Molecular Mechanism of Action of Endocrine-Disrupting Chemicals on the Respiratory System
Abstract
:1. Introduction
2. Effects on Lung Physiology
2.1. Fetal and Neonatal Development
2.2. Respiratory Function
2.3. Inflammation and Remodeling
2.4. Blood–Air Barrier
3. EDCs and Lung Diseases
3.1. Asthma and Allergies
3.2. Chronic Obstructive Pulmonary Disease
3.3. Lung Cancer
3.4. Pulmonary Fibrosis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tikariha, R. Chemical Nature and Mechanism of Endocrine Disruptors (EDs): A Critical Review. In Environmental Endocrine Toxicants; Apple Academic Press: Palm Bay, FL, USA, 2023; pp. 1–15. [Google Scholar]
- Warner, G.R.; Mourikes, V.E.; Neff, A.M.; Brehm, E.; Flaws, J.A. Mechanisms of action of agrochemicals acting as endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2020, 502, 110680. [Google Scholar] [CrossRef] [PubMed]
- Kabir, E.R.; Rahman, M.S.; Rahman, I. A review on endocrine disruptors and their possible impacts on human health. Environ. Toxicol. Pharmacol. 2015, 40, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.-T.; Samsudin, H.; Soto-Valdez, H. Migration of endocrine-disrupting chemicals into food from plastic packaging materials: An overview of chemical risk assessment, techniques to monitor migration, and international regulations. Crit. Rev. Food Sci. Nutr. 2022, 62, 957–979. [Google Scholar] [CrossRef] [PubMed]
- Plunk, E.C.; Richards, S.M. Endocrine-disrupting air pollutants and their effects on the hypothalamus-pituitary-gonadal axis. Int. J. Mol. Sci. 2020, 21, 9191. [Google Scholar] [CrossRef]
- Panagopoulos, P.; Mavrogianni, D.; Christodoulaki, C.; Drakaki, E.; Chrelias, G.; Panagiotopoulos, D.; Potiris, A.; Drakakis, P.; Stavros, S. Effects of endocrine disrupting compounds on female fertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102347. [Google Scholar] [CrossRef]
- Raja, G.L.; Subhashree, K.D.; Kantayya, K.E. In utero exposure to endocrine disruptors and developmental neurotoxicity: Implications for behavioural and neurological disorders in adult life. Environ. Res. 2022, 203, 111829. [Google Scholar] [CrossRef]
- Domańska, A.; Orzechowski, A.; Litwiniuk, A.; Kalisz, M.; Bik, W.; Baranowska-Bik, A. The beneficial role of natural endocrine disruptors: Phytoestrogens in Alzheimer’s disease. Oxidative Med. Cell. Longev. 2021, 2021, 3961445. [Google Scholar] [CrossRef]
- Maggio, E.L.; Zucca, C.; Grande, M.; Carrano, R.; Infante, A.; Bei, R.; Lucarini, V.; De Maio, F.; Focaccetti, C.; Palumbo, C.; et al. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J. Xenobiotics 2024, 14, 1378–1405. [Google Scholar] [CrossRef] [PubMed]
- Araiza, V.H.; Segovia-Mendoza, M.; Castro, K.E.; Cruz, S.M.; Rueda, K.C.; de Leon, C.T.; Montor, J.M. Bisphenol A: An endocrine-disruptor compound that modulates the immune response to infections. Front. Biosci.-Landmark 2020, 26, 346–362. [Google Scholar] [CrossRef]
- Burgos-Aceves, M.A.; Migliaccio, V.; Di Gregorio, I.; Paolella, G.; Lepretti, M.; Faggio, C.; Lionetti, L. 1, 1, 1-trichloro-2, 2-bis (p-chlorophenyl)-ethane (DDT) and 1, 1-Dichloro-2, 2-bis (p, p’-chlorophenyl) ethylene (DDE) as endocrine disruptors in human and wildlife: A possible implication of mitochondria. Environ. Toxicol. Pharmacol. 2021, 87, 103684. [Google Scholar] [CrossRef]
