Salt interferes with potassium and calcium absorption. | [43] |
Biochemical Effects | Salt stress alters biochemical pathways, leading to the accumulation of osmolytes, the production of reactive oxygen species (ROS), and changes in metabolic activities. | Osmolyte accumulation: Plants produce compatible solutes like proline and glycine betaine to maintain osmotic balance. Increased ROS production: This causes oxidative damage to membranes, proteins, and the DNA, affecting plant metabolism and growth. | [61] |
Ion Imbalance | High concentrations of sodium (Na+) and chloride (Cl−) ions disrupt nutrient ion balance (e.g., potassium and calcium), leading to toxicity and impaired cellular functions. | Sodium toxicity: Na+ competes with potassium (K+), disrupting enzymatic activities and leading to growth inhibition. Chloride toxicity: The accumulation of Cl− affects nutrient transport and enzymatic functions in leaves. | [62] |
Osmotic Stress | Excess salts in the soil lower the soil water potential, making it difficult for plants to absorb water, causing dehydration and wilting. | Reduced cell turgor: The loss of water uptake leads to cell shrinkage and impaired growth. Delayed germination: Seeds fail to germinate properly under high salinity due to the lack of water availability. | [63] |
Oxidative Damage | Salt stress induces the production of ROS, leading to oxidative stress and damaging cellular structures, proteins, lipids, and the DNA. | Lipid peroxidation: ROS causes damage to membrane lipids, leading to the leakage of ions and the loss of cellular integrity. Protein denaturation: ROS-induced damage disrupts enzymatic activities and photosynthetic machinery. | [64] |
Economic Implications | Salt stress reduces crop yields and quality, leading to economic losses in agriculture, particularly in regions dependent on irrigated farming. | Yield reduction: Crops like rice, wheat, and maize exhibit up to 50% yield losses in highly saline environments. Economic losses: Globally, salinity is responsible for billions of dollars in crop production losses each year. | [65] |
Ecological Implications | Soil salinization affects biodiversity, soil health, and ecosystem functions, making large areas of land unproductive. | Land degradation: Over 20% of irrigated land worldwide is affected by salinity, reducing arable land availability. Ecosystem disruption: High salinity leads to the loss of soil microbial diversity and negatively impacts freshwater ecosystems. | [66] |
Transcription Factor (TF) | Role in Salt Stress Response | Impacts | References |
---|---|---|---|
DREB (Dehydration-Responsive Element-Binding Protein) | Regulates gene expression in response to abiotic stresses like drought, salinity, and cold by activating stress-responsive genes in the abscisic acid (ABA)-independent pathway. | DREB1A overexpression in wheat: Enhances salt tolerance by improving water retention and ion homeostasis under saline conditions. DREB2A in Arabidopsis: Activates stress-responsive genes related to osmotic adjustment and salt tolerance. | [90] |
NAC (NAM, ATAF1/2, and CUC2) | Regulates stress-responsive genes that control plant growth, development, and stress responses, especially under high-salinity conditions. | SNAC1 in rice: Enhances drought and salt tolerance by regulating stomatal conductance and reducing water loss. NAC57 in Arabidopsis: Controls genes associated with cell-wall integrity and stress signaling pathways. | [91] |
WRKY | Modulates the expression of stress-responsive genes involved in abiotic stress tolerance, especially in oxidative stress and hormone signaling pathways. | WRKY46 in rice: Overexpression enhances salt tolerance by regulating antioxidant systems and stress-related gene expression. WRKY18 in Arabidopsis: Regulates genes involved in salinity tolerance and ROS detoxification. | [92] |
MYB (Myeloblastosis) | Regulates the expression of genes involved in secondary metabolism, cell-wall biosynthesis, and abiotic stress responses such as drought and salinity. | MYB96 in Arabidopsis: Controls salt tolerance by activating ABA signaling and promoting proline accumulation, which helps in osmotic adjustment. MYB44 in rice: Improves salt and drought tolerance by enhancing ion transport and antioxidant defense. | [93] |
bZIP (Basic Leucine Zipper) | Plays a role in ABA signaling pathways under stress conditions, regulating genes involved in osmotic adjustment and ion transport. | bZIP17 in Arabidopsis: Functions in the endoplasmic reticulum (ER)’s stress response, improving plant tolerance to salt stress by regulating ion transporters and stress-related genes. | [94] |
AP2/ERF (APETALA2/Ethylene-Responsive Factor) | Regulates stress-responsive genes, particularly those related to ethylene signaling and osmotic stress responses, including ion transport and detoxification. | ERF1 in Arabidopsis: Increases salt tolerance by regulating ion transport and antioxidant defense. ERF5 in tomato: Enhances salt tolerance by activating the genes involved in ion homeostasis and reducing Na+ accumulation in tissues. | [95] |
HD-Zip (Homeodomain-Leucine Zipper) | Regulates stress responses, including salt stress, by controlling developmental processes, hormone signaling, and abiotic stress tolerance mechanisms. | HD-Zip1 in rice: Improves salt tolerance by enhancing ABA-mediated responses and ion transport under saline conditions. ATHB-7 in Arabidopsis: Functions in salt and drought tolerance through the regulation of stress-responsive genes. | [96,97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.K.; Pal, P.; Sahoo, U.K.; Sharma, L.; Pandey, B.; Prakash, A.; Sarangi, P.K.; Prus, P.; Pașcalău, R.; Imbrea, F. Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress. Int. J. Mol. Sci. 2024, 25, 12537. https://doi.org/10.3390/ijms252312537
Singh AK, Pal P, Sahoo UK, Sharma L, Pandey B, Prakash A, Sarangi PK, Prus P, Pașcalău R, Imbrea F. Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress. International Journal of Molecular Sciences. 2024; 25(23):12537. https://doi.org/10.3390/ijms252312537
Chicago/Turabian StyleSingh, Akhilesh Kumar, Priti Pal, Uttam Kumar Sahoo, Laxuman Sharma, Brijesh Pandey, Anand Prakash, Prakash Kumar Sarangi, Piotr Prus, Raul Pașcalău, and Florin Imbrea. 2024. "Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress" International Journal of Molecular Sciences 25, no. 23: 12537. https://doi.org/10.3390/ijms252312537
APA StyleSingh, A. K., Pal, P., Sahoo, U. K., Sharma, L., Pandey, B., Prakash, A., Sarangi, P. K., Prus, P., Pașcalău, R., & Imbrea, F. (2024). Enhancing Crop Resilience: The Role of Plant Genetics, Transcription Factors, and Next-Generation Sequencing in Addressing Salt Stress. International Journal of Molecular Sciences, 25(23), 12537. https://doi.org/10.3390/ijms252312537