Relevance of Saliva Analyses in Terms of Etiological Factors, Biomarkers, and Indicators of Disease Course in Patients with Multiple Sclerosis—A Review
Abstract
:1. Introduction
2. Methods
2.1. Search for Articles
2.2. Article Selection Criteria
2.3. Exclusion Criteria
2.4. Data Acquisition
3. Results and Discussion
3.1. Microbiological Tests
3.1.1. Virological Testing of the Saliva of SM Patients
3.1.2. Bacterial Testing of the Saliva of SM Patients
3.1.3. Mycological Testing of the Saliva of MS Patients
3.2. Examination of Inorganic Constituents in Saliva
3.3. Hormone and Enzyme Tests
3.4. Cortisol
3.5. Melatonin
3.6. Acetylcholinesterase
3.7. Biomarkers for MS Diagnostic Purposes
3.7.1. Saliva Profile in MS Patients
3.7.2. Myelin Basic Protein
3.7.3. TAU Protein
3.7.4. Immunoglobulin Light Chains (FLCs)
3.7.5. Cytokines
3.7.6. HLA Diagnosis from Patient Saliva
3.7.7. Oxidative Stress Parameters from Saliva
4. Conclusions
Funding
Conflicts of Interest
References
- Milo, R.; Miller, A. Revised diagnostic criteria of multiple sclerosis. Autoimmun. Rev. 2014, 13, 518–524. [Google Scholar] [CrossRef]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2018, 26, 27–40. [Google Scholar] [CrossRef]
- Marrodan, M.; Alessandro, L.; Farez, M.F.; Correale, J. The role of infections in multiple sclerosis. Mult. Scler. J. 2019, 25, 891–901. [Google Scholar] [CrossRef]
- Ruiz, F.; Vigne, S.; Pot, C. Resolution of inflammation during multiple sclerosis. Semin. Immunopathol. 2019, 41, 711–726. [Google Scholar] [CrossRef]
- Trapp, B.D.; Nave, K.-A. Multiple sclerosis: An immune or neurodegenerative disorder? Annu. Rev. Neurosci. 2008, 31, 247–269. [Google Scholar] [CrossRef]
- Manconi, B.; Liori, B.; Cabras, T.; Vincenzoni, F.; Iavarone, F.; Lorefice, L.; Cocco, E.; Castagnola, M.; Messana, I.; Olianas, A. Top-down proteomic profiling of human saliva in multiple sclerosis patients. J. Proteom. 2018, 187, 212–222. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic criteria for multiple sclerosis: 2010 Revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef]
- McNicholas, N.; Hutchinson, M.; McGuigan, C.; Chataway, J. 2017 McDonald diagnostic criteria: A review of the evidence. Mult. Scler. Relat. Disord. 2018, 24, 48–54. [Google Scholar] [CrossRef]
- Katsani, K.R.; Sakellari, D. Saliva proteomics updates in biomedicine. J. Biol. Res. 2019, 26, 17. [Google Scholar] [CrossRef]
- Boroumand, M.; Olianas, A.; Cabras, T.; Manconi, B.; Fanni, D.; Faa, G.; Desiderio, C.; Messana, I.; Castagnola, M. Saliva, a bodily fluid with recognized and potential diagnostic applications. J. Sep. Sci. 2021, 44, 3677–3690. [Google Scholar] [CrossRef]
- Proctor, G.B. The physiology of salivary secretion. Periodontology 2016, 70, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Sandi, D.; Kokas, Z.; Biernacki, T.; Bencsik, K.; Klivényi, P.; Vécsei, L. Proteomics in Multiple Sclerosis: The Perspective of the Clinician. Int. J. Mol. Sci. 2022, 23, 5162. [Google Scholar] [CrossRef] [PubMed]
- Goldoni, R.; Dolci, C.; Boccalari, E.; Inchingolo, F.; Paghi, A.; Strambini, L.; Galimberti, D.; Tartaglia, G.M. Salivary biomarkers of neurodegenerative and demyelinating diseases and biosensors for their detection. Ageing Res. Rev. 2022, 76, 101587. [Google Scholar] [CrossRef] [PubMed]
