Genome-Wide Analysis of BURP Domain-Containing Gene Family in Solanum lycopersicum and Functional Analysis of SlRD1 Under Drought and Salt Stresses
Abstract
:1. Introduction
2. Results
2.1. Identification of BURP Gene in Tomato
2.2. Phylogenetic Analysis and Chromosomal Location of SlBURPs
2.3. Gene Structure and Conserved Motif Analysis of SlBURPs
2.4. Cis-Acting Element Analysis in Putative SlBURP Promoters
2.5. Tissue Expression of SlBURPs
2.6. Expression Analysis of SlBURPs Under Abiotic Treatments
2.7. Expression Analysis of SlBURPs Under ABA Treatment
2.8. SlRD1 Improved Salt and Drought Tolerance of Transgenic Arabidopsis
2.9. SlRD1 Improved ABA Sensitivity of Transgenic Arabidopsis Seeds
3. Discussion
4. Materials and Methods
4.1. SlBURP Family Member Identification in Tomato
4.2. SlBURP Phylogeny, Chromosomal Location and Duplication Analysis
4.3. SlBURP Gene Structures and Conserved Motifs
4.4. Cis-Acting Elements in SlBURP Promoters
4.5. Plant Growth and Treatments
4.6. RNA Extraction and qRT-PCR Analysis
4.7. Generation of SlRD1 Transgenic Arabidopsis Plants
4.8. Stress Treatments of SlRD1 Transgenic Arabidopsis Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albacete, A.; Ghanem, M.E.; Martínez-Andújar, C.; Acosta, M.; Sánchez-Bravo, J.; Martínez, V.; Lutts, S.; Dodd, I.C.; Pérez-Alfocea, F. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. J Exp. Bot. 2008, 59, 4119–4131. [Google Scholar] [CrossRef]
- Liang, Y.; Ma, F.; Li, B.; Guo, C.; Hu, T.; Zhang, M.; Liang, Y.; Zhu, J.; Zhan, X. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato. Hortic. Res. 2022, 9, uhac198. [Google Scholar] [CrossRef]
- Yu, S.; Yang, F.; Zou, Y.; Yang, Y.; Li, T.; Chen, S.; Wang, Y.; Xu, K.; Xia, H.; Luo, L. Overexpressing PpBURP2 in rice increases plant defense to abiotic stress and bacterial leaf blight. Front. Plant. Sci. 2022, 13, 812279. [Google Scholar] [CrossRef]
- Liu, H.; Ma, Y.; Chen, N.; Guo, S.; Liu, H.; Guo, X.; Chong, K.; Xu, Y. Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice. Plant Cell Environ. 2014, 37, 1144–1158. [Google Scholar] [CrossRef]
- Harshavardhan, V.T.; Van Son, L.; Seiler, C.; Junker, A.; Weigelt-Fischer, K.; Klukas, C.; Altmann, T.; Sreenivasulu, N.; Bäumlein, H.; Kuhlmann, M. AtRD22 and AtUSPL1, members of the plant-specific BURP domain family involved in Arabidopsis thaliana drought tolerance. PLoS ONE 2014, 9, e110065. [Google Scholar] [CrossRef]
- Sun, H.; Wei, H.; Wang, H.; Hao, P.; Gu, L.; Liu, G.; Ma, L.; Su, Z.; Yu, S. Genome-wide identification and expression analysis of the BURP domain-containing genes in Gossypium hirsutum. BMC Genom. 2019, 20, 558. [Google Scholar] [CrossRef]
- Li, Y.; Chen, X.; Chen, Z.; Cai, R.; Zhang, H.; Xiang, Y. Identification and expression analysis of BURP domain-containing genes in Medicago truncatula. Front. Plant Sci. 2016, 7, 485. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.; Li, X. Identification and expression analysis of BURP domain-containing genes in jujube and their involvement in low temperature and drought response. BMC Genom. 2022, 23, 692. [Google Scholar] [CrossRef]
- Kavas, M.; Yıldırım, K.; Seçgin, Z.; Abdulla, M.F.; Gökdemir, G. Genome-wide identification of the BURP domain-containing genes in Phaseolus vulgaris. Physiol. Mol. Biol. Plants. 2021, 27, 1885–1902. [Google Scholar] [CrossRef]