- Sirohi, D.; Al Ramadhani, R.; Knibbs, L.D. Environmental exposures to endocrine disrupting chemicals (EDCs) and their role in endometriosis: A systematic literature review. Rev. Environ. Health 2021, 36, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Shi, Q.; Liu, C.; Sun, Q.; Zeng, X. Effects of endocrine-disrupting heavy metals on human health. Toxics 2023, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Endocrine disrupting chemicals and breast cancer: A systematic review of epidemiological studies. Crit. Rev. Food Sci. Nutr. 2022, 62, 6549–6576. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chen, J.; Zhang, J.; Zhou, F.; Zhao, J.; Wei, X.; Zheng, K.; Wu, J.; Li, B.; Pan, B. Toxicity and endocrine-disrupting potential of PM2.5: Association with particulate polycyclic aromatic hydrocarbons, phthalate esters, and heavy metals. Environ. Pollut. 2022, 292, 118349. [Google Scholar] [CrossRef] [PubMed]
- Bodziach, K.; Staniszewska, M.; Falkowska, L.; Nehring, I.; Ożarowska, A.; Zaniewicz, G.; Meissner, W. Gastrointestinal and respiratory exposure of water birds to endocrine disrupting phenolic compounds. Sci. Total Environ. 2021, 754, 142435. [Google Scholar] [CrossRef]
- D’amico, R.; Di Paola, D.; Impellizzeri, D.; Genovese, T.; Fusco, R.; Peritore, A.F.; Gugliandolo, E.; Crupi, R.; Interdonato, L.; Cuzzocrea, S.; et al. Chronic Exposure to Endocrine Disruptor Vinclozolin Leads to Lung Damage via Nrf2–Nf-kb Pathway Alterations. Int. J. Mol. Sci. 2022, 23, 11320. [Google Scholar] [CrossRef]
- Campolim, C.M.; Weissmann, L.; Ferreira, C.K.; Zordão, O.P.; Dornellas, A.P.; de Castro, G.; Zanotto, T.M.; Boico, V.F.; Quaresma, P.G.; Lima, R.P.; et al. Short-term exposure to air pollution (PM2.5) induces hypothalamic inflammation, and long-term leads to leptin resistance and obesity via Tlr4/Ikbke in mice. Sci. Rep. 2020, 10, 10160. [Google Scholar] [CrossRef]
- Bolaji, J.A. Indoor Environmental Irritant, Dibutyl Phthalate (DBP) and Sensory Irritation in the Airway: Contribution to Asthma Symptoms? Imperial College London: London, UK, 2020. [Google Scholar]
- Casas, M.; Gascon, M. Prenatal Exposure to Endocrine-Disrupting Chemicals and Asthma and Allergic Diseases. J. Investig. Allergol. Clin. Immunol. 2020, 30, 215–228. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Y.; Wang, L.; Cao, M.; Cao, H.; Song, M.; Qian, Y.; Wang, T.; Liang, Y.; Jiang, G. COPD-Like Phenotypes in TBC-Treated Mice Can be Effectively Alleviated via Estrogen Supplement. Environ. Sci. Technol. 2024, 58, 17227–17234. [Google Scholar] [CrossRef]
- Adegoke, E.O.; Rahman, M.S.; Park, Y.J.; Kim, Y.J.; Pang, M.G. Endocrine-disrupting chemicals and infectious diseases: From endocrine disruption to immunosuppression. Int. J. Mol. Sci. 2021, 22, 3939. [Google Scholar] [CrossRef]
- Mousavi, S.E.; Delgado-Saborit, J.M.; Adivi, A.; Pauwels, S.; Godderis, L. Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms. Sci. Total Environ. 2022, 816, 151654. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.-R.; Xu, X.-L.; Deng, S.-L.; Lian, Z.-X.; Yu, K. Oestrogenic endocrine disruptors in the placenta and the fetus. Int. J. Mol. Sci. 2020, 21, 1519. [Google Scholar] [CrossRef] [PubMed]
- Abellan, A.; Mensink-Bout, S.M.; Garcia-Esteban, R.; Beneito, A.; Chatzi, L.; Duarte-Salles, T.; Fernandez, M.F.; Garcia-Aymerich, J.; Granum, B.; Iñiguez, C.; et al. In utero exposure to bisphenols and asthma, wheeze, and lung function in school-age children: A prospective meta-analysis of 8 European birth cohorts. Environ. Int. 2022, 162, 107178. [Google Scholar] [CrossRef]