- Latham, L.B.; Lee, M.J.; Lincoln, J.A.; Ji, N.; Forsthuber, T.G.; Lindsey, J.W. Antivirus immune activity in multiple sclerosis correlates with MRI activity. Acta Neurol. Scand. 2016, 133, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Hollsberg, P.; Kusk, M.; Bech, E.; Hansen, H.J.; Jakobsen, J.; Haahr, S. Presence of Epstein-Barr virus and human herpesvirus 6B DNA in multiple sclerosis patients: Associations with disease activity. Acta Neurol. Scand. 2005, 112, 395–402. [Google Scholar] [CrossRef]
- Gieß, R.M.; Pfuhl, C.; Behrens, J.R.; Rasche, L.; Freitag, E.; Khalighy, N.; Otto, C.; Wuerfel, J.; Brandt, A.U.; Hofmann, J.; et al. Epstein-Barr virus antibodies in serum and DNA load in saliva are not associated with radiological or clinical disease activity in patients with early multiple sclerosis. PLoS ONE 2017, 12, e0175279. [Google Scholar] [CrossRef]
- Holden, D.W.; Gold, J.; Hawkes, C.H.; Giovannoni, G.; Saxton, J.M.; Carter, A.; Sharrack, B. Epstein Barr virus shedding in multiple sclerosis: Similar frequencies of EBV in saliva across separate patient cohorts. Mult. Scler. Relat. Disord. 2018, 25, 197–199. [Google Scholar] [CrossRef]
- Akhyani, N.; Berti, R.; Brennan, M.B.; Soldan, S.S.; Eaton, J.M.; McFarland, H.F.; Jacobson, S. Tissue distribution and variant characterization of human herpesvirus (HHV)-6: Increased prevalence of HHV-6A in patients with multiple sclerosis. J. Infect. Dis. 2000, 182, 1321–1325. [Google Scholar] [CrossRef]
- Leibovitch, E.C.; Brunetto, G.S.; Caruso, B.; Fenton, K.; Ohayon, J.; Reich, D.S.; Jacobson, S. Coinfection of human herpesviruses 6A (HHV-6A) and HHV-6B as demonstrated by novel digital droplet PCR assay. PLoS ONE 2014, 9, e92328. [Google Scholar] [CrossRef]
- Ramroodi, N.; Sanadgol, N.; Ganjali, Z.; Niazi, A.A.; Sarabandi, V.; Moghtaderi, A. Monitoring of Active Human Herpes Virus 6 Infection in Iranian Patients with Different Subtypes of Multiple Sclerosis. J. Pathog. 2013, 2013, 194932. [Google Scholar] [CrossRef]
- Sanadgol, N.; Ramroodi, N.; Ahmadi, G.A.; Komijani, M.; Moghtaderi, A.; Bouzari, M.; Rezaei, M.; Kardi, M.T.; Dabiri, S.; Moradi, M.; et al. Prevalence of cytomegalovirus infection and its role in total immunoglobulin pattern in Iranian patients with different subtypes of multiple sclerosis. New Microbiol. 2011, 34, 263–274. [Google Scholar] [PubMed]
- Zangeneh, Z.; Abdi-Ali, A.; Khamooshian, K.; Alvandi, A.; Abiri, R. Bacterial variation in the oral microbiota in multiple sclerosis patients. PLoS ONE 2021, 16, e0260384. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, E.T.S.; Figueiredo-Godoi, L.M.A.; Santos, D.H.; Carneiro, R.P.C.D.; Olival, G.S.D.; de Barros, P.P.; Narimatsu, K.; Tilbery, C.P.; Junqueira, J.C. Oral Colonization by Candida Species in Patients with Multiple Sclerosis. Mycopathologia 2020, 185, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Chałas, R. Koncentracija Kalcija i Kalija u Slini Pacijenata s Multiplom Sklerozom Calcium and Potassium Saliva Concentration in Patients with Multiple Sclerosis Adresa za Dopisivanje. 2009. Available online: www.ascro.hr (accessed on 10 November 2024).
