Heterogeneous Group of Genetically Determined Auditory Neuropathy Spectrum Disorders
Abstract
:1. Introduction
2. Results
2.1. Molecular Genetic Testing and the Genotype-Phenotype Matching Analysis
2.2. Hearing Test Results
2.3. Quality of Life Assessment
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. qPCR
4.3. Whole Exome Sequencing (WES)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Frequency, Ear | Me [25%, 75%] | N Ears |
---|---|---|
500 Hz AD | 90 [80–95] | 102 |
500 Hz AS | 90 [85–100] | 102 |
1000 Hz AD | 95 [85–100] | 102 |
1000 Hz AS | 95 [90–100] | 102 |
2000 Hz AD | 95 [86.25–100] | 102 |
2000 Hz AS | 90 [90–100] | 102 |
4000 Hz AD | 90 [85–100] | 102 |
4000 Hz AS | 95 [85–100] | 102 |
References
- De Siati, R.D.; Rosenzweig, F.; Gersdorff, G.; Gregoire, A.; Rombaux, P.; Deggouj, N. Auditory Neuropathy Spectrum Disorders: From Diagnosis to Treatment: Literature Review and Case Reports. J. Clin. Med. 2020, 9, 1074. [Google Scholar] [CrossRef] [PubMed]
- Wroblewska-Seniuk, K.E.; Dabrowski, P.; Szyfter, W.; Mazela, J. Universal newborn hearing screening: Methods and results, obstacles, and benefits. Pediatr. Res. 2016, 81, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Iwasa, Y.-I.; Nishio, S.-Y.; Yoishimura, H.; Sugaya, A.; Kataoka, Y.; Maeda, Y.; Kanda, Y.; Nagai, K.; Naito, Y.; Yamazaki, H.; et al. Detailed clinical features and genotype-phenotype correlation in an OTOF-related hearing loss cohort in Japan. Hum. Genet. 2021, 141, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Bennett, C.; Yoon, P.; Lee, M.Y.; Wolfe, M.; Anne, S.; Carvalho, D.S. Newborn hearing screening methodology impacts the timing of diagnosis for auditory neuropathy spectrum disorder. Am. J. Otolaryngol. 2023, 44, 103920. [Google Scholar] [CrossRef] [PubMed]
- Aldè, M.; Di Berardino, F.; Ambrosetti, U.; Barozzi, S.; Piatti, G.; Consonni, D.; Zanetti, D.; Pignataro, L.; Cantarella, G. Hearing outcomes in preterm infants with confirmed hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2022, 161, 111262. [Google Scholar] [CrossRef]
- Foerst, A.; Beutner, D.; Lang-Roth, R.; Huttenbrink, K.-B.; von Wedel, H.; Walger, M. Prevalence of auditory neuropathy/synaptopathy in a population of children with profound hearing loss. Int. J. Pediatr. Otorhinolaryngol. 2006, 70, 1415–1422. [Google Scholar] [CrossRef]
- Vignesh, S.S.; Jaya, V.; Muraleedharan, A. Prevalence and Audiological Characteristics of Auditory Neuropathy Spectrum Disorder in Pediatric Population: A Retrospective Study. Indian J. Otolaryngol. Head Neck Surg. 2014, 68, 196–201. [Google Scholar] [CrossRef]
- Penido, R.C.; Isaac, M.L. Prevalence of auditory neuropathy spectrum disorder in an auditory health care service. Braz. J. Otorhinolaryngol. 2015, 79, 429–433. [Google Scholar] [CrossRef]
- Lieu, J.E.C.; Kenna, M.; Anne, S.; Davidson, L. Hearing Loss in Children. JAMA 2020, 324, 2195–2205. [Google Scholar] [CrossRef]
- Wang, H.; Guan, L.; Wu, X.; Guan, J.; Li, J.; Li, N.; Wu, K.; Gao, Y.; Bing, D.; Zhang, J.; et al. Clinical and genetic architecture of a large cohort with auditory neuropathy. Hum. Genet. 2024, 143, 293–309. [Google Scholar] [CrossRef]