- Guarnotta, V.; Amodei, R.; Frasca, F.; Aversa, A.; Giordano, C. Impact of chemical endocrine disruptors and hormone modulators on the endocrine system. Int. J. Mol. Sci. 2022, 23, 5710. [Google Scholar] [CrossRef]
- Kirtana, A.; Seetharaman, B. Comprehending the role of endocrine disruptors in inducing epigenetic toxicity. Endocr. Metab. Immune Disord. Drug Targets Former. Curr. Drug Targets-Immune Endocr. Metab. Disord. 2022, 22, 1059–1072. [Google Scholar] [CrossRef]
- Basak, S.; Das, M.K.; Duttaroy, A.K. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res. 2020, 112, 1308–1325. [Google Scholar] [CrossRef]
- Buoso, E.; Masi, M.; Racchi, M.; Corsini, E. Endocrine-disrupting chemicals’(EDCs) effects on tumour microenvironment and cancer progression: Emerging contribution of RACK1. Int. J. Mol. Sci. 2020, 21, 9229. [Google Scholar] [CrossRef]
- Sharma, D.; Bhartiya, D. Dysfunctional ovarian stem cells due to neonatal endocrine disruption result in PCOS and ovarian insufficiency in adult mice. Stem Cell Rev. Rep. 2022, 18, 2912–2927. [Google Scholar] [CrossRef] [PubMed]
- Palacios-Arreola, M.I.; Moreno-Mendoza, N.A.; Nava-Castro, K.E.; Segovia-Mendoza, M.; Perez-Torres, A.; Garay-Canales, C.A.; Morales-Montor, J. The endocrine disruptor compound bisphenol-A (BPA) regulates the intra-tumoral immune microenvironment and increases lung metastasis in an experimental model of breast cancer. Int. J. Mol. Sci. 2022, 23, 2523. [Google Scholar] [CrossRef]
- Wu, M.; Wang, S.; Weng, Q.; Chen, H.; Shen, J.; Li, Z.; Wu, Y.; Zhao, Y.; Li, M.; Wu, Y.; et al. Prenatal and postnatal exposure to Bisphenol A and Asthma: A systemic review and meta-analysis. J. Thorac. Dis. 2021, 13, 1684. [Google Scholar] [CrossRef]
- Boissiere-O’neill, T.; Lee, W.R.; Blake, T.L.; Sly, P.D.; Vilcins, D. Exposure to endocrine-disrupting plasticisers and lung function in children and adolescents: A systematic review and meta-analysis. Environ. Res. 2023, 243, 117751. [Google Scholar] [CrossRef] [PubMed]
- Shah, R. Pesticides and human health. In Emerging Contaminants; Springer: New York, NY, USA, 2020; pp. 1–22. [Google Scholar]
- Dodson, R.E.; Nishioka, M.; Standley, L.J.; Perovich, L.J.; Brody, J.G.; Rudel, R.A. Endocrine disruptors and asthma-associated chemicals in consumer products. Environ. Health Perspect. 2012, 120, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, L.; Sui, P.; Chen, J.; Moya, E.A.; Hume, P.; Janssen, W.J.; Duran, J.M.; Thistlethwaite, P.; Carlin, A.; et al. Excess neuropeptides in lung signal through endothelial cells to impair gas exchange. Dev. Cell 2022, 57, 839–853.e6. [Google Scholar] [CrossRef] [PubMed]
- Loffredo, L.F.; Coden, M.E.; Berdnikovs, S. Endocrine disruptor bisphenol A (BPA) triggers systemic para-inflammation and is sufficient to induce airway allergic sensitization in mice. Nutrients 2020, 12, 343. [Google Scholar] [CrossRef]
- Brassea-Pérez, E.; Hernández-Camacho, C.J.; Labrada-Martagón, V.; Vázquez-Medina, J.P.; Gaxiola-Robles, R.; Zenteno-Savín, T. Oxidative stress induced by phthalates in mammals: State of the art and potential biomarkers. Environ. Res. 2022, 206, 112636. [Google Scholar] [CrossRef]