- Mortazavi, H.; Akbari, M.; Sahraian, M.A.; Jahromi, A.A.; Shafiei, S. Salivary profile and dental status of patients with multiple sclerosis. Dent. Med. Probl. 2020, 57, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, H.; Stachowiak, R.; Heber, I.; Schlake, H.-P.; Eling, P. Relation between cognitive fatigue and circadian or stress related cortisol levels in MS patients. Mult. Scler. Relat. Disord. 2020, 45, 102440. [Google Scholar] [CrossRef]
- Powell, D.J.; Moss-Morris, R.; Liossi, C.; Schlotz, W. Circadian cortisol and fatigue severity in relapsing-remitting multiple sclerosis. Psychoneuroendocrinology 2015, 56, 120–131. [Google Scholar] [CrossRef]
- Kern, S.; Schultheiß, T.; Schneider, H.; Schrempf, W.; Reichmann, H.; Ziemssen, T. Circadian cortisol, depressive symptoms and neurological impairment in early multiple sclerosis. Psychoneuroendocrinology 2011, 36, 1505–1512. [Google Scholar] [CrossRef]
- Thompson, S.B.; Coleman, A.; Williams, N. Yawning and cortisol levels in multiple sclerosis: Potential new diagnostic tool. Mult. Scler. Relat. Disord. 2018, 23, 51–55. [Google Scholar] [CrossRef]
- Gold, S.M.; Kern, K.C.; O’Connor, M.-F.; Montag, M.J.; Kim, A.; Yoo, Y.S.; Giesser, B.S.; Sicotte, N.L. Smaller cornu ammonis 23/dentate gyrus volumes and elevated cortisol in multiple sclerosis patients with depressive symptoms. Biol. Psychiatry 2010, 68, 553–559. [Google Scholar] [CrossRef]
- Kern, S.; Geiger, M.; Paucke, M.; Kästner, A.; Akgün, K.; Ziemssen, T. Clinical relevance of circadian melatonin release in relapsing-remitting multiple sclerosis. J. Mol. Med. 2019, 97, 1547–1555. [Google Scholar] [CrossRef]
- Ghorbani, A.; Salari, M.; Shaygannejad, V.; Norouzi, R. The role of melatonin in the pathogenesis of multiple sclerosis: A case-control study. Int. J. Prev. Med. 2013, 4, S180–S184. [Google Scholar] [PubMed]
- Koshkzari, R.; Mirzaii-Dizgah, I.; Moghaddasi, M.; Mirzaii-Dizgah, M.-R. Saliva and Serum Acetylcholinesterase Activity in Multiple Sclerosis. Mol. Neurobiol. 2023, 60, 2884–2888. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How Do Glucocorticoids Influence Stress Responses? Integrating Permissive, Suppressive, Stimulatory, and Preparative Actions. 2000. Available online: https://academic.oup.com/edrv/article/21/1/55/2423840 (accessed on 10 November 2024).