- Rance, G.; Starr, A. Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 2015, 138, 3141–3158. [Google Scholar] [CrossRef] [PubMed]
- Shearer, A.E.; Eppsteiner, R.W.; Frees, K.; Tejani, V.; Sloan-Heggen, C.M.; Brown, C.; Abbas, P.; Dunn, C.; Hansen, M.R.; Gantz, B.J.; et al. Genetic variants in the peripheral auditory system significantly affect adult cochlear implant performance. Hear. Res. 2017, 348, 138–142. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.L.; Riggs, W.J.; Quigley, T.; Keifer, O.P.; Whitton, J.P.; Valayannopoulos, V. The natural history, clinical outcomes, and genotype–phenotype relationship of otoferlin-related hearing loss: A systematic, quantitative literature review. Hum. Genet. 2023, 142, 1429–1449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Han, B.; Lan, L.; Zong, L.; Shi, W.; Wang, H.-Y.; Xie, L.; Zhao, C.; Zhang, C.; Yin, Z.; et al. High frequency of OTOF mutations in Chinese infants with congenital auditory neuropathy spectrum disorder. Clin. Genet. 2016, 90, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Sahwan, M.; Abdelsamad, Y.; Alasfoor, F.; Alfayez, F.; Binkhamis, G.; Nichani, J. Cochlear implantation in children with auditory neuropathy spectrum disorder: An updated systematic review. Eur. Arch. Oto-Rhino-Laryngol. 2023, 281, 1149–1162. [Google Scholar] [CrossRef]
- Lalayants, M.; Mironovich, O.; Bliznets, E.; Маркoва, T.G.; Polyakov, A.; Таварткиладзе, G.A. OTOF-related auditory neuropathy spectrum disorder. Vestnik Otorinolaringol. 2020, 85, 21–25. [Google Scholar] [CrossRef]
- Churbanov, A.Y.; Karafet, T.M.; Morozov, I.V.; Mikhalskaia, V.Y.; Zytsar, M.V.; Bondar, A.A.; Posukh, O.L. Whole Exome Sequencing Reveals Homozygous Mutations in RAI1, OTOF, and SLC26A4 Genes Associated with Nonsyndromic Hearing Loss in Altaian Families (South Siberia). PLoS ONE 2016, 11, e0153841. [Google Scholar] [CrossRef]
- Chen, K.; Huang, B.; Sun, J.; Liang, Y.; Xiong, G. Cochlear Implantation Outcomes in Children With CDH23 Mutations–Associated Hearing Loss. Otolaryngol. Neck Surg. 2021, 167, 560–565. [Google Scholar] [CrossRef]
- Shearer, A.E.; Black-Ziegelbein, E.A.; Hildebrand, M.S.; Eppsteiner, R.W.; Ravi, H.; Joshi, S.; Guiffre, A.C.; Sloan, C.M.; Happe, S.; Howard, S.D.; et al. Advancing genetic testing for deafness with genomic technology. J. Med Genet. 2013, 50, 627–634. [Google Scholar] [CrossRef]
- de Brouwer, A.P.; Pennings, R.J.; Roeters, M.; Van Hauwe, P.; Astuto, L.M.; Hoefsloot, L.H.; Huygen, P.L.; Helm, B.v.D.; Deutman, A.F.; Bork, J.M.; et al. Mutations in the calcium-binding motifs of CDH23 and the 35delG mutation in GJB2 cause hearing loss in one family. Hum. Genet. 2003, 112, 156–163. [Google Scholar] [CrossRef]
- Lerat, J.; Magdelaine, C.; Derouault, P.; Beauvais-Dzugan, H.; Bieth, E.; Acket, B.; Arne-Bes, M.; Sturtz, F.; Lia, A. New PRPS1 variant p.(Met68Leu) located in the dimerization area identified in a French CMTX5 patient. Mol. Genet. Genom. Med. 2019, 7, e875. [Google Scholar] [CrossRef] [PubMed]