- Lee, G.H.; Jin, S.W.; Choi, J.H.; Han, E.H.; Hwang, Y.P.; Choi, C.Y.; Jeong, H.G. Influence of o, p′-DDT on MUC5AC expression via regulation of NF-κB/AP-1 activation in human lung epithelial cells. J. Toxicol. Environ. Health Part A 2021, 84, 836–845. [Google Scholar] [CrossRef]
- Hoang, T.T.; Qi, C.; Paul, K.C.; Lee, M.; White, J.D.; Richards, M.; Auerbach, S.S.; Long, S.; Shrestha, S.; Wang, T.; et al. Epigenome-wide DNA methylation and pesticide use in the agricultural lung health study. Environ. Health Perspect. 2021, 129, 097008. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Goodrich, J.M.; Strakovsky, R.S. Mitochondrial epigenetics and environmental health: Making a case for endocrine disrupting chemicals. Toxicol. Sci. 2020, 178, 16–25. [Google Scholar] [CrossRef]
- Reddam, A.; McLarnan, S.; Kupsco, A. Environmental chemical exposures and mitochondrial dysfunction: A review of recent literature. Curr. Environ. Health Rep. 2022, 9, 631–649. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Liu, X.; Zhu, J.; Wang, F.; Li, B.; Li, L. Effects of PM2.5 exposure on reproductive system and its mechanisms. Chemosphere 2021, 264, 128436. [Google Scholar] [CrossRef]
- Quoc, Q.L.; Cao, T.B.T.; Kim, S.-H.; Choi, Y.; Ryu, M.S.; Choi, Y.; Park, H.-S.; Shin, Y.S. Endocrine-disrupting chemical exposure augments neutrophilic inflammation in severe asthma through the autophagy pathway. Food Chem. Toxicol. 2023, 175, 113699. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, S.; Bimonte, V.M.; Besharat, Z.M.; Sabato, C.; Lenzi, A.; Crescioli, C.; Ferretti, E. Environmental contaminants acting as endocrine disruptors modulate atherogenic processes: New risk factors for cardiovascular diseases in women? Biomolecules 2021, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ma, T.; Ma, D.; Li, H.; Hua, L.M.; He, Q.; Deng, X. The impact of air pollution on neurodegenerative diseases. Ther. Drug Monit. 2021, 43, 69–78. [Google Scholar] [CrossRef]
- Celen, H.; Dens, A.-C.; Ronsmans, S.; Michiels, S.; De Langhe, E. Airborne pollutants as potential triggers of systemic autoimmune rheumatic diseases: A narrative review. Acta Clin. Belg. 2022, 77, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Ghassabian, A.; Vandenberg, L.; Kannan, K.; Trasande, L. Endocrine-disrupting chemicals and child health. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 573–594. [Google Scholar] [CrossRef]
- Yanagisawa, R.; Koike, E.; Win-Shwe, T.-T.; Takano, H. Effects of oral exposure to low-dose Bisphenol S on allergic asthma in mice. Int. J. Mol. Sci. 2022, 23, 10790. [Google Scholar] [CrossRef]
- Quoc, Q.L.; Bich, T.C.T.; Kim, S.-H.; Ryu, M.S.; Park, H.-S.; Shin, Y.S. Mono-n-butyl phthalate regulates nuclear factor erythroid 2–related factor 2 and nuclear factor kappa B pathway in an ovalbumin-induced asthma mouse model. Food Chem. Toxicol. 2022, 166, 113171. [Google Scholar] [CrossRef]
- Ramírez, V.; Robles-Aguilera, V.; Salcedo-Bellido, I.; Gálvez-Ontiveros, Y.; Rodrigo, L.; Martinez-Gonzalez, L.J.; Monteagudo, C.; Álvarez-Cubero, M.J.; Rivas, A. Effects of genetic polymorphisms in body mass index according to dietary exposure to bisphenols and parabens. Chemosphere 2022, 293, 133421. [Google Scholar] [CrossRef] [PubMed]
- Erden, E.S.; Motor, S.; Ustun, I.; Demirköse, M.; Yuksel, R.; Okur, R.; Oktar, S.; Yakar, Y.; Sungur, S.; Gokce, C. Investigation of Bisphenol A as an endocrine disruptor, total thiol, malondialdehyde, and C-reactive protein levels in chronic obstructive pulmonary disease. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3477–3483. [Google Scholar]