- Gold, S.M.; Mohr, D.C.; Huitinga, I.; Flachenecker, P.; Sternberg, E.M.; Heesen, C. The role of stress-response systems for the pathogenesis and progression of MS. Trends Immunol. 2005, 26, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Mohr, D.C.; Hart, S.L.; Julian, L.; Cox, D.; Pelletier, D. Association between stressful life events and exacerbation in multiple sclerosis: A meta-analysis. BMJ 2004, 328, 731. [Google Scholar] [CrossRef]
- Artemiadis, A.K.; Anagnostouli, M.C.; Alexopoulos, E.C. Stress as a risk factor for multiple sclerosis onset or relapse: A systematic review. Neuroepidemiology 2011, 36, 109–120. [Google Scholar] [CrossRef]
- Pereira, G.M.; Soares, N.M.; de Souza, A.R.; Becker, J.; Finkelsztejn, A.; de Almeida, R.M.M. Basal cortisol levels and the relationship with clinical symptoms in multiple sclerosis: A systematic review. Arq. Neuro-Psiquiatria 2018, 76, 622–634. [Google Scholar] [CrossRef]
- Gold, J.; Holden, D.; Parratt, J.; Yiannikas, C.; Ahmad, R.; Sedhom, M.; Giovannoni, G. Effect of teriflunomide on Epstein–Barr virus shedding in relapsing-remitting multiple sclerosis patients: Outcomes from a real-world pilot cohort study. Mult. Scler. Relat. Disord. 2022, 68, 104377. [Google Scholar] [CrossRef]
- Benarroch, E.E. Suprachiasmatic nucleus and melatonin: Reciprocal interactions and clinical correlations. Neurology 2008, 71, 594–598. [Google Scholar] [CrossRef]
- Jiménez-Pastor, J.M.; Rodríguez-Cortés, F.; López-Soto, P.; López, L.; Meira e Cruz, M. Cardiorespiratory and circadian clock markers in intensive care unit patients. Dent. Med. Probl. 2024, 61, 797–801. [Google Scholar] [CrossRef]
- Passos, G.R.D.; Sato, D.K.; Becker, J.; Fujihara, K. Th17 Cells Pathways in Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders: Pathophysiological and Therapeutic Implications. Mediat. Inflamm. 2016, 2016, 5314541. [Google Scholar] [CrossRef]
- Álvarez-Sánchez, N.; Cruz-Chamorro, I.; López-González, A.; Utrilla, J.C.; Fernández-Santos, J.M.; Martínez-López, A.; Lardone, P.J.; Guerrero, J.M.; Carrillo-Vico, A. Melatonin controls experimental autoimmune encephalomyelitis by altering the T effector/regulatory balance. Brain Behav. Immun. 2015, 50, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Jurado, A.; Escribano, B.M.; Caballero-Villarraso, J.; Galván, A.; Agüera, E.; Santamaría, A.; Túnez, I. Melatonin and multiple sclerosis: Antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology 2022, 30, 1569–1596. [Google Scholar] [CrossRef]
- Shao, X.; Yang, L.; Hu, K.; Shen, R.; Ye, Q.; Yuan, X.; Zhao, Q.; Shen, J. Serum Cholinesterases, a Novel Marker of Clinical Activity in Inflammatory Bowel Disease: A Retrospective Case—Control Study. Mediat. Inflamm. 2020, 2020, 4694090. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, V.A.; Ochani, M.; Gallowitsch-Puerta, M.; Ochani, K.; Huston, J.M.; Czura, C.J.; Al-Abed, Y.; Tracey, K.J. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc. Natl. Acad. Sci. USA 2006, 103, 5219–5223. [Google Scholar] [CrossRef]