- Fu, L.; Zhang, Z.; Wang, H.; Zhao, X.; Su, L.; Geng, L.; Lu, Y.; Tong, B.; Liu, Q.; Jiang, X. Genome-wide analysis of BURP genes and identification of a BURP-V gene RcBURP4 in Rosa chinensis. Plant Cell Rep. 2022, 41, 395–413. [Google Scholar] [CrossRef]
- Teerawanichpan, P.; Xia, Q.; Caldwell, S.J.; Datla, R.; Selvaraj, G. Protein storage vacuoles of Brassica napus zygotic embryos accumulate a BURP domain protein and perturbation of its production distorts the PSV. Plant Mol. Biol. 2009, 71, 331. [Google Scholar] [CrossRef]
- Chesnokov, Y.V.; Meister, A.; Manteuffel, R. A chimeric green fluorescent protein gene as an embryogenic marker in transgenic cell culture of Nicotiana plumbaginifolia Viv. Plant Sci. 2002, 162, 59–77. [Google Scholar] [CrossRef]
- Chen, L.; Miyazaki, C.; Kojimai, A.; Saito, A.; Adachi, T. Isolation and characterization of a gene expressed during early embryo sac development in apomictic guinea grass (Panicum maximum). J. Plant Physiol. 1999, 154, 55–62. [Google Scholar] [CrossRef]
- Wang, A.; Xia, Q.; Xie, W.; Datla, R.; Selvaraj, G. The classical Ubisch bodies carry a sporophytically produced structural protein (RAFTIN) that is essential for pollen development. Proc. Natl. Acad. Sci. USA 2003, 100, 14487–14492. [Google Scholar] [CrossRef]
- Jeon, J.S.; Chung, Y.Y.; Lee, S.; Yi, G.H.; Oh, B.G.; An, G. Isolation and characterization of an anther-specific gene, RA8, from rice (Oryza sativa L.). Plant Mol. Biol. 1999, 39, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Van Son, L.; Tiedemann, J.; Rutten, T.; Hillmer, S.; Hinz, G.; Zank, T.; Manteuffel, R.; Bäumlein, H. The BURP domain protein AtUSPL1 of Arabidopsis thaliana is destined to the protein storage vacuoles and overexpression of the cognate gene distorts seed development. Plant Mol. Biol. 2009, 71, 319–329. [Google Scholar] [CrossRef]
- Batchelor, A.K.; Boutilier, K.; Miller, S.S.; Hattori, J.; Bowman, L.A.; Hu, M.; Lantin, S.; Johnson, D.A.; Miki, B.L. SCB1, a BURP-domain protein gene, from developing soybean seed coats. Planta 2002, 215, 523–532. [Google Scholar] [CrossRef]
- Shan, C.M.; Shangguan, X.X.; Zhao, B.; Zhang, X.F.; Chao, L.M.; Yang, C.Q.; Wang, L.J.; Zhu, H.Y.; Zeng, Y.D.; Guo, W.Z.; et al. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nat. Commun. 2014, 5, 5519. [Google Scholar] [CrossRef]
- Watson, C.F.; Zheng, L.; DellaPenna, D. Reduction of tomato polygalacturonase beta subunit expression affects pectin solubilization and degradation during fruit ripening. Plant Cell 1994, 6, 1623–1634. [Google Scholar] [CrossRef]
- Zheng, L.; Heupel, R.C.; DellaPenna, D. The beta subunit of tomato fruit polygalacturonase isoenzyme 1: Isolation, characterization, and identification of unique structural features. Plant Cell 1992, 4, 1147–1156. [Google Scholar] [CrossRef]
- Dong, Q.; Tian, Y.; Zhang, X.; Duan, D.; Zhang, H.; Yang, K.; Jia, P.; Luan, H.; Guo, S.; Qi, G.; et al. Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple. Hortic. Plant J. 2024, 10, 629–640. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, L.; Fu, Y.P.; Cheung, M.Y.; Wong, F.L.; Phang, T.H.; Sun, Z.X.; Lam, H.M. Expression of an apoplast-localized BURP-domain protein from soybean (GmRD22) enhances tolerance towards abiotic stress. Plant Cell Environ. 2012, 35, 1932–1947. [Google Scholar] [CrossRef]
- Banzai, T.; Sumiya, K.; Hanagata, N.; Dubinsky, Z.; Karube, I. Molecular cloning and characterization of genes encoding BURP domain-containing protein in the mangrove, Bruguiera gymnorrhiza. Trees 2002, 16, 87–93. [Google Scholar] [CrossRef]