- Xing, J.; Zhang, S.; Zhang, M.; Hou, J. A critical review of presence, removal and potential impacts of endocrine disruptors bisphenol A. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2022, 254, 109275. [Google Scholar] [CrossRef]
- Faheem, N.M.; El Askary, A.; Gharib, A.F. Lycopene attenuates bisphenol A–induced lung injury in adult albino rats: A histological and biochemical study. Environ. Sci. Pollut. Res. 2021, 28, 49139–49152. [Google Scholar] [CrossRef] [PubMed]
- Voynow, J.A.; Shinbashi, M. Neutrophil elastase and chronic lung disease. Biomolecules 2021, 11, 1065. [Google Scholar] [CrossRef] [PubMed]
- Wooding, D.J.; Ryu, M.H.; Li, H.; Alexis, N.E.; Pena, O.; Carlsten, C. Acute air pollution exposure alters neutrophils in never-smokers and at-risk humans. Eur. Respir. J. 2020, 55, 1901495. [Google Scholar] [CrossRef] [PubMed]
- Rosyid, A.N.; Saputra, P.B.T.; Purwati, D.D.; Ulhaq, A.U.D.; Yolanda, S.; Djatioetomo, Y.C.E.D.; Bakhtiar, A. Neutrophil Elastase in the Pathogenesis of Chronic Obstructive Pulmonary Disease: A Review. Curr. Respir. Med. Rev. 2023, 19, 29–35. [Google Scholar] [CrossRef]
- Fang, L.; Sun, Q.; Roth, M. Immunologic and non-immunologic mechanisms leading to airway remodeling in asthma. Int. J. Mol. Sci. 2020, 21, 757. [Google Scholar] [CrossRef]
- Wang, W.-J.; Peng, K.; Lu, X.; Zhu, Y.-Y.; Li, Z.; Qian, Q.-H.; Yao, Y.-X.; Fu, L.; Wang, Y.; Huang, Y.-C.; et al. Long-term cadmium exposure induces chronic obstructive pulmonary disease-like lung lesions in a mouse model. Sci. Total Environ. 2023, 879, 163073. [Google Scholar] [CrossRef]
- Li, Q.; Sun, J.; Chen, X.; Li, S.; Wang, Y.; Xu, C.; Zhao, J.; Zhu, Z.; Tian, L. Integrative characterization of fine particulate matter-induced chronic obstructive pulmonary disease in mice. Sci. Total Environ. 2020, 706, 135687. [Google Scholar] [CrossRef]
- Birnbaum, L.S.; Fenton, S.E. Cancer and developmental exposure to endocrine disruptors. Environ. Health Perspect. 2003, 111, 389–394. [Google Scholar] [CrossRef]
- Calaf, G.M.; Ponce-Cusi, R.; Aguayo, F.; Bleak, T.C.; Muñoz, J.P. Endocrine disruptors from the environment affecting breast cancer. Oncol. Lett. 2020, 20, 19–32. [Google Scholar] [CrossRef]
- Jiang, C.-L.; He, S.-W.; Zhang, Y.-D.; Duan, H.-X.; Huang, T.; Huang, Y.-C.; Li, G.-F.; Wang, P.; Ma, L.-J.; Zhou, G.-B.; et al. Air pollution and DNA methylation alterations in lung cancer: A systematic and comparative study. Oncotarget 2017, 8, 1369. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, L.; Zhang, Y.; Zhao, Y.; Liu, Y. Air pollution: A culprit of lung cancer. J. Hazard. Mater. 2022, 434, 128937. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.M.; Choi, J.-S.; Lee, J.Y.; Kim, S.; Bae, W.-Y.; Jang, Y.W.; Kim, J.-E.; Lee, S.H.; Nam, S.; Jeong, J.-W. Mild exposure to fine particulate matter promotes angiogenesis in non-small cell lung carcinoma. Environ. Pollut. 2023, 329, 121715. [Google Scholar] [CrossRef] [PubMed]
- Asanov, M.; Bonassi, S.; Proietti, S.; Minina, V.I.; Tomino, C.; El-Zein, R. Genomic instability in chronic obstructive pulmonary disease and lung cancer: A systematic review and meta-analysis of studies using the micronucleus assay. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108344. [Google Scholar] [CrossRef]