- Zivkovic, A.R.; Tourelle, K.M.; Brenner, T.; Weigand, M.A.; Hofer, S.; Schmidt, K. Reduced serum cholinesterase activity indicates splenic modulation of the sterile inflammation. J. Surg. Res. 2017, 220, 275–283. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group; Atkinson, A.J., Jr.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Jafari, A.; Babajani, A.; Rezaei-Tavirani, M. Multiple Sclerosis Biomarker Discoveries by Proteomics and Metabolomics Approaches. Biomark. Insights 2021, 16, 11772719211013352. [Google Scholar] [CrossRef]
- Mirzaii-Dizgah, M.-H.; Mirzaii-Dizgah, M.-R.; Mirzaii-Dizgah, I. Serum and saliva myelin basic protein as multiple sclerosis biomarker. Basic Clin. Neurosci. J. 2021, 12, 309–314. [Google Scholar] [CrossRef]
- Mirzaii-Dizgah, M.-H.; Mirzaii-Dizgah, I. Serum and saliva total tau protein as a marker for relapsing-remitting multiple sclerosis. Med. Hypotheses 2020, 135, 109476. [Google Scholar] [CrossRef]
- Kaplan, B.; Golderman, S.; Ganelin-Cohen, E.; Miniovitch, A.; Korf, E.; Ben-Zvi, I.; Livneh, A.; Flechter, S. Immunoglobulin free light chains in saliva: A potential marker for disease activity in multiple sclerosis. Clin. Exp. Immunol. 2018, 192, 7–17. [Google Scholar] [CrossRef]
- Lotan, I.; Ganelin-Cohen, E.; Tartakovsky, E.; Khasminsky, V.; Hellmann, M.A.; Steiner, I.; Ben-Zvi, I.; Livneh, A.; Golderman, S.; Kaplan, B. Saliva immunoglobulin free light chain analysis for monitoring disease activity and response to treatment in multiple sclerosis. Mult. Scler. Relat. Disord. 2020, 44, 102339. [Google Scholar] [CrossRef]
- Adamashvili, I.; Minagar, A.; Gonzalez-Toledo, E.; Featherston, L.; Kelley, R.E. Soluble HLA measurement in saliva and cerebrospinal fluid in Caucasian patients with multiple sclerosis: A preliminary study. J. Neuroinflamm. 2005, 2, 13. [Google Scholar] [CrossRef] [PubMed]
- Minagar, A.; Adamashvili, I.; Kelley, R.E.; Gonzalez-Toledo, E.; McLarty, J.; Smith, S.J. Saliva soluble HLA as a potential marker of response to interferon-β1a in multiple sclerosis: A preliminary study. J. Neuroinflamm. 2007, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Hanken, K.; Sander, C.; Qaiser, L.; Schlake, H.-P.; Kastrup, A.; Haupts, M.; Eling, P.; Hildebrandt, H. Salivary IL-1β as an objective measure for fatigue in multiple sclerosis? Front. Neurol. 2018, 9, 574. [Google Scholar] [CrossRef] [PubMed]
- Karlík, M.; Valkovič, P.; Hančinová, V.; Krížová, L.; Tóthová, L.; Celec, P. Markers of oxidative stress in plasma and saliva in patients with multiple sclerosis. Clin. Biochem. 2015, 48, 24–28. [Google Scholar] [CrossRef]
- Varol, Ç.; Kırzıoğlu, F.Y.; Demirci, S.; Ünlü, M.D.; Calapoğlu, M.; Orhan, H. Salivary Oxidative Status and the Neutrophil/Lymphocyte Ratio in Multiple Sclerosis. Turk. J. Neurol. 2023, 29, 30–39. [Google Scholar] [CrossRef]
- Siqueira, W.; Salih, E.; Wan, D.; Helmerhorst, E.; Oppenheim, F. Proteome of human minor salivary gland secretion. J. Dent. Res. 2008, 87, 445–450. [Google Scholar] [CrossRef]
- Ghallab, N.A. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: Review of the current evidence. Arch. Oral Biol. 2018, 87, 115–124. [Google Scholar] [CrossRef]
- Grassl, N.; Kulak, N.A.; Pichler, G.; Geyer, P.E.; Jung, J.; Schubert, S.; Sinitcyn, P.; Cox, J.; Mann, M. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med. 2016, 8, 44. [Google Scholar] [CrossRef]