- Jerger, J. Clinical Experience With Impedance Audiometry. Arch. Otolaryngol. 1970, 92, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Y.; Lv, J.; Cheng, X.; Cao, Q.; Wang, D.; Zhang, L.; Zhu, B.; Shen, M.; Xu, C.; et al. Bilateral gene therapy in children with autosomal recessive deafness 9: Single-arm trial results. Nat. Med. 2024, 30, 1898–1904. [Google Scholar] [CrossRef]
- Zhang, L.-P.; Chai, Y.-C.; Yang, T.; Wu, H. Identification of novel OTOF compound heterozygous mutations by targeted next-generation sequencing in a Chinese patient with auditory neuropathy spectrum disorder. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 1749–1752. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, J.; Ding, Z.; Fan, J.; Wang, Q.; Dai, P.; Han, D. Outcomes of cochlear implantation in 75 patients with auditory neuropathy. Front. Neurosci. 2023, 17, 1281884. [Google Scholar] [CrossRef] [PubMed]
- Tropitzsch, A.; Schade-Mann, T.; Gamerdinger, P.; Dofek, S.; Schulte, B.; Schulze, M.; Fehr, S.; Biskup, S.; Haack, T.B.; Stöbe, P.; et al. Variability in Cochlear Implantation Outcomes in a Large German Cohort With a Genetic Etiology of Hearing Loss. Ear Hear. 2023, 44, 1464–1484. [Google Scholar] [CrossRef]
- Kang, B.; Lu, X.; Xiong, J.; Li, Y.; Zhu, J.; Cai, T. Identification of four novel variants in the CDH23 gene from four affected families with hearing loss. Front. Genet. 2022, 13, 1027396. [Google Scholar] [CrossRef]
- Chen, S.; Francioli, L.C.; Goodrich, J.K.; Collins, R.L.; Kanai, M.; Wang, Q.; Alföldi, J.; Watts, N.A.; Vittal, C.; Gauthier, L.D.; et al. A genomic mutational constraint map using variation in 76,156 human genomes. Nature 2023, 625, 92–100. [Google Scholar] [CrossRef]
- Gallo, S.; Trevisi, P.; Rigon, C.; Caserta, E.; Ali, D.S.; Bovo, R.; Martini, A.; Cassina, M. Auditory Outcome after Cochlear Implantation in Children with DFNB7/11 Caused by Pathogenic Variants in TMC1 Gene. Audiol. Neurotol. 2021, 26, 157–163. [Google Scholar] [CrossRef]
- Lachgar, M.; Morín, M.; Villamar, M.; del Castillo, I.; Moreno-Pelayo, M. A Novel Truncating Mutation in HOMER2 Causes Nonsyndromic Progressive DFNA68 Hearing Loss in a Spanish Family. Genes 2021, 12, 411. [Google Scholar] [CrossRef]
- Santarelli, R.; Scimemi, P.; Cama, E.; Domínguez-Ruiz, M.; Bonora, C.; Gallo, C.; Rodríguez-Ballesteros, M.; del Castillo, I. Preservation of Distortion Product Otoacoustic Emissions in OTOF-Related Hearing Impairment. Ear Hear. 2023, 45, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Belova, V.; Pavlova, A.; Afasizhev, R.; Moskalenko, V.; Korzhanova, M.; Krivoy, A.; Cheranev, V.; Nikashin, B.; Bulusheva, I.; Rebrikov, D.; et al. System analysis of the sequencing quality of human whole exome samples on BGI NGS platform. Sci. Rep. 2022, 12, 609. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 17 May 2024).
- Joint Genome Institute. Available online: https://jgi.doe.gov/data-and-tools/software-tools/bbtools/bb-tools-user-guide/bbduk-guide/ (accessed on 17 May 2024).
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows—Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Picard Toolkit. version 2.22.4; Broad Institute: Cambridge, MA, USA, 2019; Available online: https://broadinstitute.github.io/picard/ (accessed on 17 May 2024).
- Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 2011, 27, 2987–2993. [Google Scholar] [CrossRef]
- Poplin, R.; Chang, P.-C.; Alexander, D.; Schwartz, S.; Colthurst, T.; Ku, A.; Newburger, D.; Dijamco, J.; Nguyen, N.; Afshar, P.T.; et al. A universal SNP and small-indel variant caller using deep neural networks. Nat. Biotechnol. 2018, 36, 983–987. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Li, Q.; Wang, K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. Am. J. Hum. Genet. 2017, 100, 267–280. [Google Scholar] [CrossRef]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLOS Comput. Biol. 2016, 12, e1004873. [Google Scholar] [CrossRef]
- Gurbich, T.A.; Ilinsky, V.V. ClassifyCNV: A tool for clinical annotation of copy-number variants. Sci. Rep. 2020, 10, 20375. [Google Scholar] [CrossRef]
- Geoffroy, V.; Herenger, Y.; Kress, A.; Stoetzel, C.; Piton, A.; Dollfus, H.; Muller, J. AnnotSV: An integrated tool for structural variations annotation. Bioinformatics 2018, 34, 3572–3574. [Google Scholar] [CrossRef] [PubMed]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Köhler, S.; Gargano, M.; Matentzoglu, N.; Carmody, L.C.; Lewis-Smith, D.; Vasilevsky, N.A.; Danis, D.; Balagura, G.; Baynam, G.; Brower, A.M.; et al. The Human Phenotype Ontology in 2021. Nucleic Acids Res. 2020, 49, D1207–D1217. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Barbitoff, Y.A.; Khmelkova, D.N.; Pomerantseva, E.A.; Slepchenkov, A.V.; Zubashenko, N.A.; Mironova, I.V.; Kaimonov, V.S.; Polev, D.E.; Tsay, V.V.; Glotov, A.S.; et al. Expanding the Russian allele frequency reference via cross-laboratory data integration: Insights from 7,452 exome samples. Natl. Sci. Rev. 2024, 11, nwae326. [Google Scholar] [CrossRef]
Patient | Sex | Hearing Aids (HA)/Cochlear Implant (CI), Age at the Moment of Installation | Lifetime of HA/CI (Months) | Quality of Life Assessment (0 Points—No Change, 10 Points—Life Has Become More Fulfilling) | Genetic Variant | OMIM Disease | Reported |
---|---|---|---|---|---|---|---|
1 | Male | HA, 16 years | 4 | 5 | OTOF(NM_194248.3):c.3021G > C (p.Trp1007Cys) (heterozygous) | Deafness, autosomal recessive 9 (MIM:601071) | This study |
OTOF(NM_194248.3): c.4747C > T (p.Arg1583Cys) (heterozygous) | [14] | ||||||
2 | Male | CI, 15 years | 4 | 5 | OTOF(NM_194248.3): c.3021G > C (p.Trp1007Cys) (heterozygous) | This study | |
OTOF(NM_194248.3): c.4747C > T (p.Arg1583Cys) (heterozygous) | [14] | ||||||
3 | Male | HA, 8 years | 4 | 5 | OTOF(NM_194248.3): c.3021G > C (p.Trp1007Cys) (heterozygous) | This study | |
OTOF(NM_194248.3): c.4747C > T (p.Arg1583Cys) (heterozygous) | [14] | ||||||
4 | Female | CI, 4 years | 6 | 6 | OTOF(NM_194248.3): c.4903A > T (p.Arg1635Ter) (homozygous) | [16] | |
5 | Female | CI, 4 years | 3 | 7 | OTOF(NM_194248.3): c.1111G > C (p.Gly371Arg) (homozygous) | [17] | |
6 | Female | CI, 2 years | 74 | 10 | CDH23(NM_022124.6): c.3067G > A (p.Asp1023Asn) (heterozygous) | Deafness, autosomal recessive 12 (MIM:601386) | [18] |
CDH23(NM_022124.6): c.6442G > A (p.Asp2148Asn) (homozygous) | [19] | ||||||
7 | Female | CI, 2 years | 12 | 6 | CDH23(NM_022124.6): c.6442G > A (p.Asp2148Asn) (homozygous) | [20] | |
8 | Female | HA, 5 years | 13 | 8 | COL11A1(NM_001854.4): c.1678C > T (p.Pro560Ser) (heterozygous) | Deafness, autosomal dominant 37 (MIM:618533) | This study |