- Attafi, I.M.; Bakheet, S.A.; Korashy, H.M. The role of NF-κB and AhR transcription factors in lead-induced lung toxicity in human lung cancer A549 cells. Toxicol. Mech. Methods 2020, 30, 197–207. [Google Scholar] [CrossRef]
- D’amico, R.; Monaco, F.; Fusco, R.; Siracusa, R.; Impellizzeri, D.; Peritore, A.F.; Crupi, R.; Gugliandolo, E.; Cuzzocrea, S.; Di Paola, R.; et al. Atrazine inhalation worsen pulmonary fibrosis regulating the nuclear factor-erythroid 2-related factor (Nrf2) pathways inducing brain comorbidities. Cell. Physiol. Biochem 2021, 55, 704–725. [Google Scholar] [PubMed]
- Genovese, T.; Duranti, A.; Monaco, F.; Siracusa, R.; Fusco, R.; Impellizzeri, D.; D’Amico, R.; Cordaro, M.; Cuzzocrea, S.; Di Paola, R. Inhibition of Fatty Acid Amide Hydrolase (FAAH) Regulates NF-kb Pathways Reducing Bleomycin-Induced Chronic Lung Inflammation and Pulmonary Fibrosis. Int. J. Mol. Sci. 2023, 24, 10125. [Google Scholar] [CrossRef]
- Siswanto, S.; Wardhani, B.W. Association of Environmental Pollutants Exposure with Pulmonary Fibrosis: A Mini Review of Molecular Mechanism Mediated. Pharm. Sci. Res. 2022, 9, 2. [Google Scholar]
- Xiao, T.; Zou, Z.; Xue, J.; Syed, B.M.; Sun, J.; Dai, X.; Shi, M.; Li, J.; Wei, S.; Tang, H.; et al. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. Environ. Pollut. 2021, 268, 115810. [Google Scholar] [CrossRef]
- Majewski, S.; Piotrowski, W.J. Air pollution—An overlooked risk factor for idiopathic pulmonary fibrosis. J. Clin. Med. 2020, 10, 77. [Google Scholar] [CrossRef]
Origin | Mechanism of Action | Examples of Substances | Reference |
---|---|---|---|
Natural | Hormonal agonism | Phytoestrogens (soy isoflavones, lignans) | [8] |
Hormonal antagonism | Genistein (found in some legumes) | [9] | |
Synthetic | Hormonal agonism | Bisphenol A (BPA), phthalates (DEHP, DBP) | [10] |
Hormonal antagonism | DDT, some organochlorine pesticides | [11] | |
Disruption of hormone synthesis | Dioxins, polychlorinated biphenyls (PCBs) | [12] | |
Alteration of hormone transport | Heavy metals (mercury, lead, cadmium) | [13] | |
Modification of hormone metabolism | Some pharmaceuticals (oral contraceptives, antiandrogens) | [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molinari, F.; Franco, G.A.; Tranchida, N.; Di Paola, R.; Cordaro, M. Molecular Mechanism of Action of Endocrine-Disrupting Chemicals on the Respiratory System. Int. J. Mol. Sci. 2024, 25, 12540. https://doi.org/10.3390/ijms252312540
Molinari F, Franco GA, Tranchida N, Di Paola R, Cordaro M. Molecular Mechanism of Action of Endocrine-Disrupting Chemicals on the Respiratory System. International Journal of Molecular Sciences. 2024; 25(23):12540. https://doi.org/10.3390/ijms252312540
Chicago/Turabian StyleMolinari, Francesco, Gianluca Antonio Franco, Nicla Tranchida, Rosanna Di Paola, and Marika Cordaro. 2024. "Molecular Mechanism of Action of Endocrine-Disrupting Chemicals on the Respiratory System" International Journal of Molecular Sciences 25, no. 23: 12540. https://doi.org/10.3390/ijms252312540
APA StyleMolinari, F., Franco, G. A., Tranchida, N., Di Paola, R., & Cordaro, M. (2024). Molecular Mechanism of Action of Endocrine-Disrupting Chemicals on the Respiratory System. International Journal of Molecular Sciences, 25(23), 12540. https://doi.org/10.3390/ijms252312540