- Cabras, T.; Sanna, M.; Manconi, B.; Fanni, D.; Demelia, L.; Sorbello, O.; Iavarone, F.; Castagnola, M.; Faa, G.; Messana, I. Proteomic investigation of whole saliva in Wilson’s disease. J. Proteom. 2015, 128, 154–163. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, Y.; Kim, Y.; Kim, S.; Kim, J.J.; Kim, K.M.; Yoshizawa, J.; Fan, L.-Y.; Cao, C.-X.; Wong, D.T.W. Differential Proteomic Analysis of Human Saliva using Tandem Mass Tags Quantification for Gastric Cancer Detection. Sci. Rep. 2016, 6, 22165. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhang, Z.; Feng, S.; Wang, Q.; Malamud, D.; Deng, H. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals. Anal. Chim. Acta 2013, 774, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Boggs, J.M. Myelin basic protein: A multifunctional protein. Cell. Mol. Life Sci. CMLS 2006, 63, 1945–1961. [Google Scholar] [CrossRef] [PubMed]
- Martinsen, V.; Kursula, P. Multiple sclerosis and myelin basic protein: Insights into protein disorder and disease. Amino Acids 2021, 54, 99–109. [Google Scholar] [CrossRef]
- Tudorică, V.; Bălşeanu, T.-A.; Albu, V.-C.; Bondari, S.; Bumbea, A.-M.; Pîrşcoveanu, M. Tau protein in neurodegenerative diseases—A review. Rom. J. Morphol. Embryol. 2017, 58, 1141–1150. Available online: http://www.rjme.ro/ (accessed on 10 November 2024).
- Maier, K.H.; Köhler, A.; Diem, R.; Sättler, M.B.; Demmer, I.; Lange, P.; Bähr, M.; Otto, M. Biological markers for axonal degeneration in CSF and blood of patients with the first event indicative for multiple sclerosis. Neurosci. Lett. 2008, 436, 72–76. [Google Scholar] [CrossRef]
- Fischer, C.; Arneth, B.; Koehler, J.; Lotz, J.; Lackner, K.J. Kappa free light chains in cerebrospinal fluid as markers of intrathecal immunoglobulin synthesis. Clin. Chem. 2004, 50, 1809–1813. [Google Scholar] [CrossRef]
- Harboe, E.; Tjensvoll, A.B.; Vefring, H.K.; Gøransson, L.G.; Kvaløy, J.T.; Omdal, R. Fatigue in primary Sjögren’s syndrome—A link to sickness behaviour in animals? Brain Behav. Immun. 2009, 23, 1104–1108. [Google Scholar] [CrossRef]
- Lampa, J.; Westman, M.; Kadetoff, D.; Agréus, A.N.; Le Maître, E.; Gillis-Haegerstrand, C.; Andersson, M.; Khademi, M.; Corr, M.; Christianson, C.A.; et al. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice. Proc. Natl. Acad. Sci. USA 2012, 109, 12728–12733. [Google Scholar] [CrossRef]
- Vollmer-Conna, U.; Fazou, C.; Cameron, B.; Li, H.; Brennan, C.; Luck, L.; Davenport, T.; Wakefield, D.; Hickie, I.; Lloyd, A. Production of pro-inflammatory cytokines correlates with the symptoms of acute sickness behaviour in humans. Psychol. Med. 2004, 34, 1289–1297. [Google Scholar] [CrossRef]
- Skinner, G.W.; Mitchell, D.; Harden, L.M. Avoidance of physical activity is a sensitive indicator of illness. Physiol. Behav. 2009, 96, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Aultman, D.; Adamashvili, I.; Yaturu, K.; Langford, M.; Gelder, F.; Gautreaux, M.; Ghali, G.; McDonald, J. Soluble HLA in Human Body Fluids. Hum. Immunol. 1999, 60, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Lindaman, A.; Dowden, A.; Zavazava, N. Soluble HLA-G molecules induce apoptosis in natural killer cells. Am. J. Reprod. Immunol. 2006, 56, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Adamashvili, I.; Pressly, T.; Gebel, H.; Milford, E.; Wolf, R.; Mancini, M.; Sittg, K.; Ghali, G.; Hall, V.; McDonald, J.C. Soluble HLA in saliva of patients with autoimmune rheumatic diseases. Rheumatol. Int. 2002, 22, 71–76. [Google Scholar] [CrossRef]