9 | Male | CI, 1 year | 6 | 9 | TMC1(NM_138691.3): c.421_425del (p.Arg141ValfsTer4) (heterozygous) | Deafness, autosomal recessive 7 (MIM:600974) | This study |
TMC1(NM_138691.3): c.1592A > T (p.Asp531Val) (heterozygous) | This study | ||||||
10 | Male | CI, 6 years | 10 | 6 | HOMER2(NM_004839.4): c.992A > C (p.Asp331Ala) (heterozygous) | Deafness, autosomal dominant 68 (MIM:616707) | This study |
11 | Male | HA, 14 years | 8 | 8 | TWNK(NM_021830.5): c.561_562insA (p.Asp188ArgfsTer38) (heterozygous) | Mitochondrial DNA depletion syndrome 7 (hepatocerebral type) (MIM:271245), Perrault syndrome 5 (MIM:616138) | This study |
TWNK(NM_021830.5): c.1852C > T (p.Pro618Ser) (heterozygous) | This study | ||||||
12 | Male | HA, 2 years | 2 | 3 | PRPS1(NM_002764.4): c.202A > G (p.Met68Val) (hemizygous) | Deafness, X-linked 1 (MIM:304500) Arts syndrome (MIM:301835) Charcot-Marie-Tooth disease, X-linked recessive, 5 (MIM:311070) Phosphoribosyl pyrophosphate synthetase superactivity (MIM:300661) | This study |
Frequency | Group I Ме [25%, 75%] | N Ears | Group II Ме [25%, 75%] | N Ears | p-Value |
---|---|---|---|---|---|
500 Hz | −6.25 [−7.5, −4.625] | 20 | −4.5 [−6, −3.5] | 102 | 0.05552 |
1000 Hz | −4.725 [−6.125, 4.912] | 20 | −5 [−6, −3.5] | 102 | 0.3011 |
2000 Hz | −4 [−5.162, 7.75] | 20 | −5 [−6, −3.5] | 102 | 0.08219 |
4000 Hz | −3.25 [−4.75, 7.75] | 20 | −5 [−6.5, −3.5] | 102 | 0.008348 |
Frequency | PTA Test Ме [25%, 75%] | N Ears | ASSR Test Ме [25%, 75%] | N Ears | p-Value |
---|---|---|---|---|---|
500 Hz | 52.5 [50.62, 54.38] | 6 | 77.5 [72.5, 80] | 20 | 0.0002689 |
1000 Hz | 62.5 [60, 70.62] | 6 | 81.25 [75, 85] | 20 | 0.02546 |
2000 Hz | 71.25 [63.75, 78.75] | 6 | 80 [75, 85] | 20 | 0.1584 |
4000 Hz | 76.25 [73.12, 81.25] | 6 | 73.75 [64.38, 83.12] | 20 | 0.669 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buianova, A.A.; Bazanova, M.V.; Belova, V.A.; Ilyina, G.A.; Samitova, A.F.; Shmitko, A.O.; Balakina, A.V.; Pavlova, A.S.; Suchalko, O.N.; Korostin, D.O.; et al. Heterogeneous Group of Genetically Determined Auditory Neuropathy Spectrum Disorders. Int. J. Mol. Sci. 2024, 25, 12554. https://doi.org/10.3390/ijms252312554
Buianova AA, Bazanova MV, Belova VA, Ilyina GA, Samitova AF, Shmitko AO, Balakina AV, Pavlova AS, Suchalko ON, Korostin DO, et al. Heterogeneous Group of Genetically Determined Auditory Neuropathy Spectrum Disorders. International Journal of Molecular Sciences. 2024; 25(23):12554. https://doi.org/10.3390/ijms252312554
Chicago/Turabian StyleBuianova, Anastasiia A., Marina V. Bazanova, Vera A. Belova, Galit A. Ilyina, Alina F. Samitova, Anna O. Shmitko, Anna V. Balakina, Anna S. Pavlova, Oleg N. Suchalko, Dmitriy O. Korostin, and et al. 2024. "Heterogeneous Group of Genetically Determined Auditory Neuropathy Spectrum Disorders" International Journal of Molecular Sciences 25, no. 23: 12554. https://doi.org/10.3390/ijms252312554
APA StyleBuianova, A. A., Bazanova, M. V., Belova, V. A., Ilyina, G. A., Samitova, A. F., Shmitko, A. O., Balakina, A. V., Pavlova, A. S., Suchalko, O. N., Korostin, D. O., Machalov, A. S., Daikhes, N. A., & Rebrikov, D. V. (2024). Heterogeneous Group of Genetically Determined Auditory Neuropathy Spectrum Disorders. International Journal of Molecular Sciences, 25(23), 12554. https://doi.org/10.3390/ijms252312554