- Tang, Y.; Cao, Y.; Gao, Z.; Ou, Z.; Wang, Y.; Qiu, J.; Zheng, Y. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses. PLoS ONE 2014, 9, e98830. [Google Scholar] [CrossRef]
- Chitkara, P.; Poddar, N.; Singh, A.; Kumar, S. BURP domain-containing genes in legumes: Genome-wide identification, structure, and expression analysis under stresses and development. Plant Biotechnol. Rep. 2022, 16, 369–388. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Yan, Y.; Wang, K.; Gao, Y.; Hu, Y. Genome-scale identification of soybean BURP domain-containing genes and their expression under stress treatments. BMC Plant Biol. 2010, 10, 197. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.; Ludidi, N. Drought and exogenous abscisic acid alter hydrogen peroxide accumulation and differentially regulate the expression of two maize RD22-like genes. Sci. Rep. 2017, 7, 8821. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, L.; Zuo, K.; Li, Z.; Tang, K. Isolation and characterization of a BURP domain-containing gene BnBDC1 from Brassica napus involved in abiotic and biotic stress. Physiol. Plant. 2004, 122, 210–218. [Google Scholar]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic. Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun, X.; Zhou, J.; Liu, L.; Huang, L.; Hu, Q. Identification and functional exploration of BraGASA genes reveal their potential roles in drought stress tolerance and sexual reproduction in Brassica rapa L. ssp. pekinensis. Int. J. Mol. Sci. 2024, 25, 9643. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein identification and analysis tools in the ExPASy server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Fu, Y.; Cheng, M.; Li, M.; Guo, X.; Wu, Y.; Wang, J. Identification and characterization of PLATZ transcription factors in wheat. Int. J. Mol. Sci. 2020, 21, 8934. [Google Scholar] [CrossRef]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods. 2011, 8, 785–786. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic. Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Zhang, X.; Henriques, R.; Lin, S.S.; Niu, Q.W.; Chua, N.H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 2006, 1, 641–646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Yang, J.; Fan, B.; Ren, M.; Wang, Y.; Chen, G.; Cheng, G. Genome-Wide Analysis of BURP Domain-Containing Gene Family in Solanum lycopersicum and Functional Analysis of SlRD1 Under Drought and Salt Stresses. Int. J. Mol. Sci. 2024, 25, 12539. https://doi.org/10.3390/ijms252312539
Sun H, Yang J, Fan B, Ren M, Wang Y, Chen G, Cheng G. Genome-Wide Analysis of BURP Domain-Containing Gene Family in Solanum lycopersicum and Functional Analysis of SlRD1 Under Drought and Salt Stresses. International Journal of Molecular Sciences. 2024; 25(23):12539. https://doi.org/10.3390/ijms252312539
Chicago/Turabian StyleSun, Huiru, Jinyu Yang, Bei Fan, Min Ren, Yanfeng Wang, Guoliang Chen, and Guoting Cheng. 2024. "Genome-Wide Analysis of BURP Domain-Containing Gene Family in Solanum lycopersicum and Functional Analysis of SlRD1 Under Drought and Salt Stresses" International Journal of Molecular Sciences 25, no. 23: 12539. https://doi.org/10.3390/ijms252312539
APA StyleSun, H., Yang, J., Fan, B., Ren, M., Wang, Y., Chen, G., & Cheng, G. (2024). Genome-Wide Analysis of BURP Domain-Containing Gene Family in Solanum lycopersicum and Functional Analysis of SlRD1 Under Drought and Salt Stresses. International Journal of Molecular Sciences, 25(23), 12539. https://doi.org/10.3390/ijms252312539