- Tabayoyong, W.B.; Zavazava, N. Soluble HLA Revisited. Leuk. Res. 2007, 31, 121–125. [Google Scholar] [CrossRef]
- Hayman, M.; van Beijnen, M.; Stamp, L.; Spellerberg, M.; O’Donnell, J. Soluble human leukocyte antigen: A diagnostic indicator of rheumatoid arthritis? J. Immunol. Methods 2006, 315, 19–26. [Google Scholar] [CrossRef]
- Maciejczyk, M.; Zalewska, A.; Gerreth, K. Salivary redox biomarkers in selected neurodegenerative diseases. J. Clin. Med. 2020, 9, 497. [Google Scholar] [CrossRef]
- Wang, J.; Schipper, H.M.; Velly, A.M.; Mohit, S.; Gornitsky, M. Salivary biomarkers of oxidative stress: A critical review. Free. Radic. Biol. Med. 2015, 85, 95–104. [Google Scholar] [CrossRef]
- Aps, J.K.; Martens, L.C. Review: The physiology of saliva and transfer of drugs into saliva. Forensic Sci. Int. 2005, 150, 119–131. [Google Scholar] [CrossRef]
- Mehdipour, A.; Fateh, R.; Fuladvand, F.; Aghaali, M.; Keykha, E.; Hadilou, M. Association between sleep pattern, salivary cariogenic bacteria and fungi populations, pH and buffering capacity in children: A comparative study. Dent. Med. Probl. 2024, 61, 217–224. [Google Scholar] [CrossRef]
- Chiappin, S.; Antonelli, G.; Gatti, R.; Elio, F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef]
Saliva + Blood | Saliva + Urine | Saliva + CSF | |
---|---|---|---|
Number of publications | 12 | 3 | 2 |
Convergent results (number of publications) | 10 | 2 | 2 |
Study Name | Application |
---|---|
Virological studies |
|
Bacteriological studies |
|
Inorganic ingredients |
|
Cortisol |
|
Melatonin |
|
Acetylcholinesterase |
|
Myelin basic protein (MBP) |
|
Tau protein |
|
Light chain immunoglobulins (FLC) |
|
IL-1β cytokine |
|
Leukocyte antigens (HLA) |
|
Parameters of oxidative stress |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapel-Reguła, A.; Duś-Ilnicka, I.; Radwan-Oczko, M. Relevance of Saliva Analyses in Terms of Etiological Factors, Biomarkers, and Indicators of Disease Course in Patients with Multiple Sclerosis—A Review. Int. J. Mol. Sci. 2024, 25, 12559. https://doi.org/10.3390/ijms252312559
Kapel-Reguła A, Duś-Ilnicka I, Radwan-Oczko M. Relevance of Saliva Analyses in Terms of Etiological Factors, Biomarkers, and Indicators of Disease Course in Patients with Multiple Sclerosis—A Review. International Journal of Molecular Sciences. 2024; 25(23):12559. https://doi.org/10.3390/ijms252312559
Chicago/Turabian StyleKapel-Reguła, Aleksandra, Irena Duś-Ilnicka, and Małgorzata Radwan-Oczko. 2024. "Relevance of Saliva Analyses in Terms of Etiological Factors, Biomarkers, and Indicators of Disease Course in Patients with Multiple Sclerosis—A Review" International Journal of Molecular Sciences 25, no. 23: 12559. https://doi.org/10.3390/ijms252312559
APA StyleKapel-Reguła, A., Duś-Ilnicka, I., & Radwan-Oczko, M. (2024). Relevance of Saliva Analyses in Terms of Etiological Factors, Biomarkers, and Indicators of Disease Course in Patients with Multiple Sclerosis—A Review. International Journal of Molecular Sciences, 25(23), 12559. https://doi.org/10.3390/ijms